1
|
Heo SK, Yu HM, Kim DK, Seo HJ, Shin Y, Kim SA, Kim M, Kim Y, Lee YJ, Noh EK, Jo JC. LIGHT (TNFSF14) promotes the differentiation of human bone marrow-derived mesenchymal stem cells into functional hepatocyte-like cells. PLoS One 2023; 18:e0289798. [PMID: 37552689 PMCID: PMC10411951 DOI: 10.1371/journal.pone.0289798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Liver transplantation is the most effective treatment option for patients with acute or chronic liver failure. However, the applicability and effectiveness of this modality are often limited by a shortage of donors, surgical complications, high medical costs, and the need for continuing immunosuppressive therapy. An alternative approach is liver cell transplantation. LIGHT (a member of the tumor necrosis factor superfamily) could be a promising candidate for promoting the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) into hepatocyte-like cells. In this study, we investigated the effect of LIGHT on hBM-MSC differentiation into hepatocyte-like cells. Our previous results showed that LIGHT receptor lymphotoxin-β receptor (LTβR) is constitutively expressed on the surface of hBM-MSCs. Upon treatment with recombinant human LIGHT (rhLIGHT), the phenotype of hBM-MSCs changed to round or polygonal cells. In addition, the cells exhibited high levels of hepatocyte-specific markers, including albumin, cytokeratin-18 (CK-18), CK-19, cytochrome P450 family 1 subfamily A member 1 (CYP1A1), CYP1A2, CYP3A4, SRY-box transcription factor 17 (SOX17), and forkhead box A2 (FOXA2). These results indicate that rhLIGHT enhances the differentiation of hBM-MSCs into functional hepatocyte-like cells. Furthermore, rhLIGHT-induced hepatocyte-like cells showed a higher ability to store glycogen and uptake indocyanine green compared with control cells, indicating functional progression. Additionally, treatment with rhLIGHT increased the number, viability, and proliferation of cells by inducing the S/G2/M phase and upregulating the expression of various cyclin and cyclin dependent kinase (CDK) proteins. We also found that the hepatogenic differentiation of hBM-MSCs induced by rhLIGHT was mediated by the activation of signal transducer and activator of transcription 3 (STAT3) and STAT5 pathways. Overall, our findings suggest that LIGHT plays an essential role in promoting the hepatogenic differentiation of hBM-MSCs. Hence, LIGHT may be a valuable factor for stem cell therapy.
Collapse
Affiliation(s)
- Sook-Kyoung Heo
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Ho-Min Yu
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Do Kyoung Kim
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Hye Jin Seo
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Yerang Shin
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Sung Ah Kim
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Minhui Kim
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Youjin Kim
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Yoo Jin Lee
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Eui-Kyu Noh
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jae-Cheol Jo
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| |
Collapse
|
2
|
Zhou Q, Li T, Wang K, Zhang Q, Geng Z, Deng S, Cheng C, Wang Y. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol 2022; 13:928173. [PMID: 35967435 PMCID: PMC9367636 DOI: 10.3389/fimmu.2022.928173] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Transplantation is often the last resort for end-stage organ failures, e.g., kidney, liver, heart, lung, and pancreas. The shortage of donor organs is the main limiting factor for successful transplantation in humans. Except living donations, other alternatives are needed, e.g., xenotransplantation of pig organs. However, immune rejection remains the major challenge to overcome in xenotransplantation. There are three different xenogeneic types of rejections, based on the responses and mechanisms involved. It includes hyperacute rejection (HAR), delayed xenograft rejection (DXR) and chronic rejection. DXR, sometimes involves acute humoral xenograft rejection (AHR) and cellular xenograft rejection (CXR), which cannot be strictly distinguished from each other in pathological process. In this review, we comprehensively discussed the mechanism of these immunological rejections and summarized the strategies for preventing them, such as generation of gene knock out donors by different genome editing tools and the use of immunosuppressive regimens. We also addressed organ-specific barriers and challenges needed to pave the way for clinical xenotransplantation. Taken together, this information will benefit the current immunological research in the field of xenotransplantation.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Kaiwen Wang
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Qi Zhang
- School of Medicine, University of Electronics and Technology of China, Chengdu, China
| | - Zhuowen Geng
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Shaoping Deng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
- *Correspondence: Chunming Cheng, ; Yi Wang,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
- *Correspondence: Chunming Cheng, ; Yi Wang,
| |
Collapse
|
3
|
Cross-Najafi AA, Lopez K, Isidan A, Park Y, Zhang W, Li P, Yilmaz S, Akbulut S, Ekser B. Current Barriers to Clinical Liver Xenotransplantation. Front Immunol 2022; 13:827535. [PMID: 35281047 PMCID: PMC8904558 DOI: 10.3389/fimmu.2022.827535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Preclinical trials of pig-to-nonhuman primate liver xenotransplantation have recently achieved longer survival times. However, life-threatening thrombocytopenia and coagulation dysregulation continue to limit preclinical liver xenograft survival times to less than one month despite various genetic modifications in pigs and intensive pharmacological support. Transfusion of human coagulation factors and complex immunosuppressive regimens have resulted in substantial improvements in recipient survival. The fundamental biological mechanisms of thrombocytopenia and coagulation dysregulation remain incompletely understood. Current studies demonstrate that porcine von Willebrand Factor binds more tightly to human platelet GPIb receptors due to increased O-linked glycosylation, resulting in increased human platelet activation. Porcine liver sinusoidal endothelial cells and Kupffer cells phagocytose human platelets in an asialoglycoprotein receptor 1-dependent and CD40/CD154-dependent manner, respectively. Porcine Kupffer cells phagocytose human platelets via a species-incompatible SIRPα/CD47 axis. Key drivers of coagulation dysregulation include constitutive activation of the extrinsic clotting cascade due to failure of porcine tissue factor pathway inhibitor to repress recipient tissue factor. Additionally, porcine thrombomodulin fails to activate human protein C when bound by human thrombin, leading to a hypercoagulable state. Combined genetic modification of these key genes may mitigate liver xenotransplantation-induced thrombocytopenia and coagulation dysregulation, leading to greater recipient survival in pig-to-nonhuman primate liver xenotransplantation and, potentially, the first pig-to-human clinical trial.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Sami Akbulut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Burcin Ekser,
| |
Collapse
|
4
|
Lamm V, Ekser B, Vagefi PA, Cooper DK. Bridging to Allotransplantation-Is Pig Liver Xenotransplantation the Best Option? Transplantation 2022; 106:26-36. [PMID: 33653996 PMCID: PMC10124768 DOI: 10.1097/tp.0000000000003722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the past 20 y, the number of patients in the United States who died while waiting for a human donor liver totaled >52 000. The median national wait time for patients with acute liver failure and the most urgent liver transplant listing was 7 d in 2018. The need for a clinical "bridge" to allotransplantation is clear. Current options for supporting patients with acute liver failure include artificial liver support devices, extracorporeal liver perfusion, and hepatocyte transplantation, all of which have shown mixed results with regard to survival benefit and are largely experimental. Progress in the transplantation of genetically engineered pig liver grafts in nonhuman primates has grown steadily, with survival of the pig graft extended to almost 1 mo in 2017. Further advances may justify consideration of a pig liver transplant as a clinical bridge to allotransplantation. We provide a brief history of pig liver xenotransplantation, summarize the most recent progress in pig-to-nonhuman primate liver transplantation models, and suggest criteria that may be considered for patient selection for a clinical trial of bridging by genetically engineered pig liver xenotransplantation to liver allotransplantation.
Collapse
Affiliation(s)
- Vladimir Lamm
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Parsia A. Vagefi
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
5
|
Zhang X, Li X, Yang Z, Tao K, Wang Q, Dai B, Qu S, Peng W, Zhang H, Cooper DKC, Dou K. A review of pig liver xenotransplantation: Current problems and recent progress. Xenotransplantation 2019; 26:e12497. [PMID: 30767272 DOI: 10.1111/xen.12497] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Pig liver xenotransplantation appears to be more perplexing when compared to heart or kidney xenotransplantation, even though great progress has been achieved. The relevant molecular mechanisms involved in xenogeneic rejection, including coagulopathy, and particularly thrombocytopenia, are complex, and need to be systematically investigated. The deletion of expression of Gal antigens in the liver graft highlights the injurious impact of nonGal antigens, which continue to induce humoral rejection. Innate immunity, particularly mediated by macrophages and natural killer cells, interplays with inflammation and coagulation disorders. Kupffer cells and liver sinusoidal endothelial cells (LSECs) together mediate leukocyte, erythrocyte, and platelet sequestration and phagocytosis, which can be exacerbated by increased cytokine production, cell desialylation, and interspecies incompatibilities. The coagulation cascade is activated by release of tissue factor which can be dependent or independent of the xenoreactive immune response. Depletion of endothelial anticoagulants and anti-platelet capacity amplify coagulation activation, and interspecies incompatibilities of coagulation-regulatory proteins facilitate dysregulation. LSECs involved in platelet phagocytosis and transcytosis, coupled with hepatocyte-mediated degradation, are responsible for thrombocytopenia. Adaptive immunity could also be problematic in long-term liver graft survival. Currently, relevant evidence and study results of various genetic modifications to the pig donor need to be fully determined, with the aim of identifying the ideal transgene combination for pig liver xenotransplantation. We believe that clinical trials of pig liver xenotransplantation should initially be considered as a bridge to allotransplantation.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Quancheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bin Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Peng
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Abstract
Experience with clinical liver xenotransplantation has largely involved the transplantation of livers from nonhuman primates. Experience with pig livers has been scarce. This brief review will be restricted to assessing the potential therapeutic impact of pig liver xenotransplantation in acute liver failure and the remaining barriers that currently do not justify clinical trials. A relatively new surgical technique of heterotopic pig liver xenotransplantation is described that might play a role in bridging a patient with acute liver failure until either the native liver recovers or a suitable liver allograft is obtained. Other topics discussed include the possible mechanisms for the development of the thrombocytopenis that rapidly occurs after pig liver xenotransplantation in a primate, the impact of pig complement on graft injury, the potential infectious risks, and potential physiologic incompatibilities between pig and human. There is cautious optimism that all of these problems can be overcome by judicious genetic manipulation of the pig. If liver graft survival could be achieved in the absence of thrombocytopenia or rejection for a period of even a few days, there may be a role for pig liver transplantation as a bridge to allotransplantation in carefully selected patients.
Collapse
|
7
|
Burdorf L, Riner A, Rybak E, Salles II, De Meyer SF, Shah A, Quinn KJ, Harris D, Zhang T, Parsell D, Ali F, Schwartz E, Kang E, Cheng X, Sievert E, Zhao Y, Braileanu G, Phelps CJ, Ayares DL, Deckmyn H, Pierson RN, Azimzadeh AM, Dandro A, Karavi K. Platelet sequestration and activation during GalTKO.hCD46 pig lung perfusion by human blood is primarily mediated by GPIb, GPIIb/IIIa, and von Willebrand Factor. Xenotransplantation 2016; 23:222-236. [PMID: 27188532 DOI: 10.1111/xen.12236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/17/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Here, we ask whether platelet GPIb and GPIIb/IIIa receptors modulate platelet sequestration and activation during GalTKO.hCD46 pig lung xenograft perfusion. METHODS GalTKO.hCD46 transgenic pig lungs were perfused with heparinized fresh human blood. Results from perfusions in which αGPIb Fab (6B4, 10 mg/l blood, n = 6), αGPIIb/IIIa Fab (ReoPro, 3.5 mg/l blood, n = 6), or both drugs (n = 4) were administered to the perfusate were compared to two additional groups in which the donor pig received 1-desamino-8-d-arginine vasopressin (DDAVP), 3 μg/kg (to pre-deplete von Willebrand Factor (pVWF), the main GPIb ligand), with or without αGPIb (n = 6 each). RESULTS Platelet sequestration was significantly delayed in αGPIb, αGPIb+DDAVP, and αGPIb+αGPIIb/IIIa groups. Median lung "survival" was significantly longer (>240 vs. 162 min reference, p = 0.016), and platelet activation (as CD62P and βTG) were significantly inhibited, when pigs were pre-treated with DDAVP, with or without αGPIb Fab treatment. Pulmonary vascular resistance rise was not significantly attenuated in any group, and was associated with residual thromboxane and histamine elaboration. CONCLUSIONS The GPIb-VWF and GPIIb/IIIa axes play important roles in platelet sequestration and coagulation cascade activation during GalTKO.hCD46 lung xenograft injury. GPIb blockade significantly reduces platelet activation and delays platelet sequestration in this xenolung rejection model, an effect amplified by adding αGPIIb/IIIa blockade or depletion of VWF from pig lung.
Collapse
Affiliation(s)
- L Burdorf
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - A Riner
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - E Rybak
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - I I Salles
- Laboratory for Thrombosis Research, IRF-Ls, Kulak KU Leuven, Belgium.,Centre for Hematology, Imperial College London, UK
| | - S F De Meyer
- Laboratory for Thrombosis Research, IRF-Ls, Kulak KU Leuven, Belgium
| | - A Shah
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - K J Quinn
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - D Harris
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - T Zhang
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - D Parsell
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - F Ali
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - E Schwartz
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - E Kang
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - X Cheng
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - E Sievert
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - Y Zhao
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - G Braileanu
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - C J Phelps
- Revivicor, Inc., Blacksburg, VA, United States
| | - D L Ayares
- Revivicor, Inc., Blacksburg, VA, United States
| | - H Deckmyn
- Laboratory for Thrombosis Research, IRF-Ls, Kulak KU Leuven, Belgium
| | - R N Pierson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | - A M Azimzadeh
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, MD, United States
| | | | | |
Collapse
|
8
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Cooper DKC, Ekser B, Tector AJ. Immunobiological barriers to xenotransplantation. Int J Surg 2015; 23:211-216. [PMID: 26159291 PMCID: PMC4684773 DOI: 10.1016/j.ijsu.2015.06.068] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 01/26/2023]
Abstract
Binding of natural anti-pig antibodies in humans and nonhuman primates to carbohydrate antigens expressed on the transplanted pig organ, the most important of which is galactose-α1,3-galactose (Gal), activate the complement cascade, which results in destruction of the graft within minutes or hours, known as hyperacute rejection. Even if antibody is removed from the recipient's blood by plasmapheresis, recovery of antibody is associated with acute humoral xenograft rejection. If immunosuppressive therapy is inadequate, the development of high levels of T cell-dependent elicited anti-pig IgG similarly results in graft destruction, though classical acute cellular rejection is rarely seen. Vascular endothelial activation by low levels of anti-nonGal antibody, coupled with dysregulation of the coagulation-anticoagulation systems between pigs and primates, leads to a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. The most successful approach to overcoming these barriers is by genetically-engineering the pig to provide it with resistance to the human humoral and cellular immune responses and to correct the coagulation discrepancies between the two species. Organs and cells from pigs that (i) do not express the important Gal antigen, (ii) express a human complement-regulatory protein, and (iii) express a human coagulation-regulatory protein, when combined with an effective immunosuppressive regimen, have been associated with prolonged pig graft survival in nonhuman primates.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Joseph Tector
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Cooper DKC, Bottino R. Recent advances in understanding xenotransplantation: implications for the clinic. Expert Rev Clin Immunol 2015; 11:1379-90. [PMID: 26548357 PMCID: PMC4879962 DOI: 10.1586/1744666x.2015.1083861] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The results of organ and cell allotransplantation continue to improve, but the field remains limited by a lack of deceased donor organs. Xenotransplantation, for example, between pig and human, offers unlimited organs and cells for clinical transplantation. The immune barriers include a strong innate immune response in addition to the adaptive T-cell response. The innate response has largely been overcome by the transplantation of organs from pigs with genetic modifications that protect their tissues from this response. T-cell-mediated rejection can be controlled by immunosuppressive agents that inhibit costimulation. Coagulation dysfunction between the pig and primate remains problematic but is being overcome by the transplantation of organs from pigs that express human coagulation-regulatory proteins. The remaining barriers will be resolved by the introduction of novel genetically-engineered pigs. Limited clinical trials of pig islet and corneal transplantation are already underway.
Collapse
Affiliation(s)
- David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA
| |
Collapse
|
11
|
Ekser B, Markmann JF, Tector AJ. Current status of pig liver xenotransplantation. Int J Surg 2015; 23:240-246. [PMID: 26190837 DOI: 10.1016/j.ijsu.2015.06.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 12/26/2022]
Abstract
The shortage of organs from deceased human donors is a major problem limiting the number of organs transplanted each year and results in the death of thousands of patients on the waiting list. Pigs are currently the preferred species for clinical organ xenotransplantation. Progress in genetically-engineered (GE) pig liver xenotransplantation increased graft and recipient survival from hours with unmodified pig livers to up to 9 days with normal to near-normal liver function. Deletion of genes such as GGTA1 (Gal-knockout pigs) or adding genes such as human complement regulatory proteins (hCD55, hCD46 expressing pigs) enabled hyperacute rejection to be overcome. Although survival up to 9 days was recorded, extended pig graft survival was not achieved due to lethal thrombocytopenia. The current status of GE pig liver xenotransplantation with world experience, potential factors causing thrombocytopenia, new targets on pig endothelial cells, and novel GE pigs with more genes deletion to avoid remaining antibody response, such as beta1,4-N-acetyl galactosaminyl transferase 2 (β4GalNT2), are discussed.
Collapse
Affiliation(s)
- Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - James F Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - A Joseph Tector
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Porcine Extrahepatic Vascular Endothelial Asialoglycoprotein Receptor 1 Mediates Xenogeneic Platelet Phagocytosis In Vitro and in Human-to-Pig Ex Vivo Xenoperfusion. Transplantation 2015; 99:693-701. [DOI: 10.1097/tp.0000000000000553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Wilson HL, Obradovic MR. Evidence for a common mucosal immune system in the pig. Mol Immunol 2014; 66:22-34. [PMID: 25242212 PMCID: PMC7132386 DOI: 10.1016/j.molimm.2014.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 09/01/2014] [Indexed: 12/03/2022]
Abstract
There is evidence that the common mucosal immune system exists in pigs. Vaccination at an easily accessible mucosal site may assist in providing protection at other mucosal sites. Local and distal mucosal sites should be sampled after vaccinations to define the optimal dose and formulation which promotes the common mucosal immune system in pigs.
The majority of lymphocytes activated at mucosal sites receive instructions to home back to the local mucosa, but a portion also seed distal mucosa sites. By seeding distal sites with antigen-specific effector or memory lymphocytes, the foundation is laid for the animal's mucosal immune system to respond with a secondary response should to this antigen be encountered at this site in the future. The common mucosal immune system has been studied quite extensively in rodent models but less so in large animal models such as the pig. Reasons for this paucity of reported induction of the common mucosal immune system in this species may be that distal mucosal sites were examined but no induction was observed and therefore it was not reported. However, we suspect that the majority of investigators simply did not sample distal mucosal sites and therefore there is little evidence of immune response induction in the literature. It is our hope that more pig immunologists and infectious disease experts who perform mucosal immunizations or inoculations on pigs will sample distal mucosal sites and report their findings, whether results are positive or negative. In this review, we highlight papers that show that immunization/inoculation using one route triggers mucosal immune system induction locally, systemically, and within at least one distal mucosal site. Only by understanding whether immunizations at one site triggers immunity throughout the common mucosal immune system can we rationally develop vaccines for the pig, and through these works we can gather evidence about the mucosal immune system that may be extrapolated to other livestock species or humans.
Collapse
Affiliation(s)
- Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.
| | - Milan R Obradovic
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.
| |
Collapse
|
14
|
Abstract
The shortage of human organs for transplantation has focused research on the possibility of transplanting pig organs into humans. Many factors contribute to the failure of a pig organ graft in a primate. A rapid innate immune response (natural anti-pig antibody, complement activation, and an innate cellular response; e.g., neutrophils, monocytes, macrophages, and natural killer cells) is followed by an adaptive immune response, although T-cell infiltration of the graft has rarely been reported. Other factors (e.g., coagulation dysregulation and inflammation) appear to play a significantly greater role than in allotransplantation. The immune responses to a pig xenograft cannot therefore be controlled simply by suppression of T-cell activity. Before xenotransplantation can be introduced successfully into the clinic, the problems of the innate, coagulopathic, and inflammatory responses will have to be overcome, most likely by the transplantation of organs from genetically engineered pigs. Many of the genetic manipulations aimed at protecting against these responses also reduce the adaptive response. The T-cell and elicited antibody responses can be prevented by the biological and/or pharmacologic agents currently available, in particular, by costimulation blockade-based regimens. The exogenous immunosuppressive regimen may be significantly reduced by the presence of a graft from a pig transgenic for a mutant (human) class II transactivator gene, resulting in down-regulation of swine leukocyte antigen class II expression, or from a pig with "local" vascular endothelial cell expression of an immunosuppressive gene (e.g., CTLA4-Ig). The immunomodulatory efficacy of regulatory T cells or mesenchymal stromal cells has been demonstrated in vitro but not yet in vivo.
Collapse
|
15
|
del Rio ML, Seebach JD, Fernández-Renedo C, Rodriguez-Barbosa JI. ITIM-dependent negative signaling pathways for the control of cell-mediated xenogeneic immune responses. Xenotransplantation 2013; 20:397-406. [PMID: 23968542 DOI: 10.1111/xen.12049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/31/2013] [Indexed: 12/24/2022]
Abstract
Xenotransplantation is an innovative field of research with the potential to provide us with an alternative source of organs to face the severe shortage of human organ donors. For several reasons, pigs have been chosen as the most suitable source of organs and tissues for transplantation in humans. However, porcine xenografts undergo cellular immune responses representing a major barrier to their acceptance and normal functioning. Innate and adaptive xenogeneic immunity is mediated by both the recognition of xenogeneic tissue antigens and the lack of inhibition due to molecular cross-species incompatibilities of regulatory pathways. Therefore, the delivery of immunoreceptor tyrosine-based inhibitory motif (ITIM)-dependent and related negative signals to control innate (NK cells, macrophages) and adaptive T and B cells might overcome cell-mediated xenogeneic immunity. The proof of this concept has already been achieved in vitro by the transgenic overexpression of human ligands of several inhibitory receptors in porcine cells resulting in their resistance against xenoreactivity. Consequently, several transgenic pigs expressing tissue-specific human ligands of inhibitory coreceptors (HLA-E, CD47) or soluble competitors of costimulation (belatacept) have already been generated. The development of these robust and innovative approaches to modulate human anti-pig cellular immune responses, complementary to conventional immunosuppression, will help to achieve long-term xenograft survival. In this review, we will focus on the current strategies to enhance negative signaling pathways for the regulation of undesirable cell-mediated xenoreactive immune responses.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon, Leon, Spain; Leon University Hospital, Castilla and Leon Transplantation Regional Agency, Leon, Spain
| | | | | | | |
Collapse
|
16
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, November-December 2012. Xenotransplantation 2013; 20:36-8. [PMID: 23384143 DOI: 10.1111/xen.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
17
|
Orlando G, Zhao Y. Transplantation: from tolerance to rejection. Expert Rev Clin Immunol 2012; 8:589-90. [PMID: 23078052 DOI: 10.1586/eci.12.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|