2
|
Diaz-Gallo LM, Oke V, Lundström E, Elvin K, Ling Wu Y, Eketjäll S, Zickert A, Gustafsson JT, Jönsen A, Leonard D, Birmingham DJ, Nordmark G, Bengtsson AA, Rönnblom L, Gunnarsson I, Yu CY, Padyukov L, Svenungsson E. Four Systemic Lupus Erythematosus Subgroups, Defined by Autoantibodies Status, Differ Regarding HLA-DRB1 Genotype Associations and Immunological and Clinical Manifestations. ACR Open Rheumatol 2021; 4:27-39. [PMID: 34658170 PMCID: PMC8754019 DOI: 10.1002/acr2.11343] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Objective The heterogeneity of systemic lupus erythematosus (SLE) constitutes clinical and therapeutical challenges. We therefore studied whether unrecognized disease subgroups can be identified by using autoantibody profiling together with HLA‐DRB1 alleles and immunological and clinical data. Methods An unsupervised cluster analysis was performed based on detection of 13 SLE‐associated autoantibodies (double‐stranded DNA, nucleosomes, ribosomal P, ribonucleoprotein [RNP] 68, RNPA, Smith [Sm], Sm/RNP, Sjögren's syndrome antigen A [SSA]/Ro52, SSA/Ro60, Sjögren's syndrome antigen B [SSB]/La, cardiolipin [CL]‐Immunoglobulin G [IgG], CL–Immunoglobulin M [IgM], and β2 glycoprotein I [β2GPI]–IgG) in 911 patients with SLE from two cohorts. We evaluated whether each SLE subgroup is associated with HLA‐DRB1 alleles, clinical manifestations (n = 743), and cytokine levels in circulation (n = 446). Results Our analysis identified four subgroups among the patients with SLE. Subgroup 1 (29.3%) was dominated by anti‐SSA/Ro60/Ro52/SSB autoantibodies and was strongly associated with HLA‐DRB1*03 (odds ratio [OR] = 4.73; 95% confidence interval [CI] = 4.52‐4.94). Discoid lesions were more common for this disease subgroup (OR = 1.71, 95% CI = 1.18‐2.47). Subgroup 2 (28.7%) was dominated by anti‐nucleosome/SmRNP/DNA/RNPA autoantibodies and associated with HLA‐DRB1*15 (OR = 1.62, 95% CI = 1.41‐1.84). Nephritis was most common in this subgroup (OR = 1.61, 95% CI = 1.14‐2.26). Subgroup 3 (23.8%) was characterized by anti‐ß2GPI‐IgG/anti‐CL–IgG/IgM autoantibodies and a higher frequency of HLA‐DRB1*04 compared with the other patients with SLE. Vascular events were more common in Subgroup 3 (OR = 1.74, 95% CI = 1.2‐2.5). Subgroup 4 (18.2%) was negative for the investigated autoantibodies, and this subgroup was not associated with HLA‐DRB1. Additionally, the levels of eight cytokines significantly differed among the disease subgroups. Conclusion Our findings suggest that four fairly distinct subgroups can be identified on the basis of the autoantibody profile in SLE. These four SLE subgroups differ regarding associations with HLA‐DRB1 alleles and immunological and clinical features, suggesting dissimilar disease pathways.
Collapse
Affiliation(s)
- Lina-Marcela Diaz-Gallo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vilija Oke
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Emeli Lundström
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Elvin
- Department of Clinical Immunology and Transfusion Medicine, Unit of Clinical Immunology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yee Ling Wu
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Microbiology and Immunology, Loyola University Chicago, lk, Illinois
| | - Susanna Eketjäll
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Agneta Zickert
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden
| | - Johanna T Gustafsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences, Section of Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | | | - Gunnel Nordmark
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences, Section of Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden
| | - Chack-Yung Yu
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinksa University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Castellanos-Rubio A, Ghosh S. Disease-Associated SNPs in Inflammation-Related lncRNAs. Front Immunol 2019; 10:420. [PMID: 30906297 PMCID: PMC6418042 DOI: 10.3389/fimmu.2019.00420] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Immune-mediated diseases, such as celiac disease, type 1 diabetes or multiple sclerosis, are a clinically heterogeneous group of diseases that share many key genetic triggers. Although the pathogenic mechanisms responsible for the development of immune mediated disorders is not totally understood, high-throughput genomic studies, such as GWAS and Immunochip, performed in the past few years have provided intriguing hints about underlying mechanisms and pathways that lead to disease. More than a hundred gene variants associated with disease susceptibility have been identified through such studies, but the progress toward understanding the underlying mechanisms has been slow. The majority of the identified risk variants are located in non-coding regions of the genome making it difficult to assign a molecular function to the SNPs. However, recent studies have revealed that many of the non-coding regions bearing disease-associated SNPs generate long non-coding RNAs (lncRNAs). LncRNAs have been implicated in several inflammatory diseases, and many of them have been shown to function as regulators of gene expression. Many of the disease associated SNPs located in lncRNAs modify their secondary structure, or influence expression levels, thereby affecting their regulatory function, hence contributing to the development of disease.
Collapse
Affiliation(s)
- Ainara Castellanos-Rubio
- Immunogenetics Research Laboratory, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Functional Studies in Celiac Disease Group, BioCruces Health Research Institute, Barakaldo, Spain
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
4
|
Forbes JD, Van Domselaar G, Bernstein CN. The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Front Microbiol 2016; 7:1081. [PMID: 27462309 PMCID: PMC4939298 DOI: 10.3389/fmicb.2016.01081] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022] Open
Abstract
The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID.
Collapse
Affiliation(s)
- Jessica D. Forbes
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Gary Van Domselaar
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine and the IBD Clinical and Research Centre, University of Manitoba, WinnipegMB, Canada
| |
Collapse
|
5
|
You Y, Zhai ZF, Chen FR, Chen W, Hao F. Autoimmune risk loci of IL12RB2, IKZF1, XKR6, TMEM39A and CSK in Chinese patients with systemic lupus erythematosus. ACTA ACUST UNITED AC 2015; 85:200-3. [PMID: 25720506 DOI: 10.1111/tan.12522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/04/2015] [Accepted: 01/13/2015] [Indexed: 12/20/2022]
Abstract
Recent genome-wide or follow-up studies conducted in European or Caucasian populations have identified single nucleotide polymorphisms (SNPs) conferring increased risk to autoimmune diseases. It is unclear whether these observations can apply to systemic lupus erythematosus (SLE) in China. An association study was performed on 395 SLE patients and 378 healthy controls recruited from the Chinese population, in which the IL12RB2 rs3790567, IKZF1 rs2366293, XKR6 rs4240671, TMEM39A rs1132200 and CSK rs34933034 polymorphisms were examined by Matrix Assisted Laser Desorption Time of Flight Mass Spectrometry. The frequency of the A allele of IL12RB2 rs3790567 was lower in the cases compared with the controls (24.8% vs 30.2%, P = 0.018) and significant difference among the AA, AG and GG genotypes of rs3790567 was detected between the SLE patients and healthy controls (P = 0.020). We also found a statistically significant difference in the dominant model (GG+AG vs AA, P = 0.008). There was no correlation between the genotypes and specific sub-phenotypes in the current cohort. Associations with IKZF1 rs2366293, XKR6 rs4240671, TMEM39A rs1132200 and CSK rs34933034 were also lacking (P > 0.05). The results supported the theory that IL12RB2 is associated with SLE in the Chinese population.
Collapse
Affiliation(s)
- Y You
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | | | | | | | | |
Collapse
|
6
|
Wu X, Chen H, Xu H. The genomic landscape of human immune-mediated diseases. J Hum Genet 2015; 60:675-81. [PMID: 26290150 DOI: 10.1038/jhg.2015.99] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/06/2015] [Accepted: 07/16/2015] [Indexed: 02/06/2023]
Abstract
As the methodology of genetic detection has developed rapidly in recent years, through techniques such as genome-wide association studies (GWAS) and the secondary generation of sequencing, we are able to view the genomic landscape more clearly. It is well known that genes have a vital role in the pathogenesis of immune-mediated diseases (IMDs), which could provide important insight into new clinical therapeutic targets. Here, we review the genomic landscape of IMDs and analyse overlapping loci between diseases. There may be a need for more epigenetics studies to aid in the understanding of the transition from genotype to phenotype.
Collapse
Affiliation(s)
- Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Haiyan Chen
- Department of Rheumatology, Zhongda Hospital, Southeast University, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
7
|
Evidence of new risk genetic factor to systemic lupus erythematosus: the UBASH3A gene. PLoS One 2013; 8:e60646. [PMID: 23565265 PMCID: PMC3614928 DOI: 10.1371/journal.pone.0060646] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/01/2013] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin associated and Src-homology 3 (SH3) domain containing A (UBASH3a) is a suppressor of T-cell receptor signaling, underscoring antigen presentation to T-cells as a critical shared mechanism of diseases pathogenesis. The aim of the present study was to determine whether the UBASH3a gene influence the susceptibility to systemic lupus erythematosus (SLE) in Caucasian populations. We evaluated five UBASH3a polymorphisms (rs2277798, rs2277800, rs9976767, rs13048049 and rs17114930), using TaqMan® allelic discrimination assays, in a discovery cohort that included 906 SLE patients and 1165 healthy controls from Spain. The SNPs that exhibit statistical significance difference were evaluated in a German replication cohort of 360 SLE patients and 379 healthy controls. The case-control analysis in the Spanish population showed a significant association between the rs9976767 and SLE (Pc = 9.9E-03 OR = 1.21 95%CI = 1.07–1.37) and a trend of association for the rs2277798 analysis (P = 0.09 OR = 0.9 95%CI = 0.79–1.02). The replication in a German cohort and the meta-analysis confirmed that the rs9976767 (Pc = 0.02; Pc = 2.4E-04, for German cohort and meta-analysis, respectively) and rs2277798 (Pc = 0.013; Pc = 4.7E-03, for German cohort and meta-analysis, respectively) UBASH3a variants are susceptibility factors for SLE. Finally, a conditional regression analysis suggested that the most likely genetic variation responsible for the association was the rs9976767 polymorphism. Our results suggest that UBASH3a gene plays a role in the susceptibility to SLE. Moreover, our study indicates that UBASH3a can be considered as a common genetic factor in autoimmune diseases.
Collapse
|