1
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
2
|
Chillon TS, Demircan K, Hackler J, Heller RA, Kaghazian P, Moghaddam A, Schomburg L. Combined copper and zinc deficiency is associated with reduced SARS-CoV-2 immunization response to BNT162b2 vaccination. Heliyon 2023; 9:e20919. [PMID: 37886755 PMCID: PMC10597833 DOI: 10.1016/j.heliyon.2023.e20919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The essential trace elements copper, selenium and zinc are of relevance for immunity and immune response to vaccination. In this longitudinal study, adult healthcare workers (n = 126) received two doses of an mRNA vaccine (BNT162b2), and longitudinal serum samples were prepared. Vaccine-induced antibodies and their neutralizing activity were analyzed, and the trace elements copper, zinc, and selenium along with the copper transporter ceruloplasmin were measured. Subjects with combined deficiency of copper and zinc, i.e. both in the lowest tertiles at baseline, displayed particularly low antibody titers at three (Double Q1: 13 AU/mL vs. not double Q1: 29 AU/mL) and six (Double Q1: 200 AU/mL vs. not double Q1: 425 AU/mL) weeks after vaccination (p < 0.05). The results indicate the potential importance of an adequate trace element status of copper and zinc for raising a strong vaccine-induced SARS-CoV-2 antibody response, and highlights the importance of considering combined micronutrient insufficiencies, as single deficiencies may synergize.
Collapse
Affiliation(s)
- Thilo Samson Chillon
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| | - Kamil Demircan
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| | - Julian Hackler
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| | - Raban A. Heller
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
- Bundeswehr Hospital Berlin, Clinic of Traumatology and Orthopaedics, D-10115 Berlin, Germany
| | - Peyman Kaghazian
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, D-63739 Aschaffenburg, Germany
| | - Arash Moghaddam
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, D-63739 Aschaffenburg, Germany
| | - Lutz Schomburg
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| |
Collapse
|
3
|
Kiran M, Maheswarappa NB, Banerjee R, Ch V, Rapole S. Impact of stunning before slaughter on expression of skeletal muscles proteome in sheep. Anim Biotechnol 2021:1-8. [PMID: 34559036 DOI: 10.1080/10495398.2021.1976198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The commercial production of halal and kosher meat and controversy surrounding the slaughter without stunning is rapidly growing across the globe. Huge global market for halal and kosher meat warrants conciliation of religious practices and animal welfare for the betterment of meat industry. In the present study, we investigated changes in muscle proteome of sheep (Ovis aries) subjected to either electrical stunning and slaughtering or slaughter without any stunning (halal). The 2DE gel analysis detected approximately 377 protein spots in which 243 (119 up regulated and 124 down regulated) protein spots were significantly (p ≤ 0.05) differentially expressed with a fold change ratio ≥1.5/≤1.5. The in-gel digestion and MALDI-TOF/TOF MS analysis of statistically significant protein spots revealed 35 differentially abundant proteins out of which 26 were up-regulated and 9 were down-regulated. The study demonstrated that slaughtering of sheep without stunning resulted in changes in the abundance of proteins involved in catalytic, structural, and stress related processes. This understanding of protein alterations in sheep slaughtered with and without stunning have the potential to act as possible signature for animal welfare index.
Collapse
Affiliation(s)
- Mohan Kiran
- Department of Livestock Products Technology, Veterinary College, KVAFSU, Bidar, India
| | | | | | - Venkatesh Ch
- Proteomics Lab, National Centre for Cell Science, Pune, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Pune, India
| |
Collapse
|
4
|
Protect, repair, destroy or sacrifice: a role of oxidative stress biology in inter-donor variability of blood storage? BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:281-288. [PMID: 31184577 DOI: 10.2450/2019.0072-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022]
Abstract
Red blood cells (RBCs) have been historically regarded as a critical model to investigate cellular and oxidant stress biology. First of all, they are constantly exposed to oxidant stress, as their main function is to transport and deliver oxygen to tissues. Second, they are devoid of de novo protein synthesis capacity, which prevents RBCs from replacing irreversibly oxidised proteins with newly synthesised ones. As such, RBCs have evolved to (i) protect themselves from oxidant stress, in order to prevent oxidant damage from reactive species; (ii) repair oxidatively damaged proteins, through mechanisms that involve glutathione and one-carbon metabolism; (iii) destroy irreversibly oxidised proteins through proteasomal or protease-dependent degradation; and (iv) sacrifice membrane portions through mechanism of vesiculation. In this brief review we will summarize these processes and their relevance to RBC redox biology (within the context of blood storage), with a focus on how polymorphisms in RBC antioxidant responses could contribute to explaining the heterogeneity in the progression and severity of the RBC storage lesion that can be observed across the healthy donor population.
Collapse
|
5
|
Li S, Xiao X, Han L, Wang Y, Luo G. Renoprotective effect of Zhenwu decoction against renal fibrosis by regulation of oxidative damage and energy metabolism disorder. Sci Rep 2018; 8:14627. [PMID: 30279506 PMCID: PMC6168532 DOI: 10.1038/s41598-018-32115-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/02/2018] [Indexed: 12/27/2022] Open
Abstract
Zhenwu decoction (ZWD) is a promising traditional Chinese prescription against renal fibrosis, while its underlying mechanism remains unclear. Rat model of renal fibrosis were established and divided into control group, model group, ZWD treatment group and enalapril maleate treatment group. Metabolic profiles on serum samples from each group were acquired by using ultra performance liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry. Metabolomics combined with molecular biology were comparatively conducted on samples of various groups. Fifteen potential biomarkers were identified and these biomarkers are mainly phospholipids and fatty acids. The results showed renal fibrosis was associated with oxidative damage and energy metabolism disorder. The results of histopathology, biochemistry and metabolomics demonstrated that ZWD exhibited an efficient renoprotective effect by alleviating oxidative stress, increasing energy metabolism and regulating fibrotic cytokines. This study provided scientific support for the research and development of new drugs from traditional Chinese medicine.
Collapse
Affiliation(s)
- Shasha Li
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China
| | - Xue Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ling Han
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China.
| | - Yiming Wang
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China.,Department of Chemistry, Tsinghua University, No. 30 Shuangqing Road in Haidian Distric, Beijing, 100084, China
| | - Guoan Luo
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China. .,Department of Chemistry, Tsinghua University, No. 30 Shuangqing Road in Haidian Distric, Beijing, 100084, China.
| |
Collapse
|
6
|
Pietropaoli D, Sgolastra F, Ciarrocchi I, Spadaro A, Masci C, Petrucci A, Cattaneo R, Monaco A. Oxidative Stress Status in the Saliva of Growing Subjects as a Potential Pubertal Biomarker. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x1201000206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- D. Pietropaoli
- University of L'Aquila, Department of Health Sciences, Faculty of Medicine, Unit of Dentistry, San Salvatore Hospital, Coppito, Italy
| | - F. Sgolastra
- University of L'Aquila, Department of Health Sciences, Faculty of Medicine, Unit of Dentistry, San Salvatore Hospital, Coppito, Italy
| | - I. Ciarrocchi
- University of L'Aquila, Department of Health Sciences, Faculty of Medicine, Unit of Dentistry, San Salvatore Hospital, Coppito, Italy
| | - A. Spadaro
- University of L'Aquila, Department of Health Sciences, Faculty of Medicine, Unit of Dentistry, San Salvatore Hospital, Coppito, Italy
| | - C. Masci
- University of L'Aquila, Department of Health Sciences, Faculty of Medicine, Unit of Dentistry, San Salvatore Hospital, Coppito, Italy
| | - A. Petrucci
- University of L'Aquila, Department of Health Sciences, Faculty of Medicine, Unit of Dentistry, San Salvatore Hospital, Coppito, Italy
| | - R. Cattaneo
- University of L'Aquila, Department of Health Sciences, Faculty of Medicine, Unit of Dentistry, San Salvatore Hospital, Coppito, Italy
| | - A. Monaco
- University of L'Aquila, Department of Health Sciences, Faculty of Medicine, Unit of Dentistry, San Salvatore Hospital, Coppito, Italy
| |
Collapse
|
7
|
Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1. Cell Biochem Biophys 2016; 71:1525-36. [PMID: 25395196 PMCID: PMC4449388 DOI: 10.1007/s12013-014-0376-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The yeast Saccharomyces cerevisiae is a useful eukaryotic model to study the toxicity of acrolein, an important environmental toxin and endogenous product of lipid peroxidation. The study was aimed at elucidation of the cytotoxic effect of acrolein on the yeast deficient in SOD1, Cu, Zn-superoxide dismutase which is hypersensitive to aldehydes. Acrolein generated within the cell from its precursor allyl alcohol caused growth arrest and cell death of the yeast cells. The growth inhibition involved an increase in production of reactive oxygen species and high level of protein carbonylation. DNA condensation and fragmentation, exposition of phosphatidylserine at the cell surface as well as decreased dynamic of actin microfilaments and mitochondria disintegration point to the induction of apoptotic-type cell death besides necrotic cell death.
Collapse
|
8
|
Diebold BA, Smith SM, Li Y, Lambeth JD. NOX2 As a Target for Drug Development: Indications, Possible Complications, and Progress. Antioxid Redox Signal 2015; 23:375-405. [PMID: 24512192 PMCID: PMC4545678 DOI: 10.1089/ars.2014.5862] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/08/2014] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE NOX2 is important for host defense, and yet is implicated in a large number of diseases in which inflammation plays a role in pathogenesis. These include acute and chronic lung inflammatory diseases, stroke, traumatic brain injury, and neurodegenerative diseases, including Alzheimer's and Parkinson's Diseases. RECENT ADVANCES Recent drug development programs have targeted several NOX isoforms that are implicated in a variety of diseases. The focus has been primarily on NOX4 and NOX1 rather than on NOX2, due, in part, to concerns about possible immunosuppressive side effects. Nevertheless, NOX2 clearly contributes to the pathogenesis of many inflammatory diseases, and its inhibition is predicted to provide a novel therapeutic approach. CRITICAL ISSUES Possible side effects that might arise from targeting NOX2 are discussed, including the possibility that such inhibition will contribute to increased infections and/or autoimmune disorders. The state of the field with regard to existing NOX2 inhibitors and targeted development of novel inhibitors is also summarized. FUTURE DIRECTIONS NOX2 inhibitors show particular promise for the treatment of inflammatory diseases, both acute and chronic. Theoretical side effects include pro-inflammatory and autoimmune complications and should be considered in any therapeutic program, but in our opinion, available data do not indicate that they are sufficiently likely to eliminate NOX2 as a drug target, particularly when weighed against the seriousness of many NOX2-related indications. Model studies demonstrating efficacy with minimal side effects are needed to encourage future development of NOX2 inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Becky A. Diebold
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M.E. Smith
- Department of Biology and Physics, Kennesaw State University, Kennesaw, Georgia
| | - Yang Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - J. David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
9
|
Díaz M, Aragonés G, Sánchez-Infantes D, Bassols J, Pérez-Cruz M, de Zegher F, Lopez-Bermejo A, Ibáñez L. Mitochondrial DNA in placenta: associations with fetal growth and superoxide dismutase activity. Horm Res Paediatr 2015; 82:303-9. [PMID: 25247554 DOI: 10.1159/000366079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Prenatal growth restraint is associated with increased oxidative stress--as judged by mitochondrial dysfunction--in pregnancies complicated by preeclampsia or diabetes, but it is uncertain whether this is also the case in uncomplicated pregnancies. We assessed the link between fetal growth restraint and placental mitochondrial dysfunction, as reflected by changes in mitochondrial DNA (mtDNA) content and superoxide dismutase (SOD) activity. METHODS After uncomplicated pregnancies, placentas (n = 48) were collected at term delivery of singleton infants who were appropriate for gestational age (AGA) or small for gestational age (SGA) (n = 24 in each subgroup). Placental mtDNA content was assessed by real-time PCR, placental SOD activity by colorimetry, and citrate synthase activity--to determine mitochondrial mass--by the spectrophotometric method. RESULTS Placentas of SGA infants had a lower mtDNA content (p = 0.015) and a higher SOD activity (p = 0.001) than those of AGA controls. These differences were maintained after normalization of the mtDNA content by citrate synthase activity. In placentas of SGA infants, there was a negative association between mtDNA content and SOD activity (r = -0.58, p = 0.008). CONCLUSIONS Fetal growth restraint is accompanied by adaptive changes in the mitochondrial function of the placenta, also in uncomplicated pregnancies.
Collapse
Affiliation(s)
- Marta Díaz
- Hospital Sant Joan de Déu, University of Barcelona, Esplugues, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nikolaidis MG, Kyparos A, Spanou C, Paschalis V, Theodorou AA, Panayiotou G, Grivas GV, Zafeiridis A, Dipla K, Vrabas IS. Aging is not a barrier to muscle and redox adaptations: Applying the repeated eccentric exercise model. Exp Gerontol 2013; 48:734-43. [DOI: 10.1016/j.exger.2013.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/04/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
|
11
|
Pallotta V, D’Alessandro A, Rinalducci S, Zolla L. Native Protein Complexes in the Cytoplasm of Red Blood Cells. J Proteome Res 2013; 12:3529-46. [DOI: 10.1021/pr400431b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Valeria Pallotta
- Department of Ecological
and Biological Sciences, University of Tuscia, Largo dell’Università,
snc, 01100 Viterbo, Italy
| | - Angelo D’Alessandro
- Department of Ecological
and Biological Sciences, University of Tuscia, Largo dell’Università,
snc, 01100 Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological
and Biological Sciences, University of Tuscia, Largo dell’Università,
snc, 01100 Viterbo, Italy
| | - Lello Zolla
- Department of Ecological
and Biological Sciences, University of Tuscia, Largo dell’Università,
snc, 01100 Viterbo, Italy
| |
Collapse
|
12
|
D'Alessandro A, Zolla L. Meat science: From proteomics to integrated omics towards system biology. J Proteomics 2013; 78:558-77. [DOI: 10.1016/j.jprot.2012.10.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/16/2022]
|
13
|
Flies, worms and the Free Radical Theory of ageing. Ageing Res Rev 2013; 12:404-12. [PMID: 22504404 DOI: 10.1016/j.arr.2012.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/26/2012] [Accepted: 03/29/2012] [Indexed: 11/22/2022]
Abstract
Drosophila and Caenorhabditis elegans have provided the largest body of evidence addressing the Free Radical Theory of ageing, however the evidence has not been unequivocally supportive. Oxidative damage to DNA is probably not a major contributor, damage to lipids is assuming greater importance and damage to proteins probably the source of pathology. On balance the evidence does not support a primary role of oxidative damage in ageing in C. elegans, perhaps because of its particular energy metabolic and stress resistance profile. Evidence is more numerous, varied and consistent and hence more compelling for Drosophila, although not conclusive. However there is good evidence for a role of oxidative damage in later life pathology. Future work should: 1/ make more use of protein oxidative damage measurements; 2/ use inducible transgenic systems or pharmacotherapy to ensure genetic equivalence of controls and avoid confounding effects during development; 3/ to try to delay ageing, target interventions which reduce and/or repair protein oxidative damage.
Collapse
|
14
|
Li R, Xu L, Liang T, Li Y, Zhang S, Duan X. Puerarin mediates hepatoprotection against CCl4-induced hepatic fibrosis rats through attenuation of inflammation response and amelioration of metabolic function. Food Chem Toxicol 2012; 52:69-75. [PMID: 23146695 DOI: 10.1016/j.fct.2012.10.059] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/27/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022]
Abstract
This study was designed to evaluate the potential effects of puerarin (PR), an effective isoflavonoid compound purified from Pueraria lobata, in treating hepatic fibrosis (HF) rats induced by carbon tetrachloride (CCl(4), 2 mL kg(-1) d(-1)). Compared to model control, PR treatment effectively lowered the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (Alb), total protein (TP) in HF rats. Masson stained analysis showed that the condition of HF rats was mitigated. Meanwhile, the tumor necrosis factor alpha (TNF-α), nuclear factor-kappa B (NF-κB) expressions were significantly down-regulated at protein level by PR intervention. Additionally, the activity of superoxide dismutase (SOD) was elevated, while the content of malondialdehyde (MDA) was lessened in liver tissue. As revealed by immunohistochemistry assay, PR therapy resulted in reduced production of transforming growth factor-βl (TGF-βl). Moreover, it also was attributed to decreased mRNA level of inducible nitric oxide synthase (iNOS) using RT-PCR analysis. These findings demonstrate that puerarin successfully reverses hepatotoxicity in CCl(4)-induced HF rats via the underlying mechanisms of regulating serum enzymes and attenuating TNF-α/NF-κB pathway for anti-inflammation response, as well as improving metabolic function in liver tissue.
Collapse
Affiliation(s)
- Rong Li
- Department of Physiology, Guilin Medical University, Guilin, Guangxi 541004, PR China
| | | | | | | | | | | |
Collapse
|
15
|
Matés JM, Segura JA, Alonso FJ, Márquez J. Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 2012; 86:1649-65. [PMID: 22811024 DOI: 10.1007/s00204-012-0906-3] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023]
Abstract
The oxygen paradox tells us that oxygen is both necessary for aerobic life and toxic to all life forms. Reactive oxygen species (ROS) touch every biological and medical discipline, especially those involving proliferative status, supporting the idea that active oxygen may be increased in tumor cells. In fact, metabolism of oxygen and the resulting toxic byproducts can cause cancer and death. Efforts to counteract the damage caused by ROS are gaining acceptance as a basis for novel therapeutic approaches, and the field of prevention of cancer is experiencing an upsurge of interest in medically useful antioxidants. Apoptosis is an important means of regulating cell numbers in the developing cell system, but it is so important that it must be controlled. Normal cell death in homeostasis of multicellular organisms is mediated through tightly regulated apoptotic pathways that involve oxidative stress regulation. Defective signaling through these pathways can contribute to both unbalance in apoptosis and development of cancer. Finally, in this review, we discuss new knowledge about recent tools that provide powerful antioxidant strategies, and designing methods to deliver to target cells, in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- José M Matés
- Department of Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, Spain.
| | | | | | | |
Collapse
|
16
|
Red blood cell subpopulations in freshly drawn blood: application of proteomics and metabolomics to a decades-long biological issue. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 11:75-87. [PMID: 22871816 DOI: 10.2450/2012.0164-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/05/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND It has long been known that red blood cells comprise various subpopulations, which can be separated through Percoll density gradients. MATERIALS AND METHODS In this study, we performed integrated flow cytometry, proteomic and metabolomic analyses on five distinct red blood cell subpopulations obtained by Percoll density gradient separation of freshly drawn leucocyte-depleted erythrocyte concentrates. The relation of density gradient fractions to cell age was confirmed through band 4.1a/4.1b assays. RESULTS We observed a decrease in size and increase in cell rugosity in older (denser) populations. Metabolomic analysis of fraction 5 (the oldest population) showed a decrease of glycolytic metabolism and of anti-oxidant defence-related mechanisms, resulting in decreased activation of the pentose phosphate pathway, less accumulation of NADPH and reduced glutathione and increased levels of oxidized glutathione. These observations strengthen conclusions about the role of oxidative stress in erythrocyte ageing in vivo, in analogy with results of recent in vitro studies. On the other hand, no substantial proteomic differences were observed among fractions. This result was partly explained by intrinsic technical limitations of the two-dimensional gel electrophoresis approach and the probable clearance from the bloodstream of erythrocytes with membrane protein alterations. Since this clearance effect is not present in vitro (in blood bank conditions), proteomic studies have shown substantial membrane lesions in ageing red blood cells in vitro. CONCLUSION This analysis shows that the three main red blood cell subpopulations, accounting for over 92% of the total RBC, are rather homogeneous soon after withdrawal. Major age-related alterations in vivo probably affect enzyme activities through post-translational mechanisms rather than through changes in the overall proteomic profile of RBC.
Collapse
|
17
|
The bad, the good, and the ugly about oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:163913. [PMID: 22619696 PMCID: PMC3350994 DOI: 10.1155/2012/163913] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/16/2012] [Accepted: 02/07/2012] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and cancer (e.g., leukemia) are the most devastating disorders affecting millions of people worldwide. Except for some kind of cancers, no effective and/or definitive therapeutic treatment aimed to reduce or to retard the clinic and pathologic symptoms induced by AD and PD is presently available. Therefore, it is urgently needed to understand the molecular basis of these disorders. Since oxidative stress (OS) is an important etiologic factor of the pathologic process of AD, PD, and cancer, understanding how intracellular signaling pathways respond to OS will have a significant implication in the therapy of these diseases. Here, we propose a model of minimal completeness of cell death signaling induced by OS as a mechanistic explanation of neuronal and cancer cell demise. This mechanism might provide the basis for therapeutic design strategies. Finally, we will attempt to associate PD, cancer, and OS. This paper critically analyzes the evidence that support the “oxidative stress model” in neurodegeneration and cancer.
Collapse
|
18
|
Meat quality of the longissimus lumborum muscle of Casertana and Large White pigs: Metabolomics and proteomics intertwined. J Proteomics 2011; 75:610-27. [DOI: 10.1016/j.jprot.2011.08.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/04/2011] [Accepted: 08/28/2011] [Indexed: 01/06/2023]
|