1
|
Nava AA, Arboleda VA. The omics era: a nexus of untapped potential for Mendelian chromatinopathies. Hum Genet 2024; 143:475-495. [PMID: 37115317 PMCID: PMC11078811 DOI: 10.1007/s00439-023-02560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The OMICs cascade describes the hierarchical flow of information through biological systems. The epigenome sits at the apex of the cascade, thereby regulating the RNA and protein expression of the human genome and governs cellular identity and function. Genes that regulate the epigenome, termed epigenes, orchestrate complex biological signaling programs that drive human development. The broad expression patterns of epigenes during human development mean that pathogenic germline mutations in epigenes can lead to clinically significant multi-system malformations, developmental delay, intellectual disabilities, and stem cell dysfunction. In this review, we refer to germline developmental disorders caused by epigene mutation as "chromatinopathies". We curated the largest number of human chromatinopathies to date and our expanded approach more than doubled the number of established chromatinopathies to 179 disorders caused by 148 epigenes. Our study revealed that 20.6% (148/720) of epigenes cause at least one chromatinopathy. In this review, we highlight key examples in which OMICs approaches have been applied to chromatinopathy patient biospecimens to identify underlying disease pathogenesis. The rapidly evolving OMICs technologies that couple molecular biology with high-throughput sequencing or proteomics allow us to dissect out the causal mechanisms driving temporal-, cellular-, and tissue-specific expression. Using the full repertoire of data generated by the OMICs cascade to study chromatinopathies will provide invaluable insight into the developmental impact of these epigenes and point toward future precision targets for these rare disorders.
Collapse
Affiliation(s)
- Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Fan T, Li C, Liu X, Xu H, Li W, Wang M, Mei X, Li D. Development of practical techniques for simultaneous detection and distinction of current and emerging SARS-CoV-2 variants. ANAL SCI 2023; 39:1839-1856. [PMID: 37517003 DOI: 10.1007/s44211-023-00396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Countless individuals have fallen victim to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have generated antibodies, reducing the risk of secondary infection in the short term. However, with the emergence of mutated strains, the probability of subsequent infections remains high. Consequently, the demand for simple and accessible methods for distinguishing between different variants is soaring. Although monitoring viral gene sequencing is an effective approach for differentiating between various types of SARS-CoV-2 variants, it may not be easily accessible to the general public. In this article, we provide an overview of the reported techniques that use combined approaches and adaptable testing methods that use editable recognition receptors for simultaneous detection and distinction of current and emerging SARS-CoV-2 variants. These techniques employ straightforward detection strategies, including tests capable of simultaneously identifying and differentiating between different variants. Furthermore, we recommend advancing the development of uncomplicated protocols for distinguishing between current and emerging variants. Additionally, we propose further development of facile protocols for the differentiation of existing and emerging variants.
Collapse
Affiliation(s)
- Tuocen Fan
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Chengjie Li
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Xinlei Liu
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Hongda Xu
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Wenhao Li
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Minghao Wang
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, 121000, China.
| | - Dan Li
- Jinzhou Medical University, Jinzhou, 121000, China.
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
3
|
Nicolau I, Hădade ND, Matache M, Funeriu DP. Synthetic Approaches of Epoxysuccinate Chemical Probes. Chembiochem 2023; 24:e202300157. [PMID: 37096389 DOI: 10.1002/cbic.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 04/26/2023]
Abstract
Synthetic chemical probes are powerful tools for investigating biological processes. They are particularly useful for proteomic studies such as activity-based protein profiling (ABPP). These chemical methods initially used mimics of natural substrates. As the techniques gained prominence, more and more elaborate chemical probes with increased specificity towards given enzyme/protein families and amenability to various reaction conditions were used. Among the chemical probes, peptidyl-epoxysuccinates represent one of the first types of compounds used to investigate the activity of the cysteine protease papain-like family of enzymes. Structurally derived from the natural substrate, a wide body of inhibitors and activity- or affinity-based probes bearing the electrophilic oxirane unit for covalent labeling of active enzymes now exists. Herein, we review the literature regarding the synthetic approaches to epoxysuccinate-based chemical probes together with their reported applications, from biological chemistry and inhibition studies to supramolecular chemistry and the formation of protein arrays.
Collapse
Affiliation(s)
- Ioana Nicolau
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Niculina D Hădade
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Supramolecular and Organometallic Chemistry Centre, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Mihaela Matache
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Daniel P Funeriu
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| |
Collapse
|
4
|
Wang J, Dong W, Yang X, Li Y, Jin B. Biosensors based on DNA-functionalized CdTe quantum dots for the enhanced electrochemical detection of human-IgG. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37424508 DOI: 10.1039/d3ay00676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Electrochemical detection of human-IgG via biosensors is vital in clinical diagnostics, owing to their simple equipment, facile operation, high selectivity, economical, short diagnostic time, fast response, and easy miniaturization, but the need to improve sensitivity for protein detection is still a barrier limiting its wider practical applications. A hypersensitized electrochemical biosensor based on steric effects for IgG detection was developed in this work. The results indicate that IgG-modified sig-DNA attached to CdTe quantum dots (CdTe-sig-DNA) limited the ability of CdTe-sig-DNA or CdTe-sig-DNA-IgG conjugate to hybridize through the captured DNA strand (cap-DNA) immobilized on a chitosan/nitrogen-doped carbon nanocomposite (CS/N-C) modified glassy carbon electrode surface (GCE). The concentration of IgG based on CdTe concentration was detected by differential pulse anode stripping voltammetry (DPASV) on the electrode surface. The efficiency for hybridizing CdTe-sig-DNA with cap-DNA was found to be logarithmically inverse to the concentration of IgG attached. A highly sensitive and selective detection of IgG from 5 pM to 50 μM with a relatively low detection limit of 1.7 pM was achieved. Therefore, the steric hindrance effect of IgG limited the quantity of DNA that could be functionalized on CdTe QDs, significantly improving the signal, and providing a practical strategy for the clinical analysis of IgG.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Wenhui Dong
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Xiaomin Yang
- Respiratory Medicine Department, The First People's Hospital of Chuzhou, Chuzhou 239001, China
| | - Yanan Li
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei 230601, China.
| |
Collapse
|
5
|
Fernández Blanco A, Hernández Pérez M, Moreno Trigos Y, García-Hernández J. Development of Optical Label-Free Biosensor Method in Detection of Listeria monocytogenes from Food. SENSORS (BASEL, SWITZERLAND) 2023; 23:5570. [PMID: 37420736 DOI: 10.3390/s23125570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
The present work describes an alternative method for detecting and identifying Listeria monocytogenes in food samples by developing a nanophotonic biosensor containing bioreceptors and optical transducers. The development of photonic sensors for the detection of pathogens in the food industry involves the implementation of procedures for selecting probes against the antigens of interest and the functionalization of the sensor surfaces on which the said bioreceptors are located. As a previous step to functionalizing the biosensor, an immobilization control of these antibodies on silicon nitride surfaces was carried out to check the effectiveness of in plane immobilization. On the one hand, it was observed that a Listeria monocytogenes-specific polyclonal antibody has a greater binding capacity to the antigen at a wide range of concentrations. A Listeria monocytogenes monoclonal antibody is more specific and has a greater binding capacity only at low concentrations. An assay for evaluating selected antibodies against particular antigens of Listeria monocytogenes bacteria was designed to determine the binding specificity of each probe using the indirect ELISA detection technique. In addition, a validation method was established against the reference method for many replicates belonging to different batches of meat-detectable samples, with a medium and pre-enrichment time that allowed optimal recovery of the target microorganism. Moreover, no cross-reactivity with other nontarget bacteria was observed. Thus, this system is a simple, highly sensitive, and accurate platform for L. monocytogenes detection.
Collapse
Affiliation(s)
| | - Manuel Hernández Pérez
- Centro Avanzado de Microbiología de Alimentos, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Yolanda Moreno Trigos
- Instituto de Ingeniería de Agua y del Medioambiente, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
6
|
Zhou S, Jiang L, Dong Z. Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chem Rev 2023; 123:2276-2310. [PMID: 35522923 DOI: 10.1021/acs.chemrev.1c00976] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid flowing around a solid edge, i.e., overflow, is a commonly observed flow behavior. Recent research into surface wetting properties and microstructure-controlled overflow behavior has attracted much attention. Achieving controllable macroscale liquid dynamics by manipulating the micro-nanoscale liquid overflow has stimulated diverse scientific interest and fostered widespread use in practical applications. In this review, we outline the evolution of overflow and present a critical survey of the mechanism of surface wetting properties and microstructure-controlled liquid overflow in multilength scales ranging from centimeter to micro and even nanoscale. We summarize the latest progress in utilizing the mechanisms to manipulate liquid overflow and achieve macroscale liquid dynamics and in emerging applications to manipulate overflow for sustainable development in various fields, along with challenges and perspectives.
Collapse
Affiliation(s)
- Shan Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Attractive and Repulsive Fluctuation-Induced Pressure in Peptide Films Deposited on Semiconductor Substrates. Symmetry (Basel) 2022. [DOI: 10.3390/sym14102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We consider the fluctuation-induced (Casimir) pressure in peptide films deposited on GaAs, Ge, and ZnS substrates which are either in a dielectric or metallic state. The calculations of the Casimir pressure are performed in the framework of the fundamental Lifshitz theory employing the frequency-dependent dielectric permittivities of all involved materials. The electric conductivity of semiconductor substrates is taken into account within the experimentally and thermodynamically consistent approach. According to our results, the Casimir pressure in peptide films deposited on dielectric-type semiconductor substrates vanishes for some definite film thickness and is repulsive for thinner and attractive for thicker films. The dependence of this effect on the fraction of water in the film and on the static dielectric permittivity of the semiconductor substrate is determined. For the metallic-type semiconductor substrates, the Casimir pressure in peptide coatings is shown to be always repulsive. The possible applications of these results to the problem of stability of thin coatings in microdevices are discussed.
Collapse
|
8
|
Gumanova NG, Vasilyev DK, Bogdanova NL, Havrichenko YI, Kots AY, Metelskaya VA. Application of an antibody microarray for serum protein profiling of coronary artery stenosis. Biochem Biophys Res Commun 2022; 631:55-63. [PMID: 36166954 DOI: 10.1016/j.bbrc.2022.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Protein expression profiling in the serum is used to identify novel biomarkers and investigate the signaling pathways in various diseases. The aim of the present study was to evaluate serum biomarkers associated with coronary artery stenosis resulting from atherosclerosis. The study included 4 groups of subjects: group A and B with and without coronary lesions, respectively, were selected from a previously reported cohort study on coronary atherosclerosis, control group C comprised of asymptomatic subjects and group D was used for independent validation of the microarray data by ELISA. Labeled serum proteins were profiled by an Explorer antibody array, which included 656 specific antibodies in two replicates (FullMoon Biosystems, USA). Cadherin-P, interleukin-5, glutathione S-transferase Mu, and neuronal nitric oxide synthase were sex-independently increased in Group A compared with those in group B. The microarray data on cadherin-P were externally validated in an independent group D using ELISA. Fibroblast growth factor-1, FGF-2, collagen II, granulocyte-macrophage colony-stimulating factor, IL-1 alpha, angiopoietin-2, granulocyte colony-stimulating factor, lymphocyte cell-specific protein tyrosine kinase, and IkappaB kinase b were increase in men in group A compared with group B. Cyclin-dependent kinase 1, DNA fragmentation factor subunit alpha DFF45/ICAD, adenovirus type 2 E1A, calponin, ADP-ribosylation factor-6, muscle-specific actin, thyroid hormone receptor alpha, and alpha-methylacyl-CoA racemase were specifically increased in women in Group A compared with group B. Alterations in the levels of specific proteins may point to the signaling pathways contributing to coronary atherosclerosis, and these proteins will be useful biomarkers for the progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Nadezhda G Gumanova
- National Research Center for Preventive Medicine (NRCPM), Petroverigsky, 10, Building 3, 101990, Moscow, Russian Federation.
| | - Dmitry K Vasilyev
- National Research Center for Preventive Medicine (NRCPM), Petroverigsky, 10, Building 3, 101990, Moscow, Russian Federation
| | - Natalya L Bogdanova
- National Research Center for Preventive Medicine (NRCPM), Petroverigsky, 10, Building 3, 101990, Moscow, Russian Federation
| | - Yaroslav I Havrichenko
- National Research Center for Preventive Medicine (NRCPM), Petroverigsky, 10, Building 3, 101990, Moscow, Russian Federation
| | - Alexander Ya Kots
- National Research Center for Preventive Medicine (NRCPM), Petroverigsky, 10, Building 3, 101990, Moscow, Russian Federation
| | - Victoria A Metelskaya
- National Research Center for Preventive Medicine (NRCPM), Petroverigsky, 10, Building 3, 101990, Moscow, Russian Federation
| |
Collapse
|
9
|
Preparation of substrates for microarray protein chips with different ending functional groups. J Immunol Methods 2022; 502:113218. [PMID: 35026296 DOI: 10.1016/j.jim.2022.113218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 08/26/2021] [Accepted: 01/03/2022] [Indexed: 11/20/2022]
Abstract
Protein microarray chips are composed of three components, these are pre-treatment substrates, surface chemical modification, and immobilizing protein on substrate surfaces. In this study, self-assembly monolayers are used for surface chemical modification. Using this method, silanization on a glass and silicon chip is achieved, forming the terminal group substrates. Modification of the substrate surface to provide COOH and NH2 terminal functional groups provides a mechanism to proteins to immobilize on the substrate surface. To observe immobilized proteins on the substrate surface, they are first labeled with Cy5 fluorescent dye before analysis using a GenePix 4000B Microarray Scanner. The scanner induces fluorescence in the labelling dye and the resulting light is analyzed to provide information concerning both the quantity of immobilized protein, and the orientation of attachment. The antigen of the HSV-1 virus, a common human virus, was used in this study, performing an antigen-antibody analysis to determine the efficacy of the method under test for clinical diagnosis.
Collapse
|
10
|
Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8 + T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021; 176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
After centuries of development, using vaccination to stimulate immunity has become an effective method for prevention and treatment of a variety of diseases including infective diseases and cancers. However, the tailor-made efficient delivery system for specific antigens is still urgently needed due to the low immunogenicity and stability of antigens, especially for vaccines to induce CD8+ T cells-mediated cellular immunity. Unlike B cells-mediated humoral immunity, CD8+ T cells-mediated cellular immunity mainly aims at the intracellular antigens from microorganism in virus-infected cells or genetic mutations in tumor cells. Therefore, the vaccines for stimulating CD8+ T cells-mediated cellular immunity should deliver the antigens efficiently into the cytoplasm of antigen presenting cells (APCs) to form major histocompatibility complex I (MHCI)-antigen complex through cross-presentation, followed by activating CD8+ T cells for immune protection and clearance. Importantly, nanotechnology has been emerged as a powerful tool to facilitate these multiple processes specifically, allowing not only enhanced antigen immunogenicity and stability but also APCs-targeted delivery and elevated cross-presentation. This review summarizes the process of CD8+ T cells-mediated cellular immunity induced by vaccines and the technical advantages of nanotechnology implementation in general, then provides an overview of the whole spectrum of nanocarriers studied so far and the recent development of delivery nanotechnology in vaccines against infectious diseases and cancer. Finally, we look forward to the future development of nanotechnology for the next generation of vaccines to induce CD8+ T cells-mediated cellular immunity.
Collapse
Affiliation(s)
- Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China.
| |
Collapse
|
11
|
Barderas R, Srivastava S, LaBaer J. Protein Microarray-Based Proteomics for Disease Analysis. Methods Mol Biol 2021; 2344:3-6. [PMID: 34115348 DOI: 10.1007/978-1-0716-1562-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
As we approach the twentieth anniversary of completing the international Human Genome Project, the next (and arguably most significant) frontier in biology consists of functionally understanding the proteins, which are encoded by the genome and play a crucial role in all of biology and medicine. To accomplish this challenge, different proteomics strategies must be devised to examine the activities of gene products (proteins) at scale. Among them, protein microarrays have been used to accomplish a wide variety of investigations such as examining the binding of proteins and proteoforms to DNA, small molecules, and other proteins; characterizing humoral immune responses in health and disease; evaluating allergenic proteins; and profiling protein patterns as candidate disease-specific biomarkers. In Protein Microarray for Disease Analysis: Methods and Protocols, expert researchers involved in the field of protein microarrays provide concise descriptions of the methodologies that they currently use to fabricate microarrays and how they apply them to analyze protein interactions and responses of proteins to dissect human disease.
Collapse
Affiliation(s)
- Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| | - Joshua LaBaer
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
12
|
Yoo CH, Yu JK, Seong Y, Choi JK. Microarrays Incorporating Gold Grid Patterns for Protein Quantification. ACS OMEGA 2020; 5:16664-16669. [PMID: 32685833 PMCID: PMC7364605 DOI: 10.1021/acsomega.0c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Protein microarrays are miniaturized two-dimensional arrays, incorporating thousands of immobilized proteins, typically printed in minute amounts on functionalized solid substrates, which can be analyzed in a high-throughput fashion. Irreproducibility of the printing techniques adopted, resulting in inconsistently and nonuniformly deposited microscopic spots, nonuniform signal intensities from the printed microspots, and significantly high background noise are some of the critical issues that affect protein analysis using traditional protein microarrays. To overcome such issues, in this study, we introduced a novel gold grid pattern-based protein microarray. The grid patterns incorporated in our microarray are equivalent to the spots used for protein analysis in conventional protein microarrays. We utilized the signal intensities from the grid patterns acting as spots for quantifying the protein concentration levels. To demonstrate the utility of our novel design concept, we quantified as low as 66.7 ng/mL of bovine serum albumin using our gold grid pattern-based protein microarray. Our grid pattern-based design concept for protein quantification overcame the signal nonuniformity issues and ensured that the dominance of any distorted signal from a single spot did not affect the overall protein quantification results as encountered in conventional protein microarrays.
Collapse
Affiliation(s)
- Chang-Hyuk Yoo
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
- Small
Machines Company, Ltd., Daejeon 34012, Korea
| | | | - Yeju Seong
- Small
Machines Company, Ltd., Daejeon 34012, Korea
| | - Jun-Kyu Choi
- Small
Machines Company, Ltd., Daejeon 34012, Korea
| |
Collapse
|
13
|
Ostromohov N, Rofman B, Bercovici M, Kaigala G. Electrokinetic Scanning Probe. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904268. [PMID: 31885215 DOI: 10.1002/smll.201904268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The theoretical analysis and experimental demonstration of a new concept are presented for a non-contact scanning probe, in which transport of fluid and molecules is controlled by electric fields. The electrokinetic scanning probe (ESP) enables local chemical and biochemical interactions with surfaces in liquid environments. The physical mechanism and design criteria for such a probe are presented, and its compatibility with a wide range of processing solutions and pH values are demonstrated. The applicability of the probe is shown for surface patterning in conjunction with localized heating and 250-fold analyte stacking.
Collapse
Affiliation(s)
- Nadya Ostromohov
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- IBM Research-Zurich, Saeumerstrasse 4, CH-8803, Rueschlikon, Switzerland
| | - Baruch Rofman
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Moran Bercovici
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Govind Kaigala
- IBM Research-Zurich, Saeumerstrasse 4, CH-8803, Rueschlikon, Switzerland
| |
Collapse
|
14
|
Pena AM, Chen X, Pence IJ, Bornschlögl T, Jeong S, Grégoire S, Luengo GS, Hallegot P, Obeidy P, Feizpour A, Chan KF, Evans CL. Imaging and quantifying drug delivery in skin - Part 2: Fluorescence andvibrational spectroscopic imaging methods. Adv Drug Deliv Rev 2020; 153:147-168. [PMID: 32217069 PMCID: PMC7483684 DOI: 10.1016/j.addr.2020.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/31/2023]
Abstract
Understanding the delivery and diffusion of topically-applied drugs on human skin is of paramount importance in both pharmaceutical and cosmetics research. This information is critical in early stages of drug development and allows the identification of the most promising ingredients delivered at optimal concentrations to their target skin compartments. Different skin imaging methods, invasive and non-invasive, are available to characterize and quantify the spatiotemporal distribution of a drug within ex vivo and in vivo human skin. The first part of this review detailed invasive imaging methods (autoradiography, MALDI and SIMS). This second part reviews non-invasive imaging methods that can be applied in vivo: i) fluorescence (conventional, confocal, and multiphoton) and second harmonic generation microscopies and ii) vibrational spectroscopic imaging methods (infrared, confocal Raman, and coherent Raman scattering microscopies). Finally, a flow chart for the selection of imaging methods is presented to guide human skin ex vivo and in vivo drug delivery studies.
Collapse
Affiliation(s)
- Ana-Maria Pena
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Xueqin Chen
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Thomas Bornschlögl
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Sinyoung Jeong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Sébastien Grégoire
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France.
| | - Gustavo S Luengo
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Philippe Hallegot
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Peyman Obeidy
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Amin Feizpour
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Kin F Chan
- Simpson Interventions, Inc., Woodside, CA 94062, United States of America
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America.
| |
Collapse
|
15
|
Layton CJ, McMahon PL, Greenleaf WJ. Large-Scale, Quantitative Protein Assays on a High-Throughput DNA Sequencing Chip. Mol Cell 2019; 73:1075-1082.e4. [PMID: 30849388 DOI: 10.1016/j.molcel.2019.02.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/18/2019] [Accepted: 02/14/2019] [Indexed: 01/22/2023]
Abstract
High-throughput DNA sequencing techniques have enabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally translated proteins and peptides and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely available high-throughput platform can perform both sequencing-by-synthesis and protein assays. We quantified the binding of the M2 anti-FLAG antibody to a library of 1.3 × 104 variant FLAG peptides, exploring non-additive effects of combinations of mutations and discovering a "superFLAG" epitope variant. We also measured the enzymatic activity of 1.56 × 105 molecular variants of full-length human O6-alkylguanine-DNA alkyltransferase (SNAP-tag). This comprehensive corpus of catalytic rates revealed amino acid interaction networks and cooperativity, linked positive cooperativity to structural proximity, and revealed ubiquitous positively cooperative interactions with histidine residues.
Collapse
Affiliation(s)
- Curtis J Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter L McMahon
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan-Zuckerberg Initiative, Palo Alto, CA 94301, USA.
| |
Collapse
|
16
|
Baranov MA, Klimchitskaya GL, Mostepanenko VM, Velichko EN. Fluctuation-induced free energy of thin peptide films. Phys Rev E 2019; 99:022410. [PMID: 30934220 DOI: 10.1103/physreve.99.022410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Indexed: 01/11/2023]
Abstract
We apply the Lifshitz theory of dispersion forces to find a contribution to the free energy of peptide films that is caused by the zero-point and thermal fluctuations of the electromagnetic field. For this purpose, using available information about the imaginary parts of the dielectric permittivity of peptides, an analytic representation for permittivity of a typical peptide along the imaginary frequency axis is devised. Numerical computations of the fluctuation-induced free energy are performed at room temperature for freestanding peptide films containing different fractions of water, and for similar films deposited on dielectric (SiO_{2}) and metallic (Au) substrates. It is shown that the free energy of a freestanding peptide film is negative and thus contributes to its stability. The magnitude of the free energy increases with increasing fraction of water and decreases with increasing thickness of a film. For peptide films deposited on a dielectric substrate, the free energy is nonmonotonous. It is negative for films thicker than 100nm, reaches the maximum value at some film thickness, but vanishes and changes its sign for films thinner than 100nm. The fluctuation-induced free energy of peptide films deposited on metallic substrate is found to be positive, which makes films less stable. In all three cases, simple analytic expressions for the free energy of sufficiently thick films are found. The obtained results may be useful to attain film stability in the next generation of organic microdevices with further reduced dimensions.
Collapse
Affiliation(s)
- M A Baranov
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - G L Klimchitskaya
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia.,Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, Saint Petersburg 196140, Russia
| | - V M Mostepanenko
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia.,Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, Saint Petersburg 196140, Russia.,Kazan Federal University, Kazan 420008, Russia
| | - E N Velichko
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| |
Collapse
|
17
|
Mass Spectrometry-Based Biomarkers in Drug Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:435-449. [PMID: 31347063 DOI: 10.1007/978-3-030-15950-4_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advances in mass spectrometry, proteomics, protein bioanalytical approaches, and biochemistry have led to a rapid evolution and expansion in the area of mass spectrometry-based biomarker discovery and development. The last decade has also seen significant progress in establishing accepted definitions, guidelines, and criteria for the analytical validation, acceptance and qualification of biomarkers. These advances have coincided with a decreased return on investment for pharmaceutical research and development and an increasing need for better early decision making tools. Empowering development teams with tools to measure a therapeutic interventions impact on disease state and progression, measure target engagement and to confirm predicted pharmacodynamic effects is critical to efficient data-driven decision making. Appropriate implementation of a biomarker or a combination of biomarkers can enhance understanding of a drugs mechanism, facilitate effective translation from the preclinical to clinical space, enable early proof of concept and dose selection, and increases the efficiency of drug development. Here we will provide descriptions of the different classes of biomarkers that have utility in the drug development process as well as review specific, protein-centric, mass spectrometry-based approaches for the discovery of biomarkers and development of targeted assays to measure these markers in a selective and analytically precise manner.
Collapse
|
18
|
Huang W, Whittaker K, Zhang H, Wu J, Zhu SW, Huang RP. Integration of Antibody Array Technology into Drug Discovery and Development. Assay Drug Dev Technol 2018; 16:74-95. [PMID: 29394094 DOI: 10.1089/adt.2017.808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | - Jian Wu
- The Affiliated Third Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Ruo-Pan Huang
- Raybiotech, Inc., Guangzhou, China
- RayBiotech, Inc., Norcross, Georgia
- South China Biochip Research Center, Guangzhou, China
| |
Collapse
|
19
|
Chen Z, Dodig-Crnković T, Schwenk JM, Tao SC. Current applications of antibody microarrays. Clin Proteomics 2018; 15:7. [PMID: 29507545 PMCID: PMC5830343 DOI: 10.1186/s12014-018-9184-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
The concept of antibody microarrays is one of the most versatile approaches within multiplexed immunoassay technologies. These types of arrays have increasingly become an attractive tool for the exploratory detection and study of protein abundance, function, pathways, and potential drug targets. Due to the properties of the antibody microarrays and their potential use in basic research and clinical analytics, various types of antibody microarrays have already been developed. In spite of the growing number of studies utilizing this technique, few reviews about antibody microarray technology have been presented to reflect the quality and future uses of the generated data. In this review, we provide a summary of the recent applications of antibody microarray techniques in basic biology and clinical studies, providing insights into the current trends and future of protein analysis.
Collapse
Affiliation(s)
- Ziqing Chen
- Key Laboratory of Systems Biomedicine, (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Tea Dodig-Crnković
- Affinity Proteomics, SciLifeLab, KTH - Royal Institute of Technology, 171 65 Solna, Sweden
| | - Jochen M. Schwenk
- Affinity Proteomics, SciLifeLab, KTH - Royal Institute of Technology, 171 65 Solna, Sweden
| | - Sheng-ce Tao
- Key Laboratory of Systems Biomedicine, (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
20
|
Adeola HA, Van Wyk JC, Arowolo A, Ngwanya RM, Mkentane K, Khumalo NP. Emerging Diagnostic and Therapeutic Potentials of Human Hair Proteomics. Proteomics Clin Appl 2017; 12. [PMID: 28960873 DOI: 10.1002/prca.201700048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/09/2017] [Indexed: 01/22/2023]
Abstract
The use of noninvasive human substrates to interrogate pathophysiological conditions has become essential in the post- Human Genome Project era. Due to its high turnover rate, and its long term capability to incorporate exogenous and endogenous substances from the circulation, hair testing is emerging as a key player in monitoring long term drug compliance, chronic alcohol abuse, forensic toxicology, and biomarker discovery, among other things. Novel high-throughput 'omics based approaches like proteomics have been underutilized globally in comprehending human hair morphology and its evolving use as a diagnostic testing substrate in the era of precision medicine. There is paucity of scientific evidence that evaluates the difference in drug incorporation into hair based on lipid content, and very few studies have addressed hair growth rates, hair forms, and the biological consequences of hair grooming or bleaching. It is apparent that protein-based identification using the human hair proteome would play a major role in understanding these parameters akin to DNA single nucleotide polymorphism profiling, up to single amino acid polymorphism resolution. Hence, this work seeks to identify and discuss the progress made thus far in the field of molecular hair testing using proteomic approaches, and identify ways in which proteomics would improve the field of hair research, considering that the human hair is mostly composed of proteins. Gaps in hair proteomics research are identified and the potential of hair proteomics in establishing a historic medical repository of normal and disease-specific proteome is also discussed.
Collapse
Affiliation(s)
- Henry A Adeola
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Jennifer C Van Wyk
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Afolake Arowolo
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Reginald M Ngwanya
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Khwezikazi Mkentane
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
21
|
Sievers S, Cretich M, Gagni P, Ahrens B, Grishina G, Sampson HA, Niggemann B, Chiari M, Beyer K. Performance of a polymer coated silicon microarray for simultaneous detection of food allergen-specific IgE and IgG4. Clin Exp Allergy 2017; 47:1057-1068. [DOI: 10.1111/cea.12929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/13/2017] [Accepted: 03/20/2017] [Indexed: 01/26/2023]
Affiliation(s)
- S. Sievers
- Pediatric Pneumology and Immunology; Charité Universitätsmedizin; Berlin Germany
- Department of Biology, Chemistry and Pharmacy; Free University; Berlin Germany
| | - M. Cretich
- Istituto di Chimica del Riconoscimento Molecolare (ICRM); Consiglio Nazionale delle Ricerche; Milano Italy
| | - P. Gagni
- Istituto di Chimica del Riconoscimento Molecolare (ICRM); Consiglio Nazionale delle Ricerche; Milano Italy
| | - B. Ahrens
- Pediatric Pneumology and Immunology; Charité Universitätsmedizin; Berlin Germany
| | - G. Grishina
- Icahn School of Medicine at Mount Sinai; New York NY USA
| | - H. A. Sampson
- Icahn School of Medicine at Mount Sinai; New York NY USA
| | - B. Niggemann
- Pediatric Pneumology and Immunology; Charité Universitätsmedizin; Berlin Germany
| | - M. Chiari
- Istituto di Chimica del Riconoscimento Molecolare (ICRM); Consiglio Nazionale delle Ricerche; Milano Italy
| | - K. Beyer
- Pediatric Pneumology and Immunology; Charité Universitätsmedizin; Berlin Germany
- Icahn School of Medicine at Mount Sinai; New York NY USA
| |
Collapse
|
22
|
Klimushina MV, Gumanova NG, Metelskaya VA. Direct labeling of serum proteins by fluorescent dye for antibody microarray. Biochem Biophys Res Commun 2017; 486:824-826. [PMID: 28351622 DOI: 10.1016/j.bbrc.2017.03.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
Abstract
Analysis of serum proteome by antibody microarray is used to identify novel biomarkers and to study signaling pathways including protein phosphorylation and protein-protein interactions. Labeling of serum proteins is important for optimal performance of the antibody microarray. Proper choice of fluorescent label and optimal concentration of protein loaded on the microarray ensure good quality of imaging that can be reliably scanned and processed by the software. We have optimized direct serum protein labeling using fluorescent dye Arrayit Green 540 (Arrayit Corporation, USA) for antibody microarray. Optimized procedure produces high quality images that can be readily scanned and used for statistical analysis of protein composition of the serum.
Collapse
Affiliation(s)
- M V Klimushina
- National Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, 101990, Russian Federation
| | - N G Gumanova
- National Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, 101990, Russian Federation.
| | - V A Metelskaya
- National Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, 101990, Russian Federation
| |
Collapse
|
23
|
Tagit O, Hildebrandt N. Fluorescence Sensing of Circulating Diagnostic Biomarkers Using Molecular Probes and Nanoparticles. ACS Sens 2017; 2:31-45. [PMID: 28722447 DOI: 10.1021/acssensors.6b00625] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interplay of photonics, nanotechnology, and biochemistry has significantly improved the identification and characterization of multiple types of biomarkers by optical biosensors. Great achievements in fluorescence-based technologies have been realized, for example, by the advancement of multiplexing techniques or the introduction of nanoparticles to biochemical and clinical research. This review presents a concise overview of recent advances in fluorescence sensing techniques for the detection of circulating disease biomarkers. Detection principles of representative approaches, including fluorescence detection using molecular fluorophores, quantum dots, and metallic and silica nanoparticles, are explained and illustrated by pertinent examples from the recent literature. Advanced detection technologies and material development play a major role in modern biosensing and consistently provide significant improvements toward robust, sensitive, and versatile platforms for early detection of circulating diagnostic biomarkers.
Collapse
Affiliation(s)
- Oya Tagit
- NanoBioPhotonics
(nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay, France
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Niko Hildebrandt
- NanoBioPhotonics
(nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay, France
| |
Collapse
|
24
|
Mukherjee S, Bandyopadhyay A. Proteomics in India: the clinical aspect. Clin Proteomics 2016; 13:21. [PMID: 27822170 PMCID: PMC5097398 DOI: 10.1186/s12014-016-9122-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Proteomics has emerged as a highly promising bioanalytical technique in various aspects of applied biological research. In Indian academia, proteomics research has grown remarkably over the last decade. It is being extensively used for both basic as well as translation research in the areas of infectious and immune disorders, reproductive disorders, cardiovascular diseases, diabetes, eye disorders, human cancers and hematological disorders. Recently, some seminal works on clinical proteomics have been reported from several laboratories across India. This review aims to shed light on the increasing use of proteomics in India in a variety of biological conditions. It also highlights that India has the expertise and infrastructure needed for pursuing proteomics research in the country and to participate in global initiatives. Research in clinical proteomics is gradually picking up pace in India and its future seems very bright.
Collapse
Affiliation(s)
- Somaditya Mukherjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| | - Arun Bandyopadhyay
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| |
Collapse
|
25
|
Cimaglia F, De Lorenzis E, Mezzolla V, Rossi F, Poltronieri P. Detection of <italic>L. Monocytogenes</italic> in Enrichment Cultures by Immunoseparation and Immunosensors. IEEE SENSORS JOURNAL 2016; 16:7045-7052. [DOI: 10.1109/jsen.2016.2598700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
26
|
Bertok T, Dosekova E, Belicky S, Holazova A, Lorencova L, Mislovicova D, Paprckova D, Vikartovska A, Plicka R, Krejci J, Ilcikova M, Kasak P, Tkac J. Mixed Zwitterion-Based Self-Assembled Monolayer Interface for Impedimetric Glycomic Analyses of Human IgG Samples in an Array Format. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7070-8. [PMID: 27311591 PMCID: PMC5659378 DOI: 10.1021/acs.langmuir.6b01456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
An impedimetric lectin biosensor for the detection of changes in the glycan structure of antibodies isolated from human serum is here correlated with the progression of rheumatoid arthritis (RA). The biosensor was built up from a mixed self-assembled monolayer (SAM) on gold consisting of two different thiolated zwitterionic derivatives, carboxybetaine and sulfobetaine, to resist nonspecific interactions. The carboxyl-terminated one was applied also for the covalent immobilization of lectin Ricinus communis agglutinin I (RCA-I). The process of building a bioreceptive layer was optimized and characterized using a diverse range of techniques. Impedimetric assays were integrated on a chip consisting of eight gold working electrodes, which is an important step toward the achievement of a moderate level of multiplexing for the analysis of human serum samples. At the end, the results obtained by the impedimetric analysis of immunoglobulins G (IgGs) isolated from serum samples were compared with those of two other standard bioanalytical methods employing lectins, that is, lectin microarrays (MAs) and enzyme-linked lectin binding assays (ELLBAs). The impedimetric results agreed very well with the DAS28 index (RA disease activity score 28), suggesting that impedimetric assays could be used for the development of a new diagnostic procedure sensitive to glycosylation changes in human IgGs and thus RA progression.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Erika Dosekova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Stefan Belicky
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Alena Holazova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Danica Mislovicova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Darina Paprckova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Robert Plicka
- BVT Technologies, Inc., Hudcova 78c, Brno 612 00, Czech Republic
| | - Jan Krejci
- BVT Technologies, Inc., Hudcova 78c, Brno 612 00, Czech Republic
| | - Marketa Ilcikova
- Center for Advanced Materials, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| |
Collapse
|
27
|
Men D, Zhou J, Li W, Leng Y, Chen X, Tao S, Zhang XE. Fluorescent Protein Nanowire-Mediated Protein Microarrays for Multiplexed and Highly Sensitive Pathogen Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17472-7. [PMID: 27315221 DOI: 10.1021/acsami.6b04786] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein microarrays are powerful tools for high-throughput and simultaneous detection of different target molecules in complex biological samples. However, the sensitivity of conventional fluorescence-labeling protein detection methods is limited by the availability of signal molecules for binding to the target molecule. Here, we built a multifunctional fluorescent protein nanowire (FNw) by harnessing self-assembly of yeast amyloid protein. The FNw integrated a large number of fluorescent molecules, thereby enhancing the fluorescent signal output in target detection. The FNw was then combined with protein microarray technology to detect proteins derived from two pathogens, including influenza virus (hemagglutinin 1, HA1) and human immunodeficiency virus (p24 and gp120). The resulting detection sensitivity achieved a 100-fold improvement over a commercially available detection reagent.
Collapse
Affiliation(s)
- Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
- Nursing College, Henan University , Kaifeng 475004, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Wei Li
- College of Life Sciences, Hubei University , Wuhan 430062, China
| | - Yan Leng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University , Shanghai 200240, China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| |
Collapse
|
28
|
Protein Chips for Detection of Salmonella spp. from Enrichment Culture. SENSORS 2016; 16:s16040574. [PMID: 27110786 PMCID: PMC4851088 DOI: 10.3390/s16040574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Food pathogens are the cause of foodborne epidemics, therefore there is a need to detect the pathogens in food productions rapidly. A pre-enrichment culture followed by selective agar plating are standard detection methods. Molecular methods such as qPCR have provided a first rapid protocol for detection of pathogens within 24 h of enrichment culture. Biosensors also may provide a rapid tool to individuate a source of Salmonella contamination at early times of pre-enrichment culture. Forty mL of Salmonella spp. enrichment culture were processed by immunoseparation using the Pathatrix, as in AFNOR validated qPCR protocols. The Salmonella biosensor combined with immunoseparation showed a limit of detection of 100 bacteria/40 mL, with a 400 fold increase to previous results. qPCR analysis requires processing of bead-bound bacteria with lysis buffer and DNA clean up, with a limit of detection of 2 cfu/50 μL. Finally, a protein chip was developed and tested in screening and identification of 5 common pathogen species, Salmonella spp., E. coli, S. aureus, Campylobacter spp. and Listeria spp. The protein chip, with high specificity in species identification, is proposed to be integrated into a Lab-on-Chip system, for rapid and reproducible screening of Salmonella spp. and other pathogen species contaminating food productions.
Collapse
|
29
|
Abstract
Autoantibodies are a key component for the diagnosis, prognosis and monitoring of various diseases. In order to discover novel autoantibody targets, highly multiplexed assays based on antigen arrays hold a great potential and provide possibilities to analyze hundreds of body fluid samples for their reactivity pattern against thousands of antigens in parallel. Here, we provide an overview of the available technologies for producing antigen arrays, highlight some of the technical and methodological considerations and discuss their applications as discovery tools. Together with recent studies utilizing antigen arrays, we give an overview on how the different types of antigen arrays have and will continue to deliver novel insights into autoimmune diseases among several others.
Collapse
|
30
|
An overview of innovations and industrial solutions in Protein Microarray Technology. Proteomics 2016; 16:1297-308. [DOI: 10.1002/pmic.201500429] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 01/12/2023]
|
31
|
Yu X, Petritis B, LaBaer J. Advancing translational research with next-generation protein microarrays. Proteomics 2016; 16:1238-50. [PMID: 26749402 PMCID: PMC7167888 DOI: 10.1002/pmic.201500374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/23/2015] [Accepted: 01/04/2016] [Indexed: 01/14/2023]
Abstract
Protein microarrays are a high-throughput technology used increasingly in translational research, seeking to apply basic science findings to enhance human health. In addition to assessing protein levels, posttranslational modifications, and signaling pathways in patient samples, protein microarrays have aided in the identification of potential protein biomarkers of disease and infection. In this perspective, the different types of full-length protein microarrays that are used in translational research are reviewed. Specific studies employing these microarrays are presented to highlight their potential in finding solutions to real clinical problems. Finally, the criteria that should be considered when developing next-generation protein microarrays are provided.
Collapse
Affiliation(s)
- Xiaobo Yu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (The PHOENIX Center, Beijing)BeijingP. R. China
- The Virginia G. Piper Center for Personalized DiagnosticsBiodesign InstituteArizona State UniversityTempeAZUSA
| | - Brianne Petritis
- The Virginia G. Piper Center for Personalized DiagnosticsBiodesign InstituteArizona State UniversityTempeAZUSA
| | - Joshua LaBaer
- The Virginia G. Piper Center for Personalized DiagnosticsBiodesign InstituteArizona State UniversityTempeAZUSA
| |
Collapse
|
32
|
Autebert J, Cors JF, Taylor DP, Kaigala GV. Convection-Enhanced Biopatterning with Recirculation of Hydrodynamically Confined Nanoliter Volumes of Reagents. Anal Chem 2016; 88:3235-42. [PMID: 26837532 PMCID: PMC4794703 DOI: 10.1021/acs.analchem.5b04649] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
We
present a new methodology for efficient and high-quality patterning
of biological reagents for surface-based biological assays. The method
relies on hydrodynamically confined nanoliter volumes of reagents
to interact with the substrate at the micrometer-length scale. We
study the interplay between diffusion, advection, and surface chemistry
and present the design of a noncontact scanning microfluidic device
to efficiently present reagents on surfaces. By leveraging convective
flows, recirculation, and mixing of a processing liquid, this device
overcomes limitations of existing biopatterning approaches, such as
passive diffusion of analytes, uncontrolled wetting, and drying artifacts.
We demonstrate the deposition of analytes, showing a 2- to 5-fold
increase in deposition rate together with a 10-fold reduction in analyte
consumption while ensuring less than 6% variation in pattern homogeneity
on a standard biological substrate. In addition, we demonstrate the
recirculation of a processing liquid using a microfluidic probe (MFP)
in the context of a surface assay for (i) probing 12 independent areas
with a single microliter of processing liquid and (ii) processing
a 2 mm2 surface to create 170 antibody spots of 50 ×
100 μm2 area using 1.6 μL of liquid. We observe
high pattern quality, conservative usage of reagents, micrometer precision
of localization and convection-enhanced fast deposition. Such a device
and method may facilitate quantitative biological assays and spur
the development of the next generation of protein microarrays.
Collapse
Affiliation(s)
- Julien Autebert
- IBM Research-Zurich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Julien F Cors
- IBM Research-Zurich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - David P Taylor
- IBM Research-Zurich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Govind V Kaigala
- IBM Research-Zurich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
33
|
Shah P, Hsiao FSH, Ho YH, Chen CS. The proteome targets of intracellular targeting antimicrobial peptides. Proteomics 2016; 16:1225-37. [PMID: 26648572 DOI: 10.1002/pmic.201500380] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/30/2015] [Accepted: 12/03/2015] [Indexed: 01/28/2023]
Abstract
Antimicrobial peptides have been considered well-deserving candidates to fight the battle against microorganisms due to their broad-spectrum antimicrobial activities. Several studies have suggested that membrane disruption is the basic mechanism of AMPs that leads to killing or inhibiting microorganisms. Also, AMPs have been reported to interact with macromolecules inside the microbial cells such as nucleic acids (DNA/RNA), protein synthesis, essential enzymes, membrane septum formation and cell wall synthesis. Proteins are associated with many intracellular mechanisms of cells, thus protein targets may be specifically involved in mechanisms of action of AMPs. AMPs like pyrrhocoricin, drosocin, apidecin and Bac 7 are documented to have protein targets, DnaK and GroEL. Moreover, the intracellular targeting AMPs are reported to influence more than one protein targets inside the cell, suggesting for the multiple modes of actions. This complex mechanism of intracellular targeting AMPs makes them more difficult for the development of resistance. Herein, we have summarized the current status of AMPs in terms of their mode of actions, entry to cytoplasm and inhibition of macromolecules. To reveal the mechanism of action, we have focused on AMPs with intracellular protein targets. We have also included the use of high-throughput proteome microarray to determine the unidentified AMP protein targets in this review.
Collapse
Affiliation(s)
- Pramod Shah
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Felix Shih-Hsiang Hsiao
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Yu-Hsuan Ho
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| |
Collapse
|
34
|
Chang CW, Huang CS. Photonic crystal micropost as a microarray platform. OPTICS EXPRESS 2016; 24:2954-2964. [PMID: 26906862 DOI: 10.1364/oe.24.002954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study demonstrates a photonic crystal micropost (PCMP) substrate for microarray applications. The substrate comprises an array of circular MPs with a PC on top of these MPs. This substrate enables biomolecule-containing droplets to form a composite contact upon deposition, thus allowing biomolecules to be attached on only the MPs, forming spots. When the device (PC) is excited on resonance, the electric field intensity is enhanced on only the top surface of the MPs. This enables the fluorescence intensities to be enhanced up to 5.50x; principally, this enhancement does not engender an increase in the background (intensity outside MP or spots) and noise intensities. The PCMP substrate enhances the spot intensity and minimizes the background intensity, enabling the detection of lower concentration analytes.
Collapse
|
35
|
Abstract
Microarray technology, with its high-throughput advantage, has been applied to analyze various biomaterials, such as nucleic acids, proteins, glycans, peptides, and cells.
Collapse
|
36
|
Fredolini C, Byström S, Pin E, Edfors F, Tamburro D, Iglesias MJ, Häggmark A, Hong MG, Uhlen M, Nilsson P, Schwenk JM. Immunocapture strategies in translational proteomics. Expert Rev Proteomics 2015; 13:83-98. [PMID: 26558424 PMCID: PMC4732419 DOI: 10.1586/14789450.2016.1111141] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aiming at clinical studies of human diseases, antibody-assisted assays have been applied to biomarker discovery and toward a streamlined translation from patient profiling to assays supporting personalized treatments. In recent years, integrated strategies to couple and combine antibodies with mass spectrometry-based proteomic efforts have emerged, allowing for novel possibilities in basic and clinical research. Described in this review are some of the field's current and emerging immunocapture approaches from an affinity proteomics perspective. Discussed are some of their advantages, pitfalls and opportunities for the next phase in clinical and translational proteomics.
Collapse
Affiliation(s)
- Claudia Fredolini
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Sanna Byström
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Elisa Pin
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Fredrik Edfors
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Davide Tamburro
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, SciLifeLab, Karolinska Institutet, Solna, Sweden
| | - Maria Jesus Iglesias
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Anna Häggmark
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Mun-Gwan Hong
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Mathias Uhlen
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Peter Nilsson
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Jochen M Schwenk
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
37
|
Deciphering Asthma Biomarkers with Protein Profiling Technology. Int J Inflam 2015; 2015:630637. [PMID: 26346739 PMCID: PMC4543788 DOI: 10.1155/2015/630637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways, resulting in bronchial hyperresponsiveness with every allergen exposure. It is now clear that asthma is not a single disease, but rather a multifaceted syndrome that results from a variety of biologic mechanisms. Asthma is further problematic given that the disease consists of many variants, each with its own etiologic and pathophysiologic factors, including different cellular responses and inflammatory phenotypes. These facets make the rapid and accurate diagnosis (not to mention treatments) of asthma extremely difficult. Protein biomarkers can serve as powerful detection tools in both clinical and basic research applications. Recent endeavors from biomedical researchers have developed technical platforms, such as cytokine antibody arrays, that have been employed and used to further the global analysis of asthma biomarker studies. In this review, we discuss potential asthma biomarkers involved in the pathophysiologic process and eventual pathogenesis of asthma, how these biomarkers are being utilized, and how further testing methods might help improve the diagnosis and treatment strain that current asthma patients suffer.
Collapse
|
38
|
Yeat NC, Lin C, Sager M, Lin J. Cancer proteomics: developments in technology, clinical use and commercialization. Expert Rev Proteomics 2015; 12:391-405. [PMID: 26145529 DOI: 10.1586/14789450.2015.1051969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last two decades, advances in genomic, transcriptomic and proteomic methods have enabled us to identify and classify cancers by their molecular profiles. Many anticipate that a molecular taxonomy of cancer will not only lead to more effective subtyping of cancers but also earlier diagnoses, more informative prognoses and more targeted treatments. This article reviews recent technological developments in the field of proteomics, recent discoveries in proteomic cancer biomarker research and trends in clinical use. Readers are also informed of examples of successful commercialization, and the future of proteomics in cancer diagnostics.
Collapse
Affiliation(s)
- Nai Chien Yeat
- Rare Genomics Institute, 4100 Forest Park, St. Louis, MO 63108, USA
| | | | | | | |
Collapse
|
39
|
Krizkova S, Heger Z, Zalewska M, Moulick A, Adam V, Kizek R. Nanotechnologies in protein microarrays. Nanomedicine (Lond) 2015; 10:2743-55. [PMID: 26039143 DOI: 10.2217/nnm.15.81] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Zbynek Heger
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Marta Zalewska
- Department of Biomedical & Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland, European Union
| | - Amitava Moulick
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Vojtech Adam
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Rene Kizek
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| |
Collapse
|
40
|
Kraus VB, Blanco FJ, Englund M, Henrotin Y, Lohmander LS, Losina E, Önnerfjord P, Persiani S. OARSI Clinical Trials Recommendations: Soluble biomarker assessments in clinical trials in osteoarthritis. Osteoarthritis Cartilage 2015; 23:686-97. [PMID: 25952342 PMCID: PMC4430113 DOI: 10.1016/j.joca.2015.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/27/2015] [Accepted: 03/08/2015] [Indexed: 02/02/2023]
Abstract
The objective of this work was to describe requirements for inclusion of soluble biomarkers in osteoarthritis (OA) clinical trials and progress toward OA-related biomarker qualification. The Guidelines for Biomarkers Working Group, representing experts in the field of OA biomarker research from both academia and industry, convened to discuss issues related to soluble biomarkers and to make recommendations for their use in OA clinical trials based on current knowledge and anticipated benefits. This document summarizes current guidance on use of biomarkers in OA clinical trials and their utility at five stages, including preclinical development and phase I to phase IV trials. As demonstrated by this summary, biomarkers can provide value at all stages of therapeutics development. When resources permit, we recommend collection of biospecimens in all OA clinical trials for a wide variety of reasons but in particular, to determine whether biomarkers are useful in identifying those individuals most likely to receive clinically important benefits from an intervention; and to determine whether biomarkers are useful for identifying individuals at earlier stages of OA in order to institute treatment at a time more amenable to disease modification.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Duke Molecular Physiology Institute and Departments of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Francisco J Blanco
- Grupo de Proteomica. ProteoRed/ISCIII. Servicio de Reumatologia. Instituto de Investigación Biomedica de A Coruña (INIBIC).Complexo Hospitalario Universitario de A Coruña (CHUAC). Sergas. Universidade da Coruña (UDC). As Xubias, 15006. A Coruña, Spain
| | - Martin Englund
- Orthopedics, Clinical Sciences Lund, Lund University, Lund, Sweden and Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, Boston University, MA, USA
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, CHU Sart-Tilman, 4000 Liège and Department of Physical Therapy and Rehabilitation, Princess Paola Hospital, Marche-en-Famenne, Belgium
| | - L Stefan Lohmander
- Department of Orthopedics, Clinical Sciences Lund, Lund University, Lund, Sweden; Research Unit for Musculoskeletal Function and Physiotherapy, and Department of Orthopedics and Traumatology, University of Southern Denmark, Odense, Denmark
| | - Elena Losina
- Orthopedic and Arthritis Center for Outcomes Research, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Patrik Önnerfjord
- Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Sweden
| | - Stefano Persiani
- Department of Translational Sciences and Pharmacokinetics, Rottapharm Biotech, Monza, Italy
| |
Collapse
|
41
|
Wold ED, McBride R, Axup JY, Kazane SA, Smider VV. Antibody microarrays utilizing site-specific antibody-oligonucleotide conjugates. Bioconjug Chem 2015; 26:807-11. [PMID: 25884500 DOI: 10.1021/acs.bioconjchem.5b00111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein arrays are typically made by random absorption of proteins to the array surface, potentially limiting the amount of properly oriented and functional molecules. We report the development of a DNA encoded antibody microarray utilizing site-specific antibody-oligonucleotide conjugates that can be used for cell immobilization as well as the detection of genes and proteins. This technology allows for the facile generation of antibody microarrays while circumventing many of the drawbacks of conventionally produced antibody arrays. We demonstrate that this method can be used to capture and detect SK-BR-3 cells (Her2+ breast cancer cells) at concentrations as low as 10(2) cells/mL (which is equivalent to 10 cells per 100 μL array) without the use of microfluidics, which is 100- to 10(5)-fold more sensitive than comparable techniques. Additionally, the method was shown to be able to detect cells in a complex mixture, effectively immobilizing and specifically detecting Her2+ cells at a concentration of 10(2) SK-BR-3 cells/mL in 4 × 10(6) white blood cells/mL. Patients with a variety of cancers can have circulating tumor cell counts of between 1 and 10(3) cells/mL in whole blood, well within the range of this technology.
Collapse
Affiliation(s)
| | | | | | - Stephanie A Kazane
- ‡California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|
42
|
Spellman DS, Wildsmith KR, Honigberg LA, Tuefferd M, Baker D, Raghavan N, Nairn AC, Croteau P, Schirm M, Allard R, Lamontagne J, Chelsky D, Hoffmann S, Potter WZ. Development and evaluation of a multiplexed mass spectrometry based assay for measuring candidate peptide biomarkers in Alzheimer's Disease Neuroimaging Initiative (ADNI) CSF. Proteomics Clin Appl 2015; 9:715-31. [PMID: 25676562 DOI: 10.1002/prca.201400178] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/19/2014] [Accepted: 02/05/2015] [Indexed: 11/09/2022]
Abstract
PURPOSE We describe the outcome of the Biomarkers Consortium CSF Proteomics Project (where CSF is cerebral spinal fluid), a public-private partnership of government, academia, nonprofit, and industry. The goal of this study was to evaluate a multiplexed MS-based approach for the qualification of candidate Alzheimer's disease (AD) biomarkers using CSF samples from the AD Neuroimaging Initiative. EXPERIMENTAL DESIGN Reproducibility of sample processing, analytic variability, and ability to detect a variety of analytes of interest were thoroughly investigated. Multiple approaches to statistical analyses assessed whether panel analytes were associated with baseline pathology (mild cognitive impairment (MCI), AD) versus healthy controls or associated with progression for MCI patients, and included (i) univariate association analyses, (ii) univariate prediction models, (iii) exploratory multivariate analyses, and (iv) supervised multivariate analysis. RESULTS A robust targeted MS-based approach for the qualification of candidate AD biomarkers was developed. The results identified several peptides with potential diagnostic or predictive utility, with the most significant differences observed for the following peptides for differentiating (including peptides from hemoglobin A, hemoglobin B, and superoxide dismutase) or predicting (including peptides from neuronal pentraxin-2, neurosecretory protein VGF (VGF), and secretogranin-2) progression versus nonprogression from MCI to AD. CONCLUSIONS AND CLINICAL RELEVANCE These data provide potential insights into the biology of CSF in AD and MCI progression and provide a novel tool for AD researchers and clinicians working to improve diagnostic accuracy, evaluation of treatment efficacy, and early diagnosis.
Collapse
Affiliation(s)
- Daniel S Spellman
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Pennsylvania, PA, USA
| | - Kristin R Wildsmith
- Department of Pharmacodynamic Biomarkers within Development Sciences, Genentech, Inc (a member of the Roche Group), South San Francisco, CA, USA
| | - Lee A Honigberg
- Department of Pharmacodynamic Biomarkers within Development Sciences, Genentech, Inc (a member of the Roche Group), South San Francisco, CA, USA
| | - Marianne Tuefferd
- Discovery Sciences, Janssen Research & Development LLC, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - David Baker
- Janssen Research & Development LLC, Titusville, NJ, USA
| | | | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Rene Allard
- Caprion Pharmaceuticals, Montreal, QC, Canada
| | | | | | - Steven Hoffmann
- Foundation for the National Institutes of Health, Inc, Bethesda, MD, USA
| | | | | | | |
Collapse
|
43
|
Romanov V, Davidoff SN, Miles AR, Grainger DW, Gale BK, Brooks BD. A critical comparison of protein microarray fabrication technologies. Analyst 2015; 139:1303-26. [PMID: 24479125 DOI: 10.1039/c3an01577g] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Of the diverse analytical tools used in proteomics, protein microarrays possess the greatest potential for providing fundamental information on protein, ligand, analyte, receptor, and antibody affinity-based interactions, binding partners and high-throughput analysis. Microarrays have been used to develop tools for drug screening, disease diagnosis, biochemical pathway mapping, protein-protein interaction analysis, vaccine development, enzyme-substrate profiling, and immuno-profiling. While the promise of the technology is intriguing, it is yet to be realized. Many challenges remain to be addressed to allow these methods to meet technical and research expectations, provide reliable assay answers, and to reliably diversify their capabilities. Critical issues include: (1) inconsistent printed microspot morphologies and uniformities, (2) low signal-to-noise ratios due to factors such as complex surface capture protocols, contamination, and static or no-flow mass transport conditions, (3) inconsistent quantification of captured signal due to spot uniformity issues, (4) non-optimal protocol conditions such as pH, temperature, drying that promote variability in assay kinetics, and lastly (5) poor protein (e.g., antibody) printing, storage, or shelf-life compatibility with common microarray assay fabrication methods, directly related to microarray protocols. Conventional printing approaches, including contact (e.g., quill and solid pin), non-contact (e.g., piezo and inkjet), microfluidics-based, microstamping, lithography, and cell-free protein expression microarrays, have all been used with varying degrees of success with figures of merit often defined arbitrarily without comparisons to standards, or analytical or fiduciary controls. Many microarray performance reports use bench top analyte preparations lacking real-world relevance, akin to "fishing in a barrel", for proof of concept and determinations of figures of merit. This review critiques current protein-based microarray preparation techniques commonly used for analytical and function-based proteomics and their effects on array-based assay performance.
Collapse
Affiliation(s)
- Valentin Romanov
- Wasatch Microfluidics, LLC, 825 N. 300 W., Suite C325, Salt Lake City, UT, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Reddy PJ, Atak A, Ghantasala S, Kumar S, Gupta S, Prasad TSK, Zingde SM, Srivastava S. Proteomics research in India: an update. J Proteomics 2015; 127:7-17. [PMID: 25868663 DOI: 10.1016/j.jprot.2015.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/06/2015] [Indexed: 02/04/2023]
Abstract
After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Panga Jaipal Reddy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Apurva Atak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Saicharan Ghantasala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Saurabh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shabarni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore 560066, India
| | - Surekha M Zingde
- CH3-53 Kendriya Vihar, Kharghar, Navi Mumbai, 410210, India. http://www.psindia.org
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
45
|
Abstract
All of life is regulated by complex and organized chemical reactions that help dictate when to grow, to move, to reproduce, and to die. When these processes go awry, or are interrupted by pathological agents, diseases such as cancer, autoimmunity, or infections can result. Cytokines, chemokines, growth factors, adipokines, and other chemical moieties make up a vast subset of these chemical reactions that are altered in disease states, and monitoring changes in these molecules could provide for the identification of disease biomarkers. From the first identification of carcinoembryonic antigen, to the discovery of prostate-specific antigen, to numerous others described within, biomarkers of disease are detectable in a plethora of sample types. The growing number of biomarkers for infection, autoimmunity, and cancer allow for increasingly early detection, to identification of novel drug targets, to prognostic indicators of disease outcome. However, more and more studies are finding that a single cytokine or growth factor is insufficient as a true disease biomarker and that a more global perspective is needed to understand true disease biology. Such a broad view requires a multiplexed platform for chemical detection, and antibody arrays meet and exceed this need by performing this detection in a high-throughput fashion. Herein, we will discuss how antibody arrays have evolved, and how they have helped direct new drug target design, helped identify therapeutic disease markers, and helped in earlier disease detection. From asthma to renal disease, and neurological dysfunction to immunologic disorders, antibody arrays afford a bright future for new biomarkers discovery.
Collapse
|
46
|
Feng S, Zhou L, Huang C, Xie K, Nice EC. Interactomics: toward protein function and regulation. Expert Rev Proteomics 2015; 12:37-60. [DOI: 10.1586/14789450.2015.1000870] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Karimi P, Shahrokni A, Ranjbar MRN. Implementation of proteomics for cancer research: past, present, and future. Asian Pac J Cancer Prev 2015; 15:2433-8. [PMID: 24761843 DOI: 10.7314/apjcp.2014.15.6.2433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of the death, accounts for about 13% of all annual deaths worldwide. Many different fields of science are collaborating together studying cancer to improve our knowledge of this lethal disease, and find better solutions for diagnosis and treatment. Proteomics is one of the most recent and rapidly growing areas in molecular biology that helps understanding cancer from an omics data analysis point of view. The human proteome project was officially initiated in 2008. Proteomics enables the scientists to interrogate a variety of biospecimens for their protein contents and measure the concentrations of these proteins. Current necessary equipment and technologies for cancer proteomics are mass spectrometry, protein microarrays, nanotechnology and bioinformatics. In this paper, we provide a brief review on proteomics and its application in cancer research. After a brief introduction including its definition, we summarize the history of major previous work conducted by researchers, followed by an overview on the role of proteomics in cancer studies. We also provide a list of different utilities in cancer proteomics and investigate their advantages and shortcomings from theoretical and practical angles. Finally, we explore some of the main challenges and conclude the paper with future directions in this field.
Collapse
Affiliation(s)
- Parisa Karimi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, USA E-mail :
| | | | | |
Collapse
|
48
|
Driguez P, Doolan DL, Molina DM, Loukas A, Trieu A, Felgner PL, McManus DP. Protein microarrays for parasite antigen discovery. Methods Mol Biol 2015; 1201:221-233. [PMID: 25388117 DOI: 10.1007/978-1-4939-1438-8_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The host serological profile to a parasitic infection, such as schistosomiasis, can be used to define potential vaccine and diagnostic targets. Determining the host antibody response using traditional approaches is hindered by the large number of putative antigens in any parasite proteome. Parasite protein microarrays offer the potential for a high-throughput host antibody screen to simplify this task. In order to construct the array, parasite proteins are selected from available genomic sequence and protein databases using bioinformatic tools. Selected open reading frames are PCR amplified, incorporated into a vector for cell-free protein expression, and printed robotically onto glass slides. The protein microarrays can be probed with antisera from infected/immune animals or humans and the antibody reactivity measured with fluorophore labeled antibodies on a confocal laser microarray scanner to identify potential targets for diagnosis or therapeutic or prophylactic intervention.
Collapse
Affiliation(s)
- Patrick Driguez
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Chevalier F, Hamdi DH, Saintigny Y, Lefaix JL. Proteomic overview and perspectives of the radiation-induced bystander effects. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:280-93. [PMID: 25795126 DOI: 10.1016/j.mrrev.2014.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/22/2014] [Accepted: 11/18/2014] [Indexed: 11/28/2022]
Abstract
Radiation proteomics is a recent, promising and powerful tool to identify protein markers of direct and indirect consequences of ionizing radiation. The main challenges of modern radiobiology is to predict radio-sensitivity of patients and radio-resistance of tumor to be treated, but considerable evidences are now available regarding the significance of a bystander effect at low and high doses. This "radiation-induced bystander effect" (RIBE) is defined as the biological responses of non-irradiated cells that received signals from neighboring irradiated cells. Such intercellular signal is no more considered as a minor side-effect of radiotherapy in surrounding healthy tissue and its occurrence should be considered in adapting radiotherapy protocols, to limit the risk for radiation-induced secondary cancer. There is no consensus on a precise designation of RIBE, which involves a number of distinct signal-mediated effects within or outside the irradiated volume. Indeed, several cellular mechanisms were proposed, including the secretion of soluble factors by irradiated cells in the extracellular matrix, or the direct communication between irradiated and neighboring non-irradiated cells via gap junctions. This phenomenon is observed in a context of major local inflammation, linked with a global imbalance of oxidative metabolism which makes its analysis challenging using in vitro model systems. In this review article, the authors first define the radiation-induced bystander effect as a function of radiation type, in vitro analysis protocols, and cell type. In a second time, the authors present the current status of protein biomarkers and proteomic-based findings and discuss the capacities, limits and perspectives of such global approaches to explore these complex intercellular mechanisms.
Collapse
Affiliation(s)
- François Chevalier
- LARIA - iRCM - DSV - CEA, GANIL, Campus Jules Horowitz, Bd Henri Becquerel, BP 55027, Caen 14076, France.
| | - Dounia Houria Hamdi
- LARIA - iRCM - DSV - CEA, GANIL, Campus Jules Horowitz, Bd Henri Becquerel, BP 55027, Caen 14076, France
| | - Yannick Saintigny
- LARIA - iRCM - DSV - CEA, GANIL, Campus Jules Horowitz, Bd Henri Becquerel, BP 55027, Caen 14076, France
| | - Jean-Louis Lefaix
- LARIA - iRCM - DSV - CEA, GANIL, Campus Jules Horowitz, Bd Henri Becquerel, BP 55027, Caen 14076, France
| |
Collapse
|
50
|
Spindel S, Sapsford KE. Evaluation of optical detection platforms for multiplexed detection of proteins and the need for point-of-care biosensors for clinical use. SENSORS (BASEL, SWITZERLAND) 2014; 14:22313-41. [PMID: 25429414 PMCID: PMC4299016 DOI: 10.3390/s141222313] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 11/16/2022]
Abstract
This review investigates optical sensor platforms for protein multiplexing, the ability to analyze multiple analytes simultaneously. Multiplexing is becoming increasingly important for clinical needs because disease and therapeutic response often involve the interplay between a variety of complex biological networks encompassing multiple, rather than single, proteins. Multiplexing is generally achieved through one of two routes, either through spatial separation on a surface (different wells or spots) or with the use of unique identifiers/labels (such as spectral separation-different colored dyes, or unique beads-size or color). The strengths and weaknesses of conventional platforms such as immunoassays and new platforms involving protein arrays and lab-on-a-chip technology, including commercially-available devices, are discussed. Three major public health concerns are identified whereby detecting medically-relevant markers using Point-of-Care (POC) multiplex assays could potentially allow for a more efficient diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Samantha Spindel
- Division of Biology, Chemistry, and Materials Science Office of Science and Engineering Laboratories; U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Kim E Sapsford
- Division of Biology, Chemistry, and Materials Science Office of Science and Engineering Laboratories; U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| |
Collapse
|