1
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
2
|
Chen F, Liu Q, Xiong Y, Xu L. Nucleic acid strategies for infectious disease treatments: The nanoparticle-based oral delivery route. Front Pharmacol 2022; 13:984981. [PMID: 36105233 PMCID: PMC9465296 DOI: 10.3389/fphar.2022.984981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Therapies based on orally administrated nucleic acids have significant potential for the treatment of infectious diseases, including chronic inflammatory diseases such as inflammatory bowel disease (IBD)-associated with the gastrointestinal (GI) tract, and infectious and acute contagious diseases like coronavirus disease 2019 (COVID-19). This is because nucleic acids could precisely regulate susceptibility genes in regulating the pro- and anti-inflammatory cytokines expression related to the infections. Unfortunately, gene delivery remains a major hurdle due to multiple intracellular and extracellular barriers. This review thoroughly discusses the challenges of nanoparticle-based nucleic acid gene deliveries and strategies for overcoming delivery barriers to the inflammatory sites. Oral nucleic acid delivery case studies were also present as vital examples of applications in infectious diseases such as IBD and COVID-19.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- Department of Anorectal Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Li Xu,
| |
Collapse
|
3
|
Ma Y, Tong X, Huang Y, Zhou X, Yang C, Chen J, Dai F, Xiao B. Oral Administration of Hydrogel-Embedding Silk Sericin Alleviates Ulcerative Colitis through Wound Healing, Anti-Inflammation, and Anti-Oxidation. ACS Biomater Sci Eng 2019; 5:6231-6242. [DOI: 10.1021/acsbiomaterials.9b00862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | | | - Chunhua Yang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Avenue SE, Atlanta, Georgia 30302, United States
| | | | | | - Bo Xiao
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Avenue SE, Atlanta, Georgia 30302, United States
| |
Collapse
|
4
|
Cao J, Cheng J, Xi S, Qi X, Shen S, Ge Y. Alginate/chitosan microcapsules for in-situ delivery of the protein, interleukin-1 receptor antagonist (IL-1Ra), for the treatment of dextran sulfate sodium (DSS)-induced colitis in a mouse model. Eur J Pharm Biopharm 2019; 137:112-121. [PMID: 30779979 DOI: 10.1016/j.ejpb.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/25/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
Abstract
Targeted delivery of bioactive compounds such as proteins to the colon has numerous advantages for the therapeutic treatment of inflammatory bowel disease. The present study sought to fabricate alginate/chitosan microcapsules containing IL-1Ra (Alg/Chi/IL-1Ra MC) via a single-step electrospraying method. Two important factors of efficacy were measured-the pH-responsiveness of the microcapsule and the in-vitro drug release profile. The DSS-induced colitis mouse model was used to evaluate the therapeutic effect of the Alg/Chi/IL-1Ra microcapsules, with results showing the protective effect of the Alg/Chi microcapsules for the passage of IL-1Ra through the harsh environment of the upper gastrointestinal tract. This effect was owing to the pH-sensitive response of the microcapsule, which allowed the targeted release of IL-1Ra in the colon. DAI evaluation, colon length, colon tissue morphology, histologic damage scores and relative protein concentrations (MPO, TNF-α and IL-1β) demonstrated that the Alg/Chi/IL-1Ra microcapsules alleviated DSS-induced colitis in mice. The present study thus demonstrates a practical means of oral delivery of proteins, in-situ colon release, and a promising application of IL-1Ra in the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu, China
| | - Jin Cheng
- School of Pharmacy, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu, China
| | - Siyu Xi
- School of Pharmacy, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu, China
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu, China
| | - Song Shen
- School of Pharmacy, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu, China
| | - Yanru Ge
- School of Pharmacy, Jiangsu University, 301# Xuefu Road, Zhenjiang, Jiangsu, China.
| |
Collapse
|
5
|
Xiao B, Chen Q, Zhang Z, Wang L, Kang Y, Denning T, Merlin D. TNFα gene silencing mediated by orally targeted nanoparticles combined with interleukin-22 for synergistic combination therapy of ulcerative colitis. J Control Release 2018; 287:235-246. [PMID: 30107214 PMCID: PMC6482469 DOI: 10.1016/j.jconrel.2018.08.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023]
Abstract
Pro-resolving factors that are critical for colonic epithelial restitution were down-regulated during the treatment with inhibitor of pro-inflammatory cytokines (e.g., anti-TNFα antibody) in ulcerative colitis (UC) therapy. We hypothesized that increased amounts of factors such as interleukin-22 (IL-22) during the therapeutic inhibition of TNFα could facilitate the resolution of intestinal inflammation. As combination therapy is an emerging strategy for UC treatment, we attempt to treat established UC based on the combination of TNFα siRNA (siTNF) and IL-22. Initially, we loaded siTNF into galactosylated polymeric nanoparticles (NPs). The resultant Gal-siTNF-NPs had a desirable average diameter (~261 nm), a narrow size distribution and a slightly negative surface charge (~-6 mV). These NPs successfully mediated the targeted delivery of siTNF to macrophages and efficiently inhibited the expression of TNFα. Meanwhile, IL-22 could obviously accelerate mucosal healing. More importantly, oral administration of Gal-siTNF-NPs plus IL-22 embedded in a hydrogel (chitosan/alginate) showed much stronger capacities to down-regulate the expression of pro-inflammatory factors and promote mucosal healing. This formulation also yielded a much better therapeutic efficacy against UC in a mouse model compared to hydrogel loaded with Gal-siTNF-NPs or IL-22 alone. Our results strongly demonstrate that Gal-siTNF-NP/IL-22-embedded hydrogel can target to inflamed colon, and co-deliver siTNF and IL-22 to boost the effects of either monotherapy, which may become a promising oral drug formulation and enable targeted combination therapy of UC.
Collapse
Affiliation(s)
- Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Beibei, Chongqing 400715, PR China; Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA.
| | - Qiubing Chen
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Beibei, Chongqing 400715, PR China
| | - Zhan Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA
| | - Lixin Wang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Beibei, Chongqing 400715, PR China
| | - Timothy Denning
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
6
|
Attarwala H, Han M, Kim J, Amiji M. Oral nucleic acid therapy using multicompartmental delivery systems. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544521 DOI: 10.1002/wnan.1478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/12/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Nucleic acid-based therapeutics has the potential for treating numerous diseases by correcting abnormal expression of specific genes. Lack of safe and efficacious delivery strategies poses a major obstacle limiting clinical advancement of nucleic acid therapeutics. Oral route of drug administration has greater delivery challenges, because the administered genes or oligonucleotides have to bypass degrading environment of the gastrointestinal (GI) tract in addition to overcoming other cellular barriers preventing nucleic acid delivery. For efficient oral nucleic acid delivery, vector should be such that it can protect encapsulated material during transit through the GI tract, facilitate efficient uptake and intracellular trafficking at desired target sites, along with being safe and well tolerated. In this review, we have discussed multicompartmental systems for overcoming extracellular and intracellular barriers to oral delivery of nucleic acids. A nanoparticles-in-microsphere oral system-based multicompartmental system was developed and tested for in vivo gene and small interfering RNA delivery for treating colitis in mice. This system has shown efficient transgene expression or gene silencing when delivered orally along with favorable downstream anti-inflammatory effects, when tested in a mouse model of intestinal bowel disease. WIREs Nanomed Nanobiotechnol 2018, 10:e1478. doi: 10.1002/wnan.1478 This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Husain Attarwala
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Murui Han
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Cheng W, Tang C, Yin C. Effects of particle size and binding affinity for small interfering RNA on the cellular processing, intestinal permeation and anti-inflammatory efficacy of polymeric nanoparticles. J Gene Med 2016; 17:244-56. [PMID: 26418829 DOI: 10.1002/jgm.2866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/05/2015] [Accepted: 09/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Silencing of excessive secreted tumour necrosis factor (TNF)-α from macrophages might be an effective therapy of ulcerative colitis (UC), which acquires improvements on small interfering RNA (siRNA) delivery vectors. Thus, in the present study, the effects of particle size and binding affinity of four polymeric nanoparticles on siRNA delivery for the treatment of UC were evaluated. METHODS Galactosylated trimethyl chitosan-cysteine (GTC) nanoparticles of varying particle size and binding affinity for siRNA were prepared and TNF-α siRNA was encapsulated. Their cellular transport was investigated in murine macrophages and Caco-2 cell monolayers were utilized to analysis the intestinal permeation. Finally, in vivo anti-inflammatory efficacy was assessed in a mouse model of UC. RESULTS Although marginal effects of particle size on the in vitro gene silencing efficiency were detected, GTC nanoparticles with a particle size of 450 nm and stronger binding affinity for siRNA showed reduced intestinal epithelial permeability and enhanced in vivo anti-inflammatory efficacy compared to those with a particle size of 200 nm. By contrast, the delivery processes were significantly affected by the binding affinity for siRNA, where smaller GTC nanoparticles (200 nm) with moderate siRNA binding strength exhibited remarkable cytoplasmic distribution and sufficient intracellular release of siRNA, as well as a sustained in vitro and in vivo gene silencing effect. CONCLUSIONS Nanoparticles with a particle size of 450 nm or balanced binding affinity for siRNA might be preferable for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Wenyue Cheng
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Takedatsu H, Mitsuyama K, Torimura T. Nanomedicine and drug delivery strategies for treatment of inflammatory bowel disease. World J Gastroenterol 2015; 21:11343-52. [PMID: 26525603 PMCID: PMC4616210 DOI: 10.3748/wjg.v21.i40.11343] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/28/2015] [Accepted: 08/29/2015] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease and ulcerative colitis are two important categories of human inflammatory bowel disease (IBD). Because the precise mechanisms of the inflammation and immune responses in IBD have not been fully elucidated, the treatment of IBD primarily aims to inhibit the pathogenic factors of the inflammatory cascade. Inconsistencies exist regarding the response and side effects of the drugs that are currently used to treat IBD. Recent studies have suggested that the use of nanomedicine might be advantageous for the treatment of intestinal inflammation because nano-sized molecules can effectively penetrate epithelial and inflammatory cells. We reviewed nanomedicine treatments, such as the use of small interfering RNAs, antisense oligonucleotides, and anti-inflammatory molecules with delivery systems in experimental colitis models and clinical trials for IBD based on a systematic search. The efficacy and usefulness of the treatments reviewed in this manuscript have been demonstrated in experimental colitis models and clinical trials using various types of nanomedicine. Nanomedicine is expected to become a new therapeutic approach to the treatment of IBD.
Collapse
|
9
|
Cano-Garrido O, Seras-Franzoso J, Garcia-Fruitós E. Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb Cell Fact 2015; 14:137. [PMID: 26377321 PMCID: PMC4573465 DOI: 10.1186/s12934-015-0313-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/10/2015] [Indexed: 12/19/2022] Open
Abstract
Lactic acid bacteria (LAB) have a long history of safe exploitation by humans, being used for centuries in food production and preservation and as probiotic agents to promote human health. Interestingly, some species of these Gram-positive bacteria, which are generally recognized as safe organisms by the US Food and Drug Administration (FDA), are able to survive through the gastrointestinal tract (GIT), being capable to reach and colonize the intestine, where they play an important role. Besides, during the last decades, an important effort has been done for the development of tools to use LAB as microbial cell factories for the production of proteins of interest. Given the need to develop effective strategies for the delivery of prophylactic and therapeutic molecules, LAB have appeared as an appealing option for the oral, intranasal and vaginal delivery of such molecules. So far, these genetically modified organisms have been successfully used as vehicles for delivering functional proteins to mucosal tissues in the treatment of many different pathologies including GIT related pathologies, diabetes, cancer and viral infections, among others. Interestingly, the administration of such microorganisms would suppose a significant decrease in the production cost of the treatments agents since being live organisms, such vectors would be able to autonomously amplify and produce and deliver the protein of interest. In this context, this review aims to provide an overview of the use of LAB engineered as a promising alternative as well as a safety delivery platform of recombinant proteins for the treatment of a wide range of diseases.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Elena Garcia-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, 08140, Barcelona, Spain.
| |
Collapse
|
10
|
Xiao B, Yang Y, Viennois E, Zhang Y, Ayyadurai S, Baker M, Laroui H, Merlin D. Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticle. J Mater Chem B 2014; 2:1499-1508. [PMID: 24729869 PMCID: PMC3981968 DOI: 10.1039/c3tb21564d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Treatment strategies for inflammatory bowel disease have been constrained by limited therapeutic efficacy and serious adverse effects owing to a lack of receptor for targeted drug delivery to the inflamed colon. Upon inflammation, CD98 expression is highly elevated in colonic epithelial cells and infiltrating immune cells. To investigate whether CD98 can be used as a colitis-targeted delivery receptor, we constructed CD98 Fab'-bearing quantum dots (QDs)-loaded nanoparticles (Fab'-NPs). The resultant Fab'-NPs had desired particle size (~458 nm) with a narrow size distribution and zeta-potential (approximately +19 mV), low cytotoxicity, and excellent fluorescence properties. Electron microscopy images provided direct evidence for the well-dispersed distribution of QDs within spherical Fab'-NPs. Cellular uptake experiments demonstrated that Fab'-NPs were efficiently internalized into Colon-26 and RAW 264.7 cells through the CD98-mediated endocytosis pathway, and showed that the targeting effect of CD98 Fab' markedly increased their cellular uptake efficiency compared with control pegylated QDs-loaded NPs (PEG-NPs). Furthermore, ex vivo studies showed much more effective accumulation of Fab'-NPs in colitis tissue than that of PEG-NPs. These findings suggest that because of inflammation-dependent over-expression of CD98, active colitis-targeted delivery can be accomplished using NPs decorated with CD98 antibody.
Collapse
Affiliation(s)
- Bo Xiao
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
| | - Yang Yang
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
| | - Emilie Viennois
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
- Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| | - Yuchen Zhang
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
| | - Saravanan Ayyadurai
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
| | - Mark Baker
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
| | - Hamed Laroui
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
| | - Didier Merlin
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
- Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| |
Collapse
|
11
|
Ryu K, Kim TI. Therapeutic gene delivery using bioreducible polymers. Arch Pharm Res 2013; 37:31-42. [DOI: 10.1007/s12272-013-0275-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022]
|
12
|
Xiao B, Laroui H, Ayyadurai S, Viennois E, Charania MA, Zhang Y, Merlin D. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials 2013; 34:7471-82. [PMID: 23820013 DOI: 10.1016/j.biomaterials.2013.06.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/06/2013] [Indexed: 12/25/2022]
Abstract
The application of RNA interference (RNAi) for inflammatory bowel disease (IBD) therapy has been limited by the lack of non-cytotoxic, efficient and targetable small interfering RNA (siRNA) carriers. TNF-α is the major pro-inflammatory cytokine mainly secreted by macrophages during IBD. Here, a mannosylated bioreducible cationic polymer (PPM) was synthesized and further spontaneously assembled nanoparticles (NPs) assisted by sodium triphosphate (TPP). The TPP-PPM/siRNA NPs exhibited high uniformity (polydispersity index = 0.004), a small particle size (211-275 nm), excellent bioreducibility, and enhanced cellular uptake. Additionally, the generated NPs had negative cytotoxicity compared to control NPs fabricated by branched polyethylenimine (bPEI, 25 kDa) or Oligofectamine (OF) and siRNA. In vitro gene silencing experiments revealed that TPP-PPM/TNF-α siRNA NPs with a weight ratio of 40:1 showed the most efficient inhibition of the expression and secretion of TNF-α (approximately 69.9%, which was comparable to the 71.4% obtained using OF/siRNA NPs), and its RNAi efficiency was highly inhibited in the presence of mannose (20 mm). Finally, TPP-PPM/siRNA NPs showed potential therapeutic effects on colitis tissues, remarkably reducing TNF-α level. Collectively, these results suggest that non-toxic TPP-PPM/siRNA NPs can be exploited as efficient, macrophage-targeted carriers for IBD therapy.
Collapse
Affiliation(s)
- Bo Xiao
- Department of Biology and Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta 30302, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kriegel C, Attarwala H, Amiji M. Multi-compartmental oral delivery systems for nucleic acid therapy in the gastrointestinal tract. Adv Drug Deliv Rev 2013; 65:891-901. [PMID: 23220324 DOI: 10.1016/j.addr.2012.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 11/02/2012] [Accepted: 11/17/2012] [Indexed: 12/20/2022]
Abstract
Gene and RNA interference therapies have significant potential for alleviating countless diseases, including many associated with the gastro-intestinal (GI) tract. Unfortunately, oral delivery of genes and small interfering RNA (siRNA) is very challenging due to the extracellular and intracellular barriers. In this review, we discuss the utilization of multi-compartmental delivery systems for oral administration of nucleic acid therapies. Some of the illustrative examples of multi-compartmental systems include solid nanoparticles-in-microsphere, solid nanoparticles-in-emulsion, and liquid nanoparticles-in-emulsion. Using type B gelatin nanoparticles encapsulated in poly(ε-caprolactone) microspheres, we have prepared nanoparticles-in-microsphere oral system (NiMOS) for gene and siRNA delivery for the treatment of inflammatory bowel disease (IBD). The results of these studies show that the multi-compartmental formulations can overcome many of the barriers for effective oral gene and siRNA delivery.
Collapse
|
14
|
Présumey J, Salzano G, Courties G, Shires M, Ponchel F, Jorgensen C, Apparailly F, De Rosa G. PLGA microspheres encapsulating siRNA anti-TNFalpha: efficient RNAi-mediated treatment of arthritic joints. Eur J Pharm Biopharm 2012; 82:457-64. [PMID: 22922428 DOI: 10.1016/j.ejpb.2012.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 01/13/2023]
Abstract
The aim of this study was to investigate potentialities of poly(dl-lactide-co-glycolide) (PLGA) microspheres for the delivery of small interfering RNAs (siRNAs) against tumor necrosis factor α (TNF-α) to achieve prolonged and efficient inhibition of TNF-α for the treatment of rheumatoid arthritis (RA). PLGA microspheres were prepared by a modified multiple emulsion-solvent evaporation method. The formulations were characterized in terms of morphology, mean diameter and siRNAs distribution, encapsulation efficiency, and in vitro release kinetics. The efficiency of this system was then evaluated both in vitro and in vivo using the murine monocytic cell line J774 and a pre-clinical model of RA, respectively. siRNA-encapsulating PLGA microspheres were characterized by a high encapsulation efficiency and a slow and prolonged anti-TNF-α siRNAs. Our results provide evidence that, upon intra-articular administration, PLGA microspheres slowly releasing siRNAs effectively inhibited the expression of TNF-α in arthritic joints. Our system might represent an alternative strategy for the design of novel anti-rheumatic therapies based on the use of RNA interference in RA.
Collapse
Affiliation(s)
- J Présumey
- Inserm, U 844, INM, Hôpital Saint Eloi, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dual TNF-α/Cyclin D1 Gene Silencing With an Oral Polymeric Microparticle System as a Novel Strategy for the Treatment of Inflammatory Bowel Disease. Clin Transl Gastroenterol 2011; 2:e2. [PMID: 23237848 PMCID: PMC3365667 DOI: 10.1038/ctg.2011.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES: RNA silencing utilizing short interfering RNA (siRNA) offers a new and exciting means to overcome the limitations of current treatment options of many diseases. However, delivery of these molecules still poses a great challenge to date. METHODS: In the present study, a multicompartmental biodegradable polymer-based nanoparticles-in-microsphere oral system (NiMOS) using gelatin nanoparticles encapsulating a combination of siRNA duplexes specifically targeted against tumor necrosis factor-α (TNF-α) and cyclin D1 (Ccnd1) was employed to study its effects on a dextran sulfate sodium (DSS)-induced acute colitis mouse model mimicking inflammatory bowel disease (IBD). DSS colitis-bearing animals were divided into several control and treatment groups and received either no treatment, blank NiMOS, NiMOS-encapsulating inactive (scrambled), active TNF-α silencing, CyD1 silencing siRNA, or a combination of both active siRNAs by repeated oral administration of three NiMOS doses. RESULTS: Successful gene silencing with the aid of dual siRNA treatment led to decreased colonic levels of TNF-α or CyD1, suppressed expression of certain pro-inflammatory cytokines (interleukin-1α and -β, interferon-γ), an increase in body weight, and reduced tissue myeloperoxidase activity, while the silencing effect of CyD1 siRNA or the dual treatment was more potent than that of TNF-α siRNA alone. CONCLUSION: Results of this study demonstrate the therapeutic potential of a NiMOS-based oral combined TNF-α and CyD1 gene silencing system for the treatment of IBD as shown in an acute colitis model.
Collapse
|
16
|
Kriegel C, Amiji M. Oral TNF-α gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. J Control Release 2010; 150:77-86. [PMID: 20959130 DOI: 10.1016/j.jconrel.2010.10.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/31/2010] [Accepted: 10/04/2010] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to evaluate down-regulation of tumor necrosis factor (TNF)-α by oral RNA interference therapy. Control (scrambled sequence) or TNF-α specific small interfering RNA (siRNA) was encapsulated in type B gelatin nanoparticles and further entrapped in poly(epsilon-caprolactone) (PCL) microspheres to form a nanoparticles-in-microsphere oral system (NiMOS). Upon confirmation of the dextran sulfate sodium (DSS)-induced acute colitis model, mice were divided into several treatment groups receiving no treatment, blank NiMOS, NiMOS with scramble siRNA, or NiMOS with TNF-α silencing siRNA by oral administration. Successful gene silencing led to decreased colonic levels of TNF-α, suppressed expression of other pro-inflammatory cytokines (e.g., interleukin (IL)-1β, interferon (IFN)-γ) and chemokines (MCP-1), an increase in body weight, and reduced tissue myeloperoxidase activity. Results of this study established the clinical potential of a NiMOS-based oral TNF-α gene silencing system for the treatment of inflammatory bowel disease as demonstrated in an acute colitis model.
Collapse
Affiliation(s)
- Christina Kriegel
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 110 Mugar Life Sciences Building, Boston, MA 02115, United States
| | | |
Collapse
|