1
|
de Figueiredo AM, Glória JC, Chaves YO, Neves WLL, Mariúba LAM. Diagnostic applications of microsphere-based flow cytometry: A review. Exp Biol Med (Maywood) 2022; 247:1852-1861. [PMID: 35974694 PMCID: PMC9679357 DOI: 10.1177/15353702221113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microsphere-based flow cytometry is a highly sensitive emerging technology for specific detection and clinical analysis of antigens, antibodies, and nucleic acids of interest. In this review, studies that focused on the application of flow cytometry as a viable alternative for the investigation of infectious diseases were analyzed. Many of the studies involve research aimed at epidemiological surveillance, vaccine candidates and early diagnosis, non-infectious diseases, specifically cancer, and emphasize the simultaneous detection of biomarkers for early diagnosis, with accurate results in a non-invasive approach. The possibility of carrying out multiplexed assays affords this technique high versatility and performance, which is evidenced in a series of clinical studies that have verified the ability to detect several molecules in low concentrations and with minimal sample volume. As such, we demonstrate that microsphere-based flow cytometry presents itself as a promising technique that can be adopted as a fundamental element in the development of new diagnostic methods for a number of diseases.
Collapse
Affiliation(s)
| | - Juliane Corrêa Glória
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, Brazil
| | - Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus 69057-070, Brazil,Programa de Pós-graduação em biologia parasitária, Instituto Oswaldo Cruz – FIOCRUZ, Manaus 21040-360, Brazil
| | - Walter Luiz Lima Neves
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus 69067-00, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, Brazil,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus 69057-070, Brazil,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus 69067-00, Brazil,Luis André Morais Mariúba.
| |
Collapse
|
2
|
Lupinek C, Wollmann E, Valenta R. Monitoring Allergen Immunotherapy Effects by Microarray. CURRENT TREATMENT OPTIONS IN ALLERGY 2016; 3:189-203. [PMID: 27330931 PMCID: PMC4891384 DOI: 10.1007/s40521-016-0084-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allergen-specific immunotherapy (AIT) is the only treatment of IgE-mediated allergies so far that has a sustained effect on clinical symptoms and can modify the course of the disease. It is an allergen-specific treatment and therefore requires the correct identification of the disease-causing allergens. Furthermore, AIT is a time-consuming treatment for which the efficacy is dependent on several factors. Therefore, diagnostic tests and biomarkers are needed that facilitate (1) selection of the correct allergens according to the patient's individual sensitization profile and (2) to monitor the effects of AIT. This can provide support for the decision to continue, modify, or discontinue vaccination. One significant mechanism of action of AIT is the induction of allergen-specific antibodies that compete with IgE for the binding to allergen molecules, hence referred to as blocking antibodies. It was shown in several studies that the induction of blocking antibodies by AIT, and their specificity can be measured by allergen microarrays. Inhibition of allergen-specific IgE binding by blocking antibodies can also be determined by microarrays and is associated with changes in clinical parameters or other in vivo and in vitro assays demonstrating efficacy of AIT. Furthermore, allergen microarrays allow determination of IgE sensitizations towards a comprehensive set of allergen molecules and therefore are well suited for identifying the disease-causing allergens for correct prescription of AIT. Thus, diagnostic tests based on microarrayed allergens can be useful in determining the correct prescription of AIT and can be used to monitor efficacy of AIT.
Collapse
Affiliation(s)
- Christian Lupinek
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 3Q, 1090 Vienna, Austria
| | - Eva Wollmann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 3Q, 1090 Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 3Q, 1090 Vienna, Austria
| |
Collapse
|
3
|
Schumacher S, Muekusch S, Seitz H. Up-to-Date Applications of Microarrays and Their Way to Commercialization. MICROARRAYS (BASEL, SWITZERLAND) 2015; 4:196-213. [PMID: 27600220 PMCID: PMC4996390 DOI: 10.3390/microarrays4020196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/01/2015] [Accepted: 04/14/2015] [Indexed: 12/12/2022]
Abstract
This review addresses up-to-date applications of Protein Microarrays. Protein Microarrays play a significant role in basic research as well as in clinical applications and are applicable in a lot of fields, e.g., DNA, proteins and small molecules. Additionally they are on the way to enter clinics in routine diagnostics. Protein Microarrays can be powerful tools to improve healthcare. An overview of basic characteristics to mediate essential knowledge of this technique is given. To reach this goal, some challenges still have to be addressed. A few applications of Protein Microarrays in a medical context are shown. Finally, an outlook, where the potential of Protein Microarrays is depicted and speculations how the future of Protein Microarrays will look like are made.
Collapse
Affiliation(s)
- Sarah Schumacher
- Branch Bioanalytics and Bioprocesses, Fraunhofer Institute for Cell Therapy and Immunology, Am Muehlenberg 13, 14476 Potsdam, Germany.
| | - Sandra Muekusch
- Branch Bioanalytics and Bioprocesses, Fraunhofer Institute for Cell Therapy and Immunology, Am Muehlenberg 13, 14476 Potsdam, Germany.
| | - Harald Seitz
- Branch Bioanalytics and Bioprocesses, Fraunhofer Institute for Cell Therapy and Immunology, Am Muehlenberg 13, 14476 Potsdam, Germany.
| |
Collapse
|
4
|
Abstract
Biologic medications are effective therapeutic options for treating autoimmune diseases, but information on their safety in lactation is still scarce. Autoimmune conditions occur frequently in women of childbearing age, creating difficult decisions regarding optimizing maternal health and supporting breastfeeding. Available data, in addition to the favorable pharmacokinetic properties of biologics, suggest that these medications are compatible with breastfeeding. A review of the available evidence and information is presented, as well as recommendations on counseling the nursing mother and her healthcare team to make informed decisions about maternal and infant care.
Collapse
Affiliation(s)
- Sarah J Witzel
- Saskatoon Co-op Pharmacy , Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Santiago HDC, Ribeiro-Gomes FL, Bennuru S, Nutman TB. Helminth infection alters IgE responses to allergens structurally related to parasite proteins. THE JOURNAL OF IMMUNOLOGY 2014; 194:93-100. [PMID: 25404363 DOI: 10.4049/jimmunol.1401638] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunological cross-reactivity between environmental allergens and helminth proteins has been demonstrated, although the clinically related implications of this cross-reactivity have not been addressed. To investigate the impact of molecular similarity among allergens and cross-reactive homologous helminth proteins in IgE-based serologic assessment of allergic disorders in a helminth-infected population, we performed ImmunoCAP tests in filarial-infected and noninfected individuals for IgE measurements to allergen extracts that contained proteins with high levels of homology with helminth proteins as well as IgE against representative recombinant allergens with and without helminth homologs. The impact of helminth infection on the levels and function of the IgE to these specific homologous and nonhomologous allergens was corroborated in an animal model. We found that having a tissue-invasive filarial infection increased the serological prevalence of ImmunoCAP-identified IgE directed against house dust mite and cockroach, but not against timothy grass, the latter with few allergens with homologs in helminth infection. IgE ELISA confirmed that filaria-infected individuals had higher IgE prevalences to those recombinant allergens that had homologs in helminths. Mice infected with the helminth Heligmosomoides polygyrus displayed increased levels of IgE and positive skin tests to allergens with homologs in the parasite. These results show that cross-reactivity among allergens and helminth proteins can have practical implications, altering serologic approaches to allergen testing and bringing a new perspective to the "hygiene hypothesis."
Collapse
Affiliation(s)
- Helton da Costa Santiago
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Flávia L Ribeiro-Gomes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
6
|
Chinnasamy T, Segerink LI, Nystrand M, Gantelius J, Andersson Svahn H. Point-of-care vertical flow allergen microarray assay: proof of concept. Clin Chem 2014; 60:1209-16. [PMID: 25006224 DOI: 10.1373/clinchem.2014.223230] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Sophisticated equipment, lengthy protocols, and skilled operators are required to perform protein microarray-based affinity assays. Consequently, novel tools are needed to bring biomarkers and biomarker panels into clinical use in different settings. Here, we describe a novel paper-based vertical flow microarray (VFM) system with a multiplexing capacity of at least 1480 microspot binding sites, colorimetric readout, high sensitivity, and assay time of <10 min before imaging and data analysis. METHOD Affinity binders were deposited on nitrocellulose membranes by conventional microarray printing. Buffers and reagents were applied vertically by use of a flow controlled syringe pump. As a clinical model system, we analyzed 31 precharacterized human serum samples using the array system with 10 allergen components to detect specific IgE reactivities. We detected bound analytes using gold nanoparticle conjugates with assay time of ≤10 min. Microarray images were captured by a consumer-grade flatbed scanner. RESULTS A sensitivity of 1 ng/mL was demonstrated with the VFM assay with colorimetric readout. The reproducibility (CV) of the system was <14%. The observed concordance with a clinical assay, ImmunoCAP, was R(2) = 0.89 (n = 31). CONCLUSIONS In this proof-of-concept study, we demonstrated that the VFM assay, which combines features from protein microarrays and paper-based colorimetric systems, could offer an interesting alternative for future highly multiplexed affinity point-of-care testing.
Collapse
Affiliation(s)
- Thiruppathiraja Chinnasamy
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Loes I Segerink
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | | | - Jesper Gantelius
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden;
| |
Collapse
|
7
|
Chinnasamy T, Segerink LI, Nystrand M, Gantelius J, Svahn HA. A lateral flow paper microarray for rapid allergy point of care diagnostics. Analyst 2014; 139:2348-54. [DOI: 10.1039/c3an01806g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|