1
|
Giroux P, Vialaret J, Kindermans J, Gabelle A, Bauchet L, Hirtz C, Lehmann S, Colinge J. Modeling the Simultaneous Dynamics of Proteins in Blood Plasma and the Cerebrospinal Fluid in Human In Vivo. J Proteome Res 2024; 23:2408-2418. [PMID: 38857467 PMCID: PMC11232576 DOI: 10.1021/acs.jproteome.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/12/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
The analysis of protein dynamics or turnover in patients has the potential to reveal altered protein recycling, such as in Alzheimer's disease, and to provide informative data regarding drug efficacy or certain biological processes. The observed protein dynamics in a solid tissue or a fluid is the net result of not only protein synthesis and degradation but also transport across biological compartments. We report an accurate 3-biological compartment model able to simultaneously account for the protein dynamics observed in blood plasma and the cerebrospinal fluid (CSF) including a hidden central nervous system (CNS) compartment. We successfully applied this model to 69 proteins of a single individual displaying similar or very different dynamics in plasma and CSF. This study puts a strong emphasis on the methods and tools needed to develop this type of model. We believe that it will be useful to any researcher dealing with protein dynamics data modeling.
Collapse
Affiliation(s)
- Pierre Giroux
- Université
de Montpellier, 34090 Montpellier, France
- Institut
Régional du Cancer Montpellier (ICM), 34298 Montpellier, France
- Institut
de Recherche en Cancérologie de Montpellier (IRCM), Inserm
U1194, 34298 Montpellier, France
| | - Jérôme Vialaret
- LBPC-PPC
CHU Montpellier, INM, Inserm, 34295 Montpellier, France
| | - Jana Kindermans
- LBPC-PPC
CHU Montpellier, INM, Inserm, 34295 Montpellier, France
| | - Audrey Gabelle
- Université
de Montpellier, 34090 Montpellier, France
- CMRR
CHU Montpellier, INM, Inserm, 34295 Montpellier, France
| | - Luc Bauchet
- Université
de Montpellier, 34090 Montpellier, France
- Department
of Neurosurgery, CHU Montpellier, INM, Inserm, 34295 Montpellier, France
| | - Christophe Hirtz
- Université
de Montpellier, 34090 Montpellier, France
- LBPC-PPC
CHU Montpellier, INM, Inserm, 34295 Montpellier, France
- CMRR
CHU Montpellier, INM, Inserm, 34295 Montpellier, France
| | - Sylvain Lehmann
- Université
de Montpellier, 34090 Montpellier, France
- LBPC-PPC
CHU Montpellier, INM, Inserm, 34295 Montpellier, France
| | - Jacques Colinge
- Université
de Montpellier, 34090 Montpellier, France
- Institut
Régional du Cancer Montpellier (ICM), 34298 Montpellier, France
- Institut
de Recherche en Cancérologie de Montpellier (IRCM), Inserm
U1194, 34298 Montpellier, France
| |
Collapse
|
2
|
Tomás-Martínez S, Zwolsman EJ, Merlier F, Pabst M, Lin Y, van Loosdrecht MCM, Weissbrodt DG. Turnover of the extracellular polymeric matrix of granules performing biological phosphate removal. Appl Microbiol Biotechnol 2023; 107:1997-2009. [PMID: 36759376 PMCID: PMC10006046 DOI: 10.1007/s00253-023-12421-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Polyphosphate accumulating organisms (PAOs) are responsible for enhanced biological phosphate removal (EBPR) from wastewater, where they grow embedded in a matrix of extracellular polymeric substances (EPS). EPSs comprise a mixture of biopolymers like polysaccharides or (glyco)proteins. Despite previous studies, little is known about the dynamics of EPS in mixed cultures, and their production by PAOs and potential consumption by flanking microbes. EPSs are biodegradable and have been suggested to be a substrate for other organisms in the community. Studying EPS turnover can help elucidate their biosynthesis and biodegradation cycles. We analyzed the turnover of proteins and polysaccharides in the EPS of an enrichment culture of PAOs relative to the turnover of internal proteins. An anaerobic-aerobic sequencing batch reactor (SBR) simulating EBPR conditions was operated to enrich for PAOs. After achieving a stable culture, carbon source was switched to uniformly 13C-labeled acetate. Samples were collected at the end of each aerobic phase. EPSs were extracted by alkaline treatment. 13C enrichment in proteins and sugars (after hydrolysis of polysaccharides) in the extracted EPS were measured by mass spectrometry. The average turnover rate of sugars and proteins (0.167 and 0.192 d-1 respectively) was higher than the expected value based on the solid removal rate (0.132 d-1), and no significant difference was observed between intracellular and extracellular proteins. This indicates that EPS from the PAO enriched community is not selectively degraded by flanking populations under stable EBPR process conditions. Instead, we observed general decay of biomass, which corresponds to a value of 0.048 d-1. KEY POINTS: • Proteins showed a higher turnover rate than carbohydrates. • Turnover of EPS was similar to the turnover of intracellular proteins. • EPS is not preferentially consumed by flanking populations.
Collapse
Affiliation(s)
- Sergio Tomás-Martínez
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands.
| | - Erwin J Zwolsman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| | - Franck Merlier
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, 60319, 60203, Compiègne Cedex, CS, France
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| |
Collapse
|
3
|
Kapitanov GI, Chabot JR, Narula J, Roy M, Neubert H, Palandra J, Farrokhi V, Johnson JS, Webster R, Jones HM. A Mechanistic Site-Of-Action Model: A Tool for Informing Right Target, Right Compound, And Right Dose for Therapeutic Antagonistic Antibody Programs. FRONTIERS IN BIOINFORMATICS 2021; 1:731340. [DOI: 10.3389/fbinf.2021.731340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Quantitative modeling is increasingly utilized in the drug discovery and development process, from the initial stages of target selection, through clinical studies. The modeling can provide guidance on three major questions–is this the right target, what are the right compound properties, and what is the right dose for moving the best possible candidate forward. In this manuscript, we present a site-of-action modeling framework which we apply to monoclonal antibodies against soluble targets. We give a comprehensive overview of how we construct the model and how we parametrize it and include several examples of how to apply this framework for answering the questions postulated above. The utilities and limitations of this approach are discussed.
Collapse
|
4
|
Lehmann S, Hirtz C, Vialaret J, Ory M, Combes GG, Corre ML, Badiou S, Cristol JP, Hanon O, Cornillot E, Bauchet L, Gabelle A, Colinge J. In Vivo Large-Scale Mapping of Protein Turnover in Human Cerebrospinal Fluid. Anal Chem 2019; 91:15500-15508. [PMID: 31730336 DOI: 10.1021/acs.analchem.9b03328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The extraction of accurate physiological parameters from clinical samples provides a unique perspective to understand disease etiology and evolution, including under therapy. We introduce a new methodologic framework to map patient proteome dynamics in vivo, either proteome-wide or in large targeted panels. We applied it to ventricular cerebrospinal fluid (CSF) and could determine the turnover parameters of almost 200 proteins, whereas a handful were known previously. We covered a large number of neuron biology- and immune system-related proteins, including many biomarkers and drug targets. This first large data set unraveled a significant relationship between turnover and protein origin that relates to our ability to investigate organ physiology with protein-labeling strategy specifics. Our data constitute the first draft of CSF proteome dynamics as well as a repertoire of peptides for the community to design new analyses. The disclosed methods apply to other fluids or tissues provided sequential sample collection can be performed. We show that the proposed mathematical modeling applies to other analytical methods in the field.
Collapse
Affiliation(s)
- Sylvain Lehmann
- CHU de Montpellier , 34295 Montpellier , France.,IRMB, INSERM, Laboratoire de Biochimie Protéomique Clinique , 34295 Montpellier , France.,Université de Montpellier , 34090 Montpellier , France
| | - Christophe Hirtz
- CHU de Montpellier , 34295 Montpellier , France.,IRMB, INSERM, Laboratoire de Biochimie Protéomique Clinique , 34295 Montpellier , France.,Université de Montpellier , 34090 Montpellier , France
| | - Jérôme Vialaret
- CHU de Montpellier , 34295 Montpellier , France.,IRMB, INSERM, Laboratoire de Biochimie Protéomique Clinique , 34295 Montpellier , France
| | - Maxence Ory
- Institut de Recherche en Cancérologie de Montpellier, INSERM , 34298 Montpellier , France
| | - Guillaume Gras Combes
- Université de Montpellier , 34090 Montpellier , France.,Hôpital Gui de Chauliac, Service de Neurochirurgie , CHU de Montpellier , 34295 Montpellier , France.,INSERM U1051 , 34295 Montpellier , France
| | - Marine Le Corre
- Université de Montpellier , 34090 Montpellier , France.,Hôpital Gui de Chauliac, Service de Neurochirurgie , CHU de Montpellier , 34295 Montpellier , France.,INSERM U1051 , 34295 Montpellier , France
| | - Stéphanie Badiou
- Université de Montpellier , 34090 Montpellier , France.,Département de Biochimie et Hormonologie , CHU de Montpellier , 34295 Montpellier , France.,PhyMedExp , Université de Montpellier, INSERM, CNRS , 34090 Montpellier , France
| | - Jean-Paul Cristol
- Université de Montpellier , 34090 Montpellier , France.,Département de Biochimie et Hormonologie , CHU de Montpellier , 34295 Montpellier , France.,PhyMedExp , Université de Montpellier, INSERM, CNRS , 34090 Montpellier , France
| | - Olivier Hanon
- Service de Gériatrie , Hôpital Broca (AP-HP) , 75013 Paris , France.,Université Paris Descartes, Sorbonne Paris Cité , 75006 Paris , France
| | - Emmanuel Cornillot
- Université de Montpellier , 34090 Montpellier , France.,Institut de Recherche en Cancérologie de Montpellier, INSERM , 34298 Montpellier , France
| | - Luc Bauchet
- Université de Montpellier , 34090 Montpellier , France.,Hôpital Gui de Chauliac, Service de Neurochirurgie , CHU de Montpellier , 34295 Montpellier , France.,INSERM U1051 , 34295 Montpellier , France
| | - Audrey Gabelle
- Université de Montpellier , 34090 Montpellier , France.,Centre Mémoire de Ressources et de Recherche Languedoc-Roussillon , 34295 Montpellier , France.,Hôpital Gui de Chauliac , CHU de Montpellier , 34295 Montpellier , France
| | - Jacques Colinge
- Université de Montpellier , 34090 Montpellier , France.,Institut de Recherche en Cancérologie de Montpellier, INSERM , 34298 Montpellier , France.,Institut Régional du Cancer de Montpellier , 34298 Montpellier , France
| |
Collapse
|
5
|
Nguyen TL, Chun WK, Kim A, Kim N, Roh HJ, Lee Y, Yi M, Kim S, Park CI, Kim DH. Dietary Probiotic Effect of Lactococcus lactis WFLU12 on Low-Molecular-Weight Metabolites and Growth of Olive Flounder ( Paralichythys olivaceus). Front Microbiol 2018; 9:2059. [PMID: 30233536 PMCID: PMC6134039 DOI: 10.3389/fmicb.2018.02059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/13/2018] [Indexed: 01/21/2023] Open
Abstract
The use of probiotics is considered an attractive biocontrol method. It is effective in growth promotion in aquaculture. However, the mode of action of probiotics in fish in terms of growth promotion remains unclear. The objective of the present study was to investigate growth promotion effect of dietary administration of host-derived probiotics, Lactococcus lactis WFLU12, on olive flounder compared to control group fed with basal diet by analyzing their intestinal and serum metabolome using capillary electrophoresis mass spectrometry with time-of flight (CE-TOFMS). Results of CE-TOFMS revealed that 53 out of 200 metabolites from intestinal luminal metabolome and 5 out of 171 metabolites from serum metabolome, respectively, were present in significantly higher concentrations in the probiotic-fed group than those in the control group. Concentrations of metabolites such as citrulline, tricarboxylic acid cycle (TCA) intermediates, short chain fatty acids, vitamins, and taurine were significantly higher in the probiotic-fed group than those in the control group. The probiotic strain WFLU12 also possesses genes encoding enzymes to help produce these metabolites. Therefore, it is highly likely that these increased metabolites linked to growth promotion in olive flounder are due to supplementation of the probiotic strain. To the best of our knowledge, this is the first study to show that dietary probiotics can greatly influence metabolome in fish. Findings of the present study may reveal important implications for maximizing the efficiency of using dietary additives to optimize fish health and growth.
Collapse
Affiliation(s)
- Thanh Luan Nguyen
- Department of Veterinary Medicine, HUTECH Institute of Applied Science, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam.,Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Won-Kyong Chun
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Ahran Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Nameun Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Heyong Jin Roh
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Yoonhang Lee
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Myunggi Yi
- Department of Biomedical Engineering, College of Engineering, Pukyong National University, Busan, South Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics, Chemistry Institute for Functional Materials, Pusan National University, Busan, South Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| |
Collapse
|
6
|
Farrokhi V, Chen X, Neubert H. Protein Turnover Measurements in Human Serum by Serial Immunoaffinity LC-MS/MS. Clin Chem 2018; 64:279-288. [DOI: 10.1373/clinchem.2017.272922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022]
Abstract
Abstract
BACKGROUND
The half-life of target proteins is frequently an important parameter in mechanistic pharmacokinetic and pharmacodynamic (PK/PD) modeling of biotherapeutics. Clinical studies for accurate measurement of physiologically relevant protein turnover can reduce the uncertainty in PK/PD model-based predictions, for example, of the therapeutic dose and dosing regimen in first-in-human clinical trials.
METHODS
We used a targeted mass spectrometry work flow based on serial immunoaffinity enrichment ofmultiple human serum proteins from a [5,5,5-2H3]-L-leucine tracer pulse-chase study in healthy volunteers. To confirm the reproducibility of turnover measurements from serial immunoaffinity enrichment, multiple aliquots from the same sample set were subjected to protein turnover analysis in varying order. Tracer incorporation was measured by multiple–reaction-monitoring mass spectrometry and target turnover was calculated using a four-compartment pharmacokinetic model.
RESULTS
Five proteins of clinical or therapeutic relevance including soluble tumor necrosis factor receptor superfamily member 12A, tissue factor pathway inhibitor, soluble interleukin 1 receptor like 1, soluble mucosal addressin cell adhesion molecule 1, and muscle-specific creatine kinase were sequentially subjected to turnover analysis from the same human serum sample. Calculated half-lives ranged from 5–15 h; however, no tracer incorporation was observed for mucosal addressin cell adhesion molecule 1.
CONCLUSIONS
The utility of clinical pulse-chase studies to investigate protein turnover can be extended by serial immunoaffinity enrichment of target proteins. Turnover analysis from serum and subsequently from remaining supernatants provided analytical sensitivity and reproducibility for multiple human target proteins in the same sample set, irrespective of the order of analysis.
Collapse
Affiliation(s)
- Vahid Farrokhi
- Biomedicine Design, Worldwide Research & Development, Pfizer, Inc., Andover, MA
| | - Xiaoying Chen
- Clinical Pharmacology, Worldwide Research & Development, Pfizer, Inc., La Jolla, CA
| | - Hendrik Neubert
- Biomedicine Design, Worldwide Research & Development, Pfizer, Inc., Andover, MA
| |
Collapse
|
7
|
Dolberg AM, Reichl S. Activity of Multidrug Resistance-Associated Proteins 1-5 (MRP1-5) in the RPMI 2650 Cell Line and Explants of Human Nasal Turbinate. Mol Pharm 2017; 14:1577-1590. [PMID: 28291371 DOI: 10.1021/acs.molpharmaceut.6b00838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The profound influence of ATP-binding cassette (ABC) transporters on the disposition of numerous drugs has led to increased interest in characterizing their expression profiles in various epithelial and endothelial barriers. The present work examined the presence and functional activity of five ABC efflux proteins, i.e., MRP 1-5, in freshly isolated human nasal epithelial cells and two in vitro models based on the human RPMI 2650 cell line. To evaluate the expression patterns of MRP1, MRP2, MRP3, MRP4, and MRP5 at the mRNA and protein levels in the ex vivo model and the differently cultured RPMI 2650 cells, reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analysis, and indirect immunofluorescence staining were used. The functionality of the MRP transporters in the three models was assessed using efflux experiments and accumulation assays with the respective substrates and inhibitors. The mRNA and protein expression of all selected ABC transporters was detected in excised human nasal mucosa as well as in the corresponding cell culture models. Moreover, the functional expression of the MRP transport proteins was demonstrated in the three models for the first time. Therefore, the potential impact of multidrug resistance-associated proteins 1-5 on drug disposition after intranasal administration may be taken into consideration for future developments. The specimens of human nasal turbinate exhibited slightly lower efflux capacities of MRP1, MRP3, and MRP5 in relation to the submerged and ALI-cultured RPMI 2650 cells, but showed a promising comparability to both in vitro models concerning the activity of MRP2 and MRP4. In this regard, the different RPMI 2650 cell culture models will be able to provide useful experimental data in the preclinical phase to estimate the interaction of particular efflux transporters with drug candidates for nasal application.
Collapse
Affiliation(s)
- Anne M Dolberg
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig , Braunschweig 38106, Germany
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig , Braunschweig 38106, Germany.,Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig , Braunschweig 38106, Germany
| |
Collapse
|
8
|
McCarthy ID, Owen SF, Watt PW, Houlihan DF. Individuals Maintain Similar Rates of Protein Synthesis over Time on the Same Plane of Nutrition under Controlled Environmental Conditions. PLoS One 2016; 11:e0152239. [PMID: 27018996 PMCID: PMC4809500 DOI: 10.1371/journal.pone.0152239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/10/2016] [Indexed: 11/27/2022] Open
Abstract
Consistent individual differences in animal performance drive individual fitness under variable environmental conditions and provide the framework through which natural selection can operate. Underlying this concept is the assumption that individuals will display consistent levels of performance in fitness-related traits and interest has focused on individual variation and broad sense repeatability in a range of behavioural and physiological traits. Despite playing a central role in maintenance and growth, and with considerable inter-individual variation documented, broad sense repeatability in rates of protein synthesis has not been assessed. In this study we show for the first time that juvenile flounder Platichthys flesus reared under controlled environmental conditions on the same plane of nutrition for 46 days maintain consistent whole-animal absolute rates of protein synthesis (As). By feeding meals containing 15N-labelled protein and using a stochastic end-point model, two non-terminal measures of protein synthesis were made 32 days apart (d14 and d46). As values (mass-corrected to a standard mass of 12 g) showed 2- to 3-fold variation between individuals on d14 and d46 but individuals showed similar As values on both days with a broad sense repeatability estimate of 0.684 indicating significant consistency in physiological performance under controlled experimental conditions. The use of non-terminal methodologies in studies of animal ecophysiology to make repeat measures of physiological performance enables known individuals to be tracked across changing conditions. Adopting this approach, repeat measures of protein synthesis under controlled conditions will allow individual ontogenetic changes in protein metabolism to be assessed to better understand the ageing process and to determine individual physiological adaptive capacity, and associated energetic costs of adaptation, to global environmental change.
Collapse
Affiliation(s)
- Ian D. McCarthy
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, United Kingdom
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| | - Stewart F. Owen
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Peter W. Watt
- Sport and Exercise Science and Medicine, University of Brighton, Eastbourne, United Kingdom
| | - Dominic F. Houlihan
- School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
| |
Collapse
|
9
|
Lehmann S, Vialaret J, Combe GG, Bauchet L, Hanon O, Girard M, Gabelle A, Hirtz C. Stable Isotope Labeling by Amino acid in Vivo (SILAV): a new method to explore protein metabolism. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1917-1925. [PMID: 26411513 DOI: 10.1002/rcm.7289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Intravenous administration of stable isotope labeled amino acid ((13)C6-leucine) to humans recently made it possible to study the metabolism of specific biomarkers in cerebrospinal fluid (CSF) using targeted mass spectrometry (MS). This labeling approach could be of great interest for monitoring many leucine-containing peptides in parallel, using high-resolution MS. This will make it possible to quantify the rates of synthesis and clearance of a large range of proteins in humans with a view to obtaining new insights into protein metabolism processes and the pathophysiology of diseases such as Alzheimer's disease. METHODS Proteins from human lumbar and ventricular CSF samples collected at different times after intravenous (13)C6-leucine infusion were digested enzymatically with LysC/trypsin after being denatured, reduced and alkylated. Desalted tryptic peptides were fractionated using Strong Cation eXchange chromatography (SCX) and analyzed using nanoflow liquid chromatography (nano-LC) coupled to a QTOF Impact II (Bruker Daltonics) mass spectrometer. Data-dependent acquisition (DDA) mode was used to identify and quantify light and heavy (13)C6-leucine peptides. The ratios of (13)C6-leucine incorporation were calculated using the Skyline software program in order to determine the rates of appearance and clearance of proteins in the CSF. RESULTS After SCX fractionation and quadrupole time-of-flight (QTOF) analysis, 4528 peptides containing leucine were identified in five fractions prepared from 40 μL of CSF. Upon analyzing one of these fractions, 66 peptides (2.7%) corresponding to 61 individual proteins had significant and reproducible rate of (13)C6-leucine incorporation at various time points. The plots of the light-to-heavy peptide ratios showed the existence of proteins with different patterns of appearance and clearance in the CSF. CONCLUSIONS The Stable Isotope Labeling Amino acid in Vivo (SILAV) method presented here, which yields unprecedented information about protein metabolism in humans, constitutes a promising new approach which certainly holds great potential in the field of clinical proteomics.
Collapse
Affiliation(s)
- Sylvain Lehmann
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Jérôme Vialaret
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Guillaume Gras Combe
- Service de Neurochirurgie, CHRU de Montpellier, hôpital Gui de Chauliac, Montpellier, INSERM U 1051 and Université de Montpellier, Montpellier, France
| | - Luc Bauchet
- Service de Neurochirurgie, CHRU de Montpellier, hôpital Gui de Chauliac, Montpellier, INSERM U 1051 and Université de Montpellier, Montpellier, France
| | - Olivier Hanon
- AP-HP, Hôpital Broca, Service de Gériatrie, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marine Girard
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Audrey Gabelle
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
- Centre Mémoire de Ressources et de Recherche Languedoc-Roussillon, Département de Neurologie, CHRU de Montpellier, hôpital Gui de Chauliac, Montpellier, and Université de Montpellier, Montpellier, France
| | - Christophe Hirtz
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| |
Collapse
|
10
|
McCarthy ID, Nicholls R, Malham SK, Whiteley NM. Validation of the flooding dose technique to determine fractional rates of protein synthesis in a model bivalve species, the blue mussel (Mytilus edulis L.). Comp Biochem Physiol A Mol Integr Physiol 2015; 191:166-173. [PMID: 26497279 DOI: 10.1016/j.cbpa.2015.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
For the first time, use of the flooding dose technique using (3)H-Phenylalanine is validated for measuring whole-animal and tissue-specific rates of protein synthesis in the blue mussel Mytilus edulis (61mm shell length; 4.0g fresh body mass). Following injection, the phenylalanine-specific radioactivities in the gill, mantle and whole-animal free pools were elevated within one hour and remained elevated and stable for up to 6h following injection of (3)H-phenylalanine into the posterior adductor muscle. Incorporation of (3)H-phenylalanine into body protein was linear over time following injection and the non-significant intercepts for the regressions suggested incorporation into body protein occurred rapidly after injection. These results validate the technique for measuring rates of protein synthesis in mussels. There were no differences in the calculated rates following 1-6h incubation in gill, mantle or whole-animal and fractional rates of protein synthesis from the combined time course data were 9.5±0.8%d(-1) for the gill, 2.5±0.3%d(-1) for the mantle and 2.6±0.3%d(-1) for the whole-animal, respectively (mean values±SEM). The whole-animal absolute rate of protein synthesis was calculated as 18.9±0.6mg protein day(-1). The use of this technique in measuring one of the major components of maintenance metabolism and growth will provide a valuable and convenient tool in furthering our understanding of the protein metabolism and energetics of this keystone marine invertebrate and its ability to adjust and respond to fluctuations, such as that expected as a result of climate change.
Collapse
Affiliation(s)
- Ian D McCarthy
- School of Ocean Sciences, College of Natural Sciences, Bangor University, Askew Street, Menai Bridge, Anglesey, LL59 5AB, UK; Laboratorio de Manejo, Ecologia e Conservação Marinha, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, Cidade Universitária, 05508-120 São Paulo SP, Brazil.
| | - Ruth Nicholls
- School of Ocean Sciences, College of Natural Sciences, Bangor University, Askew Street, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Shelagh K Malham
- School of Ocean Sciences, College of Natural Sciences, Bangor University, Askew Street, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Nia M Whiteley
- School of Biological Sciences, College of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
11
|
Wang F, Cheng K, Wei X, Qin H, Chen R, Liu J, Zou H. A six-plex proteome quantification strategy reveals the dynamics of protein turnover. Sci Rep 2014; 3:1827. [PMID: 23661174 PMCID: PMC3650664 DOI: 10.1038/srep01827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/25/2013] [Indexed: 12/24/2022] Open
Abstract
MS1 full scan based quantification is one of the most popular approaches for large-scale proteome quantification. Typically only three different samples can be differentially labeled and quantified in a single experiment. Here we present a two stages stable isotope labeling strategy which allows six different protein samples (six-plex) to be reliably labeled and simultaneously quantified at MS1 level. Briefly in the first stage, isotope lysine-d0 (K0) and lysine-d4 (K4) are in vivo incorporated into different protein samples during cell culture. Then in the second stage, three of K0 and K4 labeled protein samples are digested by lysine C and in vitro labeled with light (2CH3), medium (2CD2H), and heavy (213CD3) dimethyl groups, respectively. We demonstrated that this six-plex isotope labeling strategy could successfully investigate the dynamics of protein turnover in a high throughput manner.
Collapse
Affiliation(s)
- Fangjun Wang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics. Appl Microbiol Biotechnol 2013; 97:4749-62. [DOI: 10.1007/s00253-013-4897-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/29/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
|
13
|
Claydon AJ, Beynon R. Proteome dynamics: revisiting turnover with a global perspective. Mol Cell Proteomics 2012; 11:1551-65. [PMID: 23125033 DOI: 10.1074/mcp.o112.022186] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although bulk protein turnover has been measured with the use of stable isotope labeled tracers for over half a century, it is only recently that the same approach has become applicable to the level of the proteome, permitting analysis of the turnover of many proteins instead of single proteins or an aggregated protein pool. The optimal experimental design for turnover studies is dependent on the nature of the biological system under study, which dictates the choice of precursor label, protein pool sampling strategy, and treatment of data. In this review we discuss different approaches and, in particular, explore how complexity in experimental design and data processing increases as we shift from unicellular to multicellular systems, in particular animals.
Collapse
Affiliation(s)
- Amy J Claydon
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | |
Collapse
|
14
|
Szober CM, Hauck SM, Euler KN, Fröhlich KJH, Alge-Priglinger C, Ueffing M, Deeg CA. Profound re-organization of cell surface proteome in equine retinal pigment epithelial cells in response to in vitro culturing. Int J Mol Sci 2012. [PMID: 23203049 PMCID: PMC3509565 DOI: 10.3390/ijms131114053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses’ vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies.
Collapse
Affiliation(s)
- Christoph M. Szober
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, D-80539 Munich, Germany; E-Mails: (C.M.S.); (K.N.E.); (K.J.H.F.)
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany; E-Mails: (S.M.H.); (M.U.)
| | - Kerstin N. Euler
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, D-80539 Munich, Germany; E-Mails: (C.M.S.); (K.N.E.); (K.J.H.F.)
| | - Kristina J. H. Fröhlich
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, D-80539 Munich, Germany; E-Mails: (C.M.S.); (K.N.E.); (K.J.H.F.)
| | - Claudia Alge-Priglinger
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, D-80336 Munich, Germany; E-Mail:
| | - Marius Ueffing
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany; E-Mails: (S.M.H.); (M.U.)
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Röntgenweg 11, D-72076 Tübingen, Germany
| | - Cornelia A. Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, D-80539 Munich, Germany; E-Mails: (C.M.S.); (K.N.E.); (K.J.H.F.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-89-21801630; Fax: +49-89-21802554
| |
Collapse
|
15
|
Li L, Willard B, Rachdaoui N, Kirwan JP, Sadygov RG, Stanley WC, Previs S, McCullough AJ, Kasumov T. Plasma proteome dynamics: analysis of lipoproteins and acute phase response proteins with 2H2O metabolic labeling. Mol Cell Proteomics 2012; 11:M111.014209. [PMID: 22393261 PMCID: PMC3394944 DOI: 10.1074/mcp.m111.014209] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 02/16/2012] [Indexed: 11/06/2022] Open
Abstract
Understanding the pathologies related to the regulation of protein metabolism requires methods for studying the kinetics of individual proteins. We developed a (2)H(2)O metabolic labeling technique and software for protein kinetic studies in free living organisms. This approach for proteome dynamic studies requires the measurement of total body water enrichments by GC-MS, isotopic distribution of the tryptic peptide by LC-MS/MS, and estimation of the asymptotical number of deuterium incorporated into a peptide by software. We applied this technique to measure the synthesis rates of several plasma lipoproteins and acute phase response proteins in rats. Samples were collected at different time points, and proteins were separated by a gradient gel electrophoresis. (2)H labeling of tryptic peptides was analyzed by ion trap tandem mass spectrometry (LTQ MS/MS) for measurement of the fractional synthesis rates of plasma proteins. The high sensitivity of LTQ MS in zoom scan mode in combination with (2)H label amplification in proteolytic peptides allows detection of the changes in plasma protein synthesis related to animal nutritional status. Our results demonstrate that fasting has divergent effects on the rate of synthesis of plasma proteins, increasing synthesis of ApoB 100 but decreasing formation of albumin and fibrinogen. We conclude that this technique can effectively measure the synthesis of plasma proteins and can be used to study the regulation of protein homeostasis under physiological and pathological conditions.
Collapse
Affiliation(s)
- Ling Li
- From the Departments of ‡Research Core Services and
| | | | - Nadia Rachdaoui
- §School of Medicine, Case Western Reserve University, Cleveland, Ohio 44195
| | - John P. Kirwan
- ¶Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Rovshan G. Sadygov
- the ‖Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, and
| | - William C. Stanley
- the **Division of Cardiology, Department of Medicine, University of Maryland Medical Center, Baltimore, Maryland 21201-1595
| | - Stephen Previs
- §School of Medicine, Case Western Reserve University, Cleveland, Ohio 44195
| | | | - Takhar Kasumov
- ¶Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
16
|
Abstract
High-throughput identification of proteins with the latest generation of hybrid high-resolution mass spectrometers is opening new perspectives in microbiology. I present, here, an overview of tandem mass spectrometry technology and bioinformatics for shotgun proteomics that make 2D-PAGE approaches obsolete. Non-labelling quantitative approaches have become more popular than labelling techniques on most proteomic platforms because they are easier to carry out while their quantitative outcome is rather robust. Parameters for recording mass spectrometry data, however, need to be chosen carefully and statistics to assess the confidence of the results should not be neglected. Interestingly, next-generation sequencing methodologies make any microbial model quickly amenable to proteomics, leading to the documentation of a wide range of organisms from diverse environments. Some recent discoveries made using microbial proteomics have challenged some biological dogma, such as: (i) initiation of the translation does not occur predominantly from ATG codons in some microorganisms, (ii) non-canonical initiation codons are used to regulate the production of specific but important proteins and (iii) a gene may code for multiple polypeptide species, heterogeneous in terms of sequences. Microbial diversity and microbial physiology can now be revisited by means of exhaustive comparative proteomic surveys where thousands of proteins are detected and quantified. Proteogenomics, consisting of better annotating of genomes with the help of proteomic evidence, is paving the way for integrated multi-omic approaches in microbiology. Finally, meta-proteomic tools and approaches are emerging for tackling the high complexity of the microbial world as a whole, opening new perspectives for assessing how microbial communities function.
Collapse
Affiliation(s)
- Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, F-30207 Bagnols-sur-Cèze, France.
| |
Collapse
|
17
|
Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 2012; 4:4/2/a008342. [PMID: 22300977 DOI: 10.1101/cshperspect.a008342] [Citation(s) in RCA: 755] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genesis of skeletal muscle during embryonic development and postnatal life serves as a paradigm for stem and progenitor cell maintenance, lineage specification, and terminal differentiation. An elaborate interplay of extrinsic and intrinsic regulatory mechanisms controls myogenesis at all stages of development. Many aspects of adult myogenesis resemble or reiterate embryonic morphogenetic episodes, and related signaling mechanisms control the genetic networks that determine cell fate during these processes. An integrative view of all aspects of myogenesis is imperative for a comprehensive understanding of muscle formation. This article provides a holistic overview of the different stages and modes of myogenesis with an emphasis on the underlying signals, molecular switches, and genetic networks.
Collapse
Affiliation(s)
- C Florian Bentzinger
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
18
|
Martin SF, Munagapati VS, Salvo-Chirnside E, Kerr LE, Le Bihan T. Proteome turnover in the green alga Ostreococcus tauri by time course 15N metabolic labeling mass spectrometry. J Proteome Res 2011; 11:476-86. [PMID: 22077659 DOI: 10.1021/pr2009302] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein synthesis and degradation determine the cellular levels of proteins, and their control hence enables organisms to respond to environmental change. Experimentally, these are little known proteome parameters; however, recently, SILAC-based mass spectrometry studies have begun to quantify turnover in the proteomes of cell lines, yeast, and animals. Here, we present a proteome-scale method to quantify turnover and calculate synthesis and degradation rate constants of individual proteins in autotrophic organisms such as algae and plants. The workflow is based on the automated analysis of partial stable isotope incorporation with (15)N. We applied it in a study of the unicellular pico-alga Ostreococcus tauri and observed high relative turnover in chloroplast-encoded ATPases (0.42-0.58% h(-1)), core photosystem II proteins (0.34-0.51% h(-1)), and RbcL (0.47% h(-1)), while nuclear-encoded RbcS2 is more stable (0.23% h(-1)). Mitochondrial targeted ATPases (0.14-0.16% h(-1)), photosystem antennae (0.09-0.14% h(-1)), and histones (0.07-0.1% h(-1)) were comparatively stable. The calculation of degradation and synthesis rate constants k(deg) and k(syn) confirms RbcL as the bulk contributor to overall protein turnover. This study performed over 144 h of incorporation reveals dynamics of protein complex subunits as well as isoforms targeted to different organelles.
Collapse
Affiliation(s)
- Sarah F Martin
- Centre for Systems Biology at Edinburgh, University of Edinburgh, CH Waddington Building, The Kings Buildings, Mayfield Road, EH9 3JD, United Kingdom
| | | | | | | | | |
Collapse
|