1
|
Wake M, Palin A, Belot A, Berger M, Lorgouilloux M, Bichon M, Papworth J, Bayliss L, Grimshaw B, Rynkiewicz N, Paterson J, Poindron A, Spearing E, Carter E, Hudson R, Campbell M, Petzer V, Besson-Fournier C, Latour C, Largounez A, Gourbeyre O, Fay A, Coppin H, Roth MP, Theurl I, Germaschewski V, Meynard D. A human anti-matriptase-2 antibody limits iron overload, α-globin aggregates, and splenomegaly in β-thalassemic mice. Blood Adv 2024; 8:1898-1907. [PMID: 38241484 PMCID: PMC11021894 DOI: 10.1182/bloodadvances.2023012010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024] Open
Abstract
ABSTRACT Iron plays a major role in the deterioration of β-thalassemia. Indeed, the high levels of transferrin saturation and iron delivered to erythroid progenitors are associated with production of α-globin precipitates that negatively affect erythropoiesis. Matriptase-2/TMPRSS6, a membrane-bound serine protease expressed in hepatocytes, negatively modulates hepcidin production and thus is a key target to prevent iron overload in β-thalassemia. To address safety concerns raised by the suppression of Tmprss6 by antisense oligonucleotides or small interfering RNA, we tested a fully human anti-matriptase-2 antibody, RLYB331, which blocks the protease activity of matriptase-2. When administered weekly to Hbbth3/+ mice, RLYB331 induced hepcidin expression, reduced iron loading, prevented the formation of toxic α-chain/heme aggregates, reduced ros oxygen species formation, and improved reticulocytosis and splenomegaly. To increase the effectiveness of RLYB331 in β-thalassemia treatment even further, we administered RLYB331 in combination with RAP-536L, a ligand-trapping protein that contains the extracellular domain of activin receptor type IIB and alleviates anemia by promoting differentiation of late-stage erythroid precursors. RAP-536L alone did not prevent iron overload but significantly reduced apoptosis in the erythroid populations of the bone marrow, normalized red blood cell counts, and improved hemoglobin and hematocrit levels. Interestingly, the association of RLYB331 with RAP-536L entirely reversed the β-thalassemia phenotype in Hbbth3/+ mice and simultaneously corrected iron overload, ineffective erythropoiesis, splenomegaly, and hematological parameters, suggesting that a multifunctional molecule consisting of the fusion of RLYB331 with luspatercept (human version of RAP-536L) would allow administration of a single medication addressing simultaneously the different pathophysiological aspects of β-thalassemia.
Collapse
Affiliation(s)
- Matthew Wake
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Anaïs Palin
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Audrey Belot
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Mathieu Berger
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Megane Lorgouilloux
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Margot Bichon
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | - Luke Bayliss
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Jemima Paterson
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Alicia Poindron
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Erin Spearing
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Emily Carter
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Robyne Hudson
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Millie Campbell
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Verena Petzer
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Céline Besson-Fournier
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Chloé Latour
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Amélie Largounez
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Ophélie Gourbeyre
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Alexis Fay
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Hélène Coppin
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Marie-Paule Roth
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Igor Theurl
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Delphine Meynard
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, École Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
2
|
Garcia AJ, Okeagu CN, Kaye AD, Abd-Elsayed A. Metabolism, Pathophysiology, and Clinical Considerations of Iron Overload, a Comprehensive Review. ESSENTIALS OF BLOOD PRODUCT MANAGEMENT IN ANESTHESIA PRACTICE 2021:289-299. [DOI: 10.1007/978-3-030-59295-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
3
|
Rivella S. Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia. Blood 2019; 133:51-58. [PMID: 30401707 PMCID: PMC6318430 DOI: 10.1182/blood-2018-07-815928] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
β-Thalassemia (BT) is an inherited genetic disorder that is characterized by ineffective erythropoiesis (IE), leading to anemia and abnormal iron metabolism. IE is an abnormal expansion of the number of erythroid progenitor cells with unproductive synthesis of enucleated erythrocytes, leading to anemia and hypoxia. Anemic patients affected by BT suffer from iron overload, even in the absence of chronic blood transfusion, suggesting the presence of ≥1 erythroid factor with the ability to modulate iron metabolism and dietary iron absorption. Recent studies suggest that decreased erythroid cell differentiation and survival also contribute to IE, aggravating the anemia in BT. Furthermore, hypoxia can also affect and increase iron absorption. Understanding the relationship between iron metabolism and IE could provide important insights into the BT condition and help to develop novel treatments. In fact, genetic or pharmacological manipulations of iron metabolism or erythroid cell differentiation and survival have been shown to improve IE, iron overload, and anemia in animal models of BT. Based on those findings, new therapeutic approaches and drugs have been proposed; clinical trials are underway that have the potential to improve erythrocyte production, as well as to reduce the iron overload and organ toxicity in BT and in other disorders characterized by IE.
Collapse
Affiliation(s)
- Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Asadov C, Alimirzoeva Z, Mammadova T, Aliyeva G, Gafarova S, Mammadov J. β-Thalassemia intermedia: a comprehensive overview and novel approaches. Int J Hematol 2018; 108:5-21. [PMID: 29380178 DOI: 10.1007/s12185-018-2411-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/19/2023]
Abstract
β-Thalassemia intermedia is a clinical condition of intermediate gravity between β-thalassemia minor, the asymptomatic carrier, and β-thalassemia major, the transfusion-dependent severe anemia. It is characterized by a significant clinical polymorphism, which is attributable to its genetic heterogeneity. Ineffective erythropoiesis, chronic anemia, and iron overload contribute to the clinical complications of thalassemia intermedia through stepwise pathophysiological mechanisms. These complications, including splenomegaly, extramedullary erythropoiesis, iron accumulation, leg ulcers, thrombophilia, and bone abnormalities can be managed via fetal hemoglobin induction, occasional transfusions, chelation, and in some cases, stem cell transplantation. Given its clinical diversity, thalassemia intermedia patients require tailored approaches to therapy. Here we present an overview and novel approaches to the genetic basis, pathophysiological mechanisms, clinical complications, and optimal management of thalassemia intermedia.
Collapse
Affiliation(s)
- Chingiz Asadov
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan.
| | - Zohra Alimirzoeva
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Tahira Mammadova
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Gunay Aliyeva
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Shahla Gafarova
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Jeyhun Mammadov
- Thalassemia Centre, Fataly Khan Khoysky Str. 128, AZ1072, Baku, Azerbaijan
| |
Collapse
|
5
|
Effects of mouse hepcidin 1 treatment on osteoclast differentiation and intracellular iron concentration. Inflammation 2015; 38:718-27. [PMID: 25059214 DOI: 10.1007/s10753-014-9982-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hepcidin is a key player in the regulation of mammalian iron homeostasis. Because iron overload may be one of the causes of osteoporosis, hepcidin may have therapeutic potential for osteoporosis patients. However, the effects of hepcidin on bone metabolism are not fully clear. We recently found that hepcidin can increase intracellular iron and calcium levels and promote mineralization in osteoblasts. The present study was designed to evaluate the effects of hepcidin on osteoclasts. Our results showed that mouse hepcidin 1 (MH1) can increase the number of TRAP-positive MNCs concomitant in both bone marrow-derived macrophages (BMMs) and RAW264.7 cells and upregulate mRNA levels of TRAP, cathepsin K, and MMP-9 and increase TRAP-5b protein secretion in RAW264.7 cells. Moreover, MH1 can downregulate the level of FPN1 protein and increase intracellular iron in RAW 264.7 cells. Therefore, we conclude that MH1 can significantly facilitate osteoclast differentiation in vitro. The mechanism behind accelerated differentiation may be associated with increased levels of intracellular iron. These findings may facilitate understanding of the effects of hepcidin on bone metabolism.
Collapse
|
6
|
Guimarães JS, Cominal JG, Silva-Pinto AC, Olbina G, Ginzburg YZ, Nandi V, Westerman M, Rivella S, de Souza AM. Altered erythropoiesis and iron metabolism in carriers of thalassemia. Eur J Haematol 2014; 94:511-8. [PMID: 25307880 DOI: 10.1111/ejh.12464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 12/13/2022]
Abstract
The thalassemia syndromes (α- and β-thalassemia) are the most common and frequent disorders associated with ineffective erythropoiesis. Imbalance of α- or β-globin chain production results in impaired red blood cell synthesis, anemia, and more erythroid progenitors in the blood stream. While patients affected by these disorders show definitive altered parameters related to erythropoiesis, the relationship between the degree of anemia, altered erythropoiesis, and dysfunctional iron metabolism has not been investigated in both α-thalassemia carriers (ATC) and β-thalassemia carriers (BTC). Here, we demonstrate that ATC have a significantly reduced hepcidin and increased soluble transferrin receptor levels but relatively normal hematological findings. In contrast, BTC have several hematological parameters significantly different from controls, including increased soluble transferrin receptor and erythropoietin levels. These changes in both groups suggest an altered balance between erythropoiesis and iron metabolism. The index sTfR/log ferritin and (hepcidin/ferritin)/sTfR are, respectively, increased and reduced relative to controls, proportional to the severity of each thalassemia group. In conclusion, we showed in this study, for the first time in the literature, that thalassemia carriers have altered iron metabolism and erythropoiesis.
Collapse
Affiliation(s)
- Jacqueline S Guimarães
- Laboratório de Hematologia Clínica, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,The Strauss Thalassemia Laboratory, Pediatric Hematology-Oncology, Weill Medical College of Cornell University, New York, NY, USA
| | - Juçara G Cominal
- Laboratório de Hematologia Clínica, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Cristina Silva-Pinto
- Centro Regional de Hemoterapia de Ribeirão Preto, Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Stefano Rivella
- The Strauss Thalassemia Laboratory, Pediatric Hematology-Oncology, Weill Medical College of Cornell University, New York, NY, USA
| | - Ana Maria de Souza
- Laboratório de Hematologia Clínica, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Musallam KM, Rivella S, Vichinsky E, Rachmilewitz EA. Non-transfusion-dependent thalassemias. Haematologica 2013; 98:833-44. [PMID: 23729725 DOI: 10.3324/haematol.2012.066845] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Non-transfusion-dependent thalassemias include a variety of phenotypes that, unlike patients with beta (β)-thalassemia major, do not require regular transfusion therapy for survival. The most commonly investigated forms are β-thalassemia intermedia, hemoglobin E/β-thalassemia, and α-thalassemia intermedia (hemoglobin H disease). However, transfusion-independence in such patients is not without side effects. Ineffective erythropoiesis and peripheral hemolysis, the hallmarks of disease process, lead to a variety of subsequent pathophysiologies including iron overload and hypercoagulability that ultimately lead to a number of serious clinical morbidities. Thus, prompt and accurate diagnosis of non-transfusion-dependent thalassemia is essential to ensure early intervention. Although several management options are currently available, the need to develop more novel therapeutics is justified by recent advances in our understanding of the mechanisms of disease. Such efforts require wide international collaboration, especially since non-transfusion-dependent thalassemias are no longer bound to low- and middle-income countries but have spread to large multiethnic cities in Europe and the Americas due to continued migration.
Collapse
Affiliation(s)
- Khaled M Musallam
- Department of Medicine and Medical Specialties, IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy.
| | | | | | | |
Collapse
|
8
|
Guo S, Casu C, Gardenghi S, Booten S, Aghajan M, Peralta R, Watt A, Freier S, Monia BP, Rivella S. Reducing TMPRSS6 ameliorates hemochromatosis and β-thalassemia in mice. J Clin Invest 2013; 123:1531-41. [PMID: 23524968 PMCID: PMC3613931 DOI: 10.1172/jci66969] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/17/2013] [Indexed: 01/24/2023] Open
Abstract
β-Thalassemia and HFE-related hemochromatosis are 2 of the most frequently inherited disorders worldwide. Both disorders are characterized by low levels of hepcidin (HAMP), the hormone that regulates iron absorption. As a consequence, patients affected by these disorders exhibit iron overload, which is the main cause of morbidity and mortality. HAMP expression is controlled by activation of the SMAD1,5,8/SMAD4 complex. TMPRSS6 is a serine protease that reduces SMAD activation and blocks HAMP expression. We identified second generation antisense oligonucleotides (ASOs) targeting mouse Tmprss6. ASO treatment in mice affected by hemochromatosis (Hfe(-/-)) significantly decreased serum iron, transferrin saturation and liver iron accumulation. Furthermore, ASO treatment of mice affected by β-thalassemia (HBB(th3/+) mice, referred to hereafter as th3/+ mice) decreased the formation of insoluble membrane-bound globins, ROS, and apoptosis, and improved anemia. These animals also exhibited lower erythropoietin levels, a significant amelioration of ineffective erythropoiesis (IE) and splenomegaly, and an increase in total hemoglobin levels. These data suggest that ASOs targeting Tmprss6 could be beneficial in individuals with hemochromatosis, β-thalassemia, and related disorders.
Collapse
Affiliation(s)
- Shuling Guo
- Isis Pharmaceuticals, Carlsbad, California, USA.
Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, New York, USA.
Weill Cornell Medical College, Department of Cell and Development Biology, New York, New York, USA
| | - Carla Casu
- Isis Pharmaceuticals, Carlsbad, California, USA.
Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, New York, USA.
Weill Cornell Medical College, Department of Cell and Development Biology, New York, New York, USA
| | - Sara Gardenghi
- Isis Pharmaceuticals, Carlsbad, California, USA.
Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, New York, USA.
Weill Cornell Medical College, Department of Cell and Development Biology, New York, New York, USA
| | - Sheri Booten
- Isis Pharmaceuticals, Carlsbad, California, USA.
Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, New York, USA.
Weill Cornell Medical College, Department of Cell and Development Biology, New York, New York, USA
| | - Mariam Aghajan
- Isis Pharmaceuticals, Carlsbad, California, USA.
Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, New York, USA.
Weill Cornell Medical College, Department of Cell and Development Biology, New York, New York, USA
| | - Raechel Peralta
- Isis Pharmaceuticals, Carlsbad, California, USA.
Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, New York, USA.
Weill Cornell Medical College, Department of Cell and Development Biology, New York, New York, USA
| | - Andy Watt
- Isis Pharmaceuticals, Carlsbad, California, USA.
Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, New York, USA.
Weill Cornell Medical College, Department of Cell and Development Biology, New York, New York, USA
| | - Sue Freier
- Isis Pharmaceuticals, Carlsbad, California, USA.
Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, New York, USA.
Weill Cornell Medical College, Department of Cell and Development Biology, New York, New York, USA
| | - Brett P. Monia
- Isis Pharmaceuticals, Carlsbad, California, USA.
Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, New York, USA.
Weill Cornell Medical College, Department of Cell and Development Biology, New York, New York, USA
| | - Stefano Rivella
- Isis Pharmaceuticals, Carlsbad, California, USA.
Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, New York, USA.
Weill Cornell Medical College, Department of Cell and Development Biology, New York, New York, USA
| |
Collapse
|
9
|
Abstract
Ineffective erythropoiesis is the hallmark of beta-thalassemia that triggers a cascade of compensatory mechanisms resulting in clinical sequelae such as erythroid marrow expansion, extramedullary hematopoiesis, splenomegaly, and increased gastrointestinal iron absorption. Recent studies have begun to shed light on the complex molecular mechanisms underlying ineffective erythropoiesis and the associated compensatory pathways; this new understanding may lead to the development of novel therapies. Increased or excessive activation of the Jak2/STAT5 pathway promotes unnecessary disproportionate proliferation of erythroid progenitors, while other factors suppress serum hepcidin levels leading to dysregulation of iron metabolism. Preclinical studies suggest that Jak inhibitors, hepcidin agonists, and exogenous transferrin may help to restore normal erythropoiesis and iron metabolism and reduce splenomegaly; however, further research is needed.
Collapse
Affiliation(s)
- Stefano Rivella
- Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
10
|
Affiliation(s)
- Robert E Fleming
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, USA
| | | |
Collapse
|