1
|
Sahoo MP, Lavy T, Cohen N, Sahu I, Kleifeld O. Activity-Guided Proteomic Profiling of Proteasomes Uncovers a Variety of Active (and Inactive) Proteasome Species. Mol Cell Proteomics 2024; 23:100728. [PMID: 38296025 PMCID: PMC10907802 DOI: 10.1016/j.mcpro.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Proteasomes are multisubunit, multicatalytic protein complexes present in eukaryotic cells that degrade misfolded, damaged, or unstructured proteins. In this study, we used an activity-guided proteomic methodology based on a fluorogenic peptide substrate to characterize the composition of proteasome complexes in WT yeast and the changes these complexes undergo upon the deletion of Pre9 (Δα3) or of Sem1 (ΔSem1). A comparison of whole-cell proteomic analysis to activity-guided proteasome profiling indicates that the amounts of proteasomal proteins and proteasome interacting proteins in the assembled active proteasomes differ significantly from their total amounts in the cell as a whole. Using this activity-guided profiling approach, we characterized the changes in the abundance of subunits of various active proteasome species in different strains, quantified the relative abundance of active proteasomes across these strains, and charted the overall distribution of different proteasome species within each strain. The distributions obtained by our mass spectrometry-based quantification were markedly higher for some proteasome species than those obtained by activity-based quantification alone, suggesting that the activity of some of these species is impaired. The impaired activity appeared mostly among 20SBlm10 proteasome species which account for 20% of the active proteasomes in WT. To identify the factors behind this impaired activity, we mapped and quantified known proteasome-interacting proteins. Our results suggested that some of the reduced activity might be due to the association of the proteasome inhibitor Fub1. Additionally, we provide novel evidence for the presence of nonmature and therefore inactive proteasomal protease subunits β2 and β5 in the fully assembled proteasomes.
Collapse
Affiliation(s)
| | - Tali Lavy
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Noam Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel.
| |
Collapse
|
2
|
Proteasome complexes experience profound structural and functional rearrangements throughout mammalian spermatogenesis. Proc Natl Acad Sci U S A 2022; 119:e2116826119. [PMID: 35377789 PMCID: PMC9169623 DOI: 10.1073/pnas.2116826119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The proteasome is responsible for the homeostasis of intracellular proteins. Here, we describe structural and functional aspects of a poorly characterized proteasome subtype found exclusively in germ cells. The spermatoproteasome was recently shown to be essential for spermatogenesis, a process requiring intense proteolysis. It differs from the constitutive proteasome by only one subunit, α4s, a subunit that replaces its α4 ubiquitous counterpart. In this work, we show how the shift from α4 to α4s regulates proteasome composition, dynamics, interactome, and activity. We reveal a regulation process more complex than previously suggested, which provides the basis for structural and functional studies of the spermatoproteasome. During spermatogenesis, spermatogonia undergo a series of mitotic and meiotic divisions on their path to spermatozoa. To achieve this, a succession of processes requiring high proteolytic activity are in part orchestrated by the proteasome. The spermatoproteasome (s20S) is specific to the developing gametes, in which the gamete-specific α4s subunit replaces the α4 isoform found in the constitutive proteasome (c20S). Although the s20S is conserved across species and was shown to be crucial for germ cell development, its mechanism, function, and structure remain incompletely characterized. Here, we used advanced mass spectrometry (MS) methods to map the composition of proteasome complexes and their interactomes throughout spermatogenesis. We observed that the s20S becomes highly activated as germ cells enter meiosis, mainly through a particularly extensive 19S activation and, to a lesser extent, PA200 binding. Additionally, the proteasome population shifts from c20S (98%) to s20S (>82 to 92%) during differentiation, presumably due to the shift from α4 to α4s expression. We demonstrated that s20S, but not c20S, interacts with components of the meiotic synaptonemal complex, where it may localize via association with the PI31 adaptor protein. In vitro, s20S preferentially binds to 19S and displays higher trypsin- and chymotrypsin-like activities, both with and without PA200 activation. Moreover, using MS methods to monitor protein dynamics, we identified significant differences in domain flexibility between α4 and α4s. We propose that these differences induced by α4s incorporation result in significant changes in the way the s20S interacts with its partners and dictate its role in germ cell differentiation.
Collapse
|
3
|
Zapata-Carmona H, Barón L, Kong M, Morales P. Protein Kinase A (PRKA) Activity Is Regulated by the Proteasome at the Onset of Human Sperm Capacitation. Cells 2021; 10:cells10123501. [PMID: 34944009 PMCID: PMC8700002 DOI: 10.3390/cells10123501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
The proteasome increases its activity at the onset of sperm capacitation due to the action of the SACY/PRKACA pathway; this increase is required for capacitation to progress. PRKA activity also increases and remains high during capacitation. However, intracellular levels of cAMP decrease in this process. Our goal was to evaluate the role of the proteasome in regulating PRKA activity once capacitation has started. Viable human sperm were incubated in the presence and absence of epoxomicin or with 0.1% DMSO. The activity of PRKA; the phosphorylation pattern of PRKA substrates (pPRKAs); and the expression of PRKAR1, PRKAR2, and AKAP3 were evaluated by Western blot. The localization of pPRKAs, PRKAR1, PRKAR2, and AKAP3 was evaluated by immunofluorescence. Treatment with epoxomicin changed the localization and phosphorylation pattern and decreased the percentage of pPRKAs-positive sperm. PRKA activity significantly increased at 1 min of capacitation and remained high throughout the incubation. However, epoxomicin treatment significantly decreased PRKA activity after 30 min. In addition, PRKAR1 and AKAP3 were degraded by the proteasome but with a different temporal kinetic. Our results suggest that PRKAR1 is the target of PRKA regulation by the proteasome.
Collapse
Affiliation(s)
- Héctor Zapata-Carmona
- Laboratorio de Biología de la Reproducción, Facultad de Ciencias de la Salud, Departamento Biomédico, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (L.B.); (M.K.)
| | - Lina Barón
- Laboratorio de Biología de la Reproducción, Facultad de Ciencias de la Salud, Departamento Biomédico, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (L.B.); (M.K.)
| | - Milene Kong
- Laboratorio de Biología de la Reproducción, Facultad de Ciencias de la Salud, Departamento Biomédico, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (L.B.); (M.K.)
| | - Patricio Morales
- Laboratorio de Biología de la Reproducción, Facultad de Ciencias de la Salud, Departamento Biomédico, Universidad de Antofagasta, Antofagasta 1240000, Chile; (H.Z.-C.); (L.B.); (M.K.)
- Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile
- Correspondence:
| |
Collapse
|
4
|
Lesne J, Locard-Paulet M, Parra J, Zivković D, Menneteau T, Bousquet MP, Burlet-Schiltz O, Marcoux J. Conformational maps of human 20S proteasomes reveal PA28- and immuno-dependent inter-ring crosstalks. Nat Commun 2020; 11:6140. [PMID: 33262340 PMCID: PMC7708635 DOI: 10.1038/s41467-020-19934-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/06/2020] [Indexed: 01/17/2023] Open
Abstract
Hydrogen-Deuterium eXchange coupled to Mass Spectrometry (HDX-MS) is now common practice in structural biology. However, it is most of the time applied to rather small oligomeric complexes. Here, we report on the use of HDX-MS to investigate conformational differences between the human standard 20S (std20S) and immuno 20S (i20s) proteasomes alone or in complex with PA28αβ or PA28γ activators. Their solvent accessibility is analyzed through a dedicated bioinformatic pipeline including stringent statistical analysis and 3D visualization. These data confirm the existence of allosteric differences between the std20S and i20S at the surface of the α-ring triggered from inside the catalytic β-ring. Additionally, binding of the PA28 regulators to the 20S proteasomes modify solvent accessibility due to conformational changes of the β-rings. This work is not only a proof-of-concept that HDX-MS can be used to get structural insights on large multi-protein complexes in solution, it also demonstrates that the binding of the std20S or i20S subtype to any of its PA28 activator triggers allosteric changes that are specific to this 20S/PA28 pair.
Collapse
Affiliation(s)
- Jean Lesne
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Biologie Structurale, CNRS, Université de Montpellier, INSERM, 34090, Montpellier, France
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Julien Parra
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dušan Zivković
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thomas Menneteau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
5
|
Li D, Wang J. Ribosome heterogeneity in stem cells and development. J Cell Biol 2020; 219:e202001108. [PMID: 32330234 PMCID: PMC7265316 DOI: 10.1083/jcb.202001108] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
Translation control is critical to regulate protein expression. By directly adjusting protein levels, cells can quickly respond to dynamic transitions during stem cell differentiation and embryonic development. Ribosomes are multisubunit cellular assemblies that mediate translation. Previously seen as invariant machines with the same composition of components in all conditions, recent studies indicate that ribosomes are heterogeneous and that different ribosome types can preferentially translate specific subsets of mRNAs. Such heterogeneity and specialized translation functions are very important in stem cells and development, as they allow cells to quickly respond to stimuli through direct changes of protein abundance. In this review, we discuss ribosome heterogeneity that arises from multiple features of rRNAs, including rRNA variants and rRNA modifications, and ribosomal proteins, including their stoichiometry, compositions, paralogues, and posttranslational modifications. We also discuss alterations of ribosome-associated proteins (RAPs), with a particular focus on their consequent specialized translational control in stem cells and development.
Collapse
Affiliation(s)
- Dan Li
- Department of Cell, Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
6
|
Schipper-Krom S, Sanz AS, van Bodegraven EJ, Speijer D, Florea BI, Ovaa H, Reits EA. Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Front Mol Biosci 2019; 6:56. [PMID: 31482094 PMCID: PMC6710370 DOI: 10.3389/fmolb.2019.00056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.
Collapse
Affiliation(s)
- Sabine Schipper-Krom
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alicia Sanz Sanz
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emma J. van Bodegraven
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Lesne J, Bousquet MP, Marcoux J, Locard-Paulet M. Top-Down and Intact Protein Mass Spectrometry Data Visualization for Proteoform Analysis Using VisioProt-MS. Bioinform Biol Insights 2019; 13:1177932219868223. [PMID: 31452600 PMCID: PMC6698994 DOI: 10.1177/1177932219868223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/04/2022] Open
Abstract
The rise of intact protein analysis by mass spectrometry (MS) was accompanied by
an increasing need for flexible tools allowing data visualization and analysis.
These include inspection of the deconvoluted molecular weights of the
proteoforms eluted alongside liquid chromatography (LC) through their
representation in three-dimensional (3D) liquid chromatography coupled to mass
spectrometry (LC-MS) maps (plots of deconvoluted molecular weights, retention
times, and intensity of the MS signal). With this aim, we developed a free and
open-source web application named VisioProt-MS (https://masstools.ipbs.fr/mstools/visioprot-ms/). VisioProt-MS
is highly compatible with many algorithms and software developed by the
community to integrate and deconvolute top-down and intact protein MS data. Its
dynamic and user-friendly features greatly facilitate analysis through several
graphical representations dedicated to MS and tandem mass spectrometry (MS/MS)
analysis of proteoforms in complex samples. Here, we will illustrate the
importance of LC-MS map visualization to optimize top-down acquisition/search
parameters and analyze intact protein MS data. We will go through the main
features of VisioProt-MS using the human proteasomal 20S core particle as a
user-case.
Collapse
Affiliation(s)
- Jean Lesne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie Locard-Paulet
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Modulation of the cell cycle regulating transcription factor E2F1 pathway by the proteasome following amino acid starvation. Biochem Biophys Res Commun 2019; 513:721-725. [DOI: 10.1016/j.bbrc.2019.04.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
|
9
|
Fabre B, Korona D, Lees JG, Lazar I, Livneh I, Brunet M, Orengo CA, Russell S, Lilley KS. Comparison of Drosophila melanogaster Embryo and Adult Proteome by SWATH-MS Reveals Differential Regulation of Protein Synthesis, Degradation Machinery, and Metabolism Modules. J Proteome Res 2019; 18:2525-2534. [DOI: 10.1021/acs.jproteome.9b00076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bertrand Fabre
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, U.K
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge CB2 1GA, U.K
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, U.K
- Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel
| | - Dagmara Korona
- Department of Genetics, University of Cambridge, University of Cambridge, Cambridge CB2 3EH, U.K
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Jonathan G. Lees
- Institute of Structural and Molecular Biology, University College London, London WC1E 7HX, United Kingdom
| | - Ikrame Lazar
- Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel
| | - Ido Livneh
- Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel
| | - Manon Brunet
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, U.K
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge CB2 1GA, U.K
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Christine A. Orengo
- Institute of Structural and Molecular Biology, University College London, London WC1E 7HX, United Kingdom
| | - Steven Russell
- Department of Genetics, University of Cambridge, University of Cambridge, Cambridge CB2 3EH, U.K
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, U.K
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge CB2 1GA, U.K
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, U.K
| |
Collapse
|
10
|
Menneteau T, Fabre B, Garrigues L, Stella A, Zivkovic D, Roux-Dalvai F, Mouton-Barbosa E, Beau M, Renoud ML, Amalric F, Sensébé L, Gonzalez-de-Peredo A, Ader I, Burlet-Schiltz O, Bousquet MP. Mass Spectrometry-based Absolute Quantification of 20S Proteasome Status for Controlled Ex-vivo Expansion of Human Adipose-derived Mesenchymal Stromal/Stem Cells. Mol Cell Proteomics 2019; 18:744-759. [PMID: 30700495 PMCID: PMC6442357 DOI: 10.1074/mcp.ra118.000958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/21/2019] [Indexed: 01/18/2023] Open
Abstract
The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects.
Collapse
Affiliation(s)
- Thomas Menneteau
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France;; §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Bertrand Fabre
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Luc Garrigues
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Alexandre Stella
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Dusan Zivkovic
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Florence Roux-Dalvai
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Mathilde Beau
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Marie-Laure Renoud
- §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - François Amalric
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Luc Sensébé
- §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Anne Gonzalez-de-Peredo
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Isabelle Ader
- §STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France;.
| | - Marie-Pierre Bousquet
- From the ‡Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France;.
| |
Collapse
|
11
|
Abstract
Autophagy and the ubiquitin-proteasome system are the two major quality control pathways responsible for cellular homeostasis. As such, they provide protection against age-associated changes and a plethora of human diseases. Ubiquitination is utilized as a degradation signal by both systems, albeit in different ways, to mark cargoes for proteasomal and lysosomal degradation. Both systems intersect and communicate at multiple points to coordinate their actions in proteostasis and organelle homeostasis. This review summarizes molecular details of how proteasome and autophagy pathways are functionally interconnected in cells and indicates common principles and nodes of communication that can be therapeutically exploited.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University, 60598 Frankfurt am Main, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Mammalian proteasome subtypes: Their diversity in structure and function. Arch Biochem Biophys 2015; 591:132-40. [PMID: 26724758 DOI: 10.1016/j.abb.2015.12.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
Abstract
The 20S proteasome is a multicatalytic proteinase catalysing the degradation of the majority of intracellular proteins. Thereby it is involved in almost all basic cellular processes, which is facilitated by its association with various regulator complexes so that it appears in different disguises like 26S proteasome, hybrid-proteasome and others. The 20S proteasome has a cylindrical structure built up by four stacked rings composed of α- and β-subunits. Since the three active site-containing β-subunits can all or in part be replaced by immuno-subunits, three main subpopulations exist, namely standard-, immuno- and intermediate-proteasomes. Due to posttranslational modifications or/and genetic variations all α- and β-subunits occur in multiple iso- or proteoforms. This leads to the fact that each of the three subpopulations is composed of a variety of 20S proteasome subtypes. This review summarizes the knowledge of proteasome subtypes in mammalian cells and tissues and their possible biological and medical relevancy.
Collapse
|
13
|
Gersch M, Hackl M, Dubiella C, Dobrinevski A, Groll M, Sieber S. A Mass Spectrometry Platform for a Streamlined Investigation of Proteasome Integrity, Posttranslational Modifications, and Inhibitor Binding. ACTA ACUST UNITED AC 2015; 22:404-11. [DOI: 10.1016/j.chembiol.2015.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 10/23/2022]
|
14
|
Fabre B, Lambour T, Garrigues L, Amalric F, Vigneron N, Menneteau T, Stella A, Monsarrat B, Van den Eynde B, Burlet-Schiltz O, Bousquet-Dubouch MP. Deciphering preferential interactions within supramolecular protein complexes: the proteasome case. Mol Syst Biol 2015; 11:771. [PMID: 25561571 PMCID: PMC4332148 DOI: 10.15252/msb.20145497] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In eukaryotic cells, intracellular protein breakdown is mainly performed by the ubiquitin-proteasome system. Proteasomes are supramolecular protein complexes formed by the association of multiple sub-complexes and interacting proteins. Therefore, they exhibit a very high heterogeneity whose function is still not well understood. Here, using a newly developed method based on the combination of affinity purification and protein correlation profiling associated with high-resolution mass spectrometry, we comprehensively characterized proteasome heterogeneity and identified previously unknown preferential associations within proteasome sub-complexes. In particular, we showed for the first time that the two main proteasome subtypes, standard proteasome and immunoproteasome, interact with a different subset of important regulators. This trend was observed in very diverse human cell types and was confirmed by changing the relative proportions of both 20S proteasome forms using interferon-γ. The new method developed here constitutes an innovative and powerful strategy that could be broadly applied for unraveling the dynamic and heterogeneous nature of other biologically relevant supramolecular protein complexes.
Collapse
Affiliation(s)
- Bertrand Fabre
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Thomas Lambour
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Luc Garrigues
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - François Amalric
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels, Belgium WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium de Duve Institute Université catholique de Louvain, Brussels, Belgium
| | - Thomas Menneteau
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Alexandre Stella
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Bernard Monsarrat
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium de Duve Institute Université catholique de Louvain, Brussels, Belgium
| | - Odile Burlet-Schiltz
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Marie-Pierre Bousquet-Dubouch
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| |
Collapse
|
15
|
Kaake RM, Kao A, Yu C, Huang L. Characterizing the dynamics of proteasome complexes by proteomics approaches. Antioxid Redox Signal 2014; 21:2444-56. [PMID: 24423446 PMCID: PMC4241863 DOI: 10.1089/ars.2013.5815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE The proteasome is the degradation machine of the ubiquitin-proteasome system, which is critical in controlling many essential biological processes. Aberrant regulation of proteasome-dependent protein degradation can lead to various human diseases, and general proteasome inhibitors have shown efficacy for cancer treatments. Though clinically effective, current proteasome inhibitors have detrimental side effects and, thus, better therapeutic strategies targeting proteasomes are needed. Therefore, a comprehensive characterization of proteasome complexes will provide the molecular details that are essential for developing new and improved drugs. RECENT ADVANCES New mass spectrometry (MS)-based proteomics approaches have been developed to study protein interaction networks and structural topologies of proteasome complexes. The results have helped define the dynamic proteomes of proteasome complexes, thus providing new insights into the mechanisms underlying proteasome function and regulation. CRITICAL ISSUES The proteasome exists as heterogeneous populations in tissues/cells, and its proteome is highly dynamic and complex. In addition, proteasome complexes are regulated by various mechanisms under different physiological conditions. Consequently, complete proteomic profiling of proteasome complexes remains a major challenge for the field. FUTURE DIRECTIONS We expect that proteomic methodologies enabling full characterization of proteasome complexes will continue to evolve. Further advances in MS instrumentation and protein separation techniques will be needed to facilitate the detailed proteomic analysis of low-abundance components and subpopulations of proteasome complexes. The results will help us understand proteasome biology as well as provide new therapeutic targets for disease diagnostics and treatment.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Physiology and Biophysics, University of California , Irvine, Irvine, California
| | | | | | | |
Collapse
|
16
|
Fabre B, Lambour T, Bouyssié D, Menneteau T, Monsarrat B, Burlet-Schiltz O, Bousquet-Dubouch MP. Comparison of label-free quantification methods for the determination of protein complexes subunits stoichiometry. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Fabre B, Lambour T, Garrigues L, Ducoux-Petit M, Amalric F, Monsarrat B, Burlet-Schiltz O, Bousquet-Dubouch MP. Label-Free Quantitative Proteomics Reveals the Dynamics of Proteasome Complexes Composition and Stoichiometry in a Wide Range of Human Cell Lines. J Proteome Res 2014; 13:3027-37. [DOI: 10.1021/pr500193k] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bertrand Fabre
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Thomas Lambour
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Luc Garrigues
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Manuelle Ducoux-Petit
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - François Amalric
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Bernard Monsarrat
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Odile Burlet-Schiltz
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Marie-Pierre Bousquet-Dubouch
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| |
Collapse
|
18
|
Lakshmanan R, Wolff JJ, Alvarado R, Loo JA. Top-down protein identification of proteasome proteins with nanoLC-FT-ICR-MS employing data-independent fragmentation methods. Proteomics 2014; 14:1271-82. [PMID: 24478249 DOI: 10.1002/pmic.201300339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 11/10/2022]
Abstract
A comparison of different data-independent fragmentation methods combined with LC coupled to high-resolution FT-ICR-MS/MS is presented for top-down MS of protein mixtures. Proteins composing the 20S and 19S proteasome complexes and their PTMs were identified using a 15 T FT-ICR mass spectrometer. The data-independent fragmentation modes with LC timescales allowed for higher duty-cycle measurements that better suit online LC-FT-ICR-MS. Protein top-down dissociation was effected by funnel-skimmer collisionally activated dissociation (FS-CAD) and CASI (continuous accumulation of selected ions)-CAD. The N-termini for 9 of the 14 20S proteasome proteins were found to be modified, and the α3 protein was found to be phosphorylated; these results are consistent with previous reports. Mass-measurement accuracy with the LC-FT-ICR system for the 20- to 30-kDa 20S proteasome proteins was 1 ppm. The intact mass of the 100-kDa Rpn1 subunit from the 19S proteasome complex regulatory particle was measured with a deviation of 17 ppm. The CASI-CAD technique is a complementary tool for intact-protein fragmentation and is an effective addition to the growing inventory of dissociation methods that are compatible with online protein separation coupled to FT-ICR-MS.
Collapse
Affiliation(s)
- Rajeswari Lakshmanan
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
19
|
Park JE, Wu Y, Carmony KC, Miller Z, Sharma LK, Lee DM, Kim DY, Lee W, Kim KB. A FRET-based approach for identification of proteasome catalytic subunit composition. MOLECULAR BIOSYSTEMS 2014; 10:196-200. [PMID: 24301521 PMCID: PMC3898201 DOI: 10.1039/c3mb70471h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mammalian cells have two main types of proteasomes, the constitutive proteasome and the immunoproteasome, each containing a distinct set of three catalytic subunits. Recently, additional proteasome subtypes containing a non-standard mixture of catalytic subunits have gained increasing attention, especially due to their presence in cancer settings. However, practical methods for identifying proteasome subtypes have been lacking. Here, we report the development of the first fluorescence resonance energy transfer (FRET)-based strategy that can be utilized to identify different proteasome subtypes present within cells. We have developed FRET donor- and acceptor-probes that are based on previously reported peptide epoxyketones and selectively target individual proteasome catalytic subunits. Using the purified proteasome and cancer cell lysates, we demonstrate the feasibility of a FRET-based approach for determining the catalytic subunit composition of individual 20S proteasome subtypes. Ultimately, this approach may be utilized to study the functions of individual proteasome subtypes in cells.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA 40536-0596.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Backendorf C, Noteborn MHM. Apoptin Towards Safe and Efficient Anticancer Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:39-59. [DOI: 10.1007/978-1-4471-6458-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Sparks A, Dayal S, Das J, Robertson P, Menendez S, Saville MK. The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a. Oncogene 2013; 33:4685-96. [PMID: 24121268 PMCID: PMC4051618 DOI: 10.1038/onc.2013.413] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/10/2013] [Accepted: 08/09/2013] [Indexed: 01/24/2023]
Abstract
p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate.
Collapse
Affiliation(s)
- A Sparks
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - S Dayal
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - J Das
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - P Robertson
- Division of Molecular Medicine, College of Life Sciences, University of Dundee, Dundee, UK
| | - S Menendez
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - M K Saville
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
22
|
Fabre B, Lambour T, Delobel J, Amalric F, Monsarrat B, Burlet-Schiltz O, Bousquet-Dubouch MP. Subcellular distribution and dynamics of active proteasome complexes unraveled by a workflow combining in vivo complex cross-linking and quantitative proteomics. Mol Cell Proteomics 2012; 12:687-99. [PMID: 23242550 DOI: 10.1074/mcp.m112.023317] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Through protein degradation, the proteasome plays fundamental roles in different cell compartments. Although the composition of the 20S catalytic core particle (CP) has been well documented, little is known about the composition and dynamics of the regulatory complexes that play a crucial role in its activity, or about how they associate with the CP in different cell compartments, different cell lines, and in response to external stimuli. Because of difficulties performing acceptable cell fractionation while maintaining complex integrity, it has been challenging to characterize proteasome complexes by proteomic approaches. Here, we report an integrated protocol, combining a cross-linking procedure on intact cells with cell fractionation, proteasome immuno-purification, and robust label-free quantitative proteomic analysis by mass spectrometry to determine the distribution and dynamics of cellular proteasome complexes in leukemic cells. Activity profiles of proteasomes were correlated fully with the composition of protein complexes and stoichiometry. Moreover, our results suggest that, at the subcellular level, proteasome function is regulated by dynamic interactions between the 20S CP and its regulatory proteins-which modulate proteasome activity, stability, localization, or substrate uptake-rather than by profound changes in 20S CP composition. Proteasome plasticity was observed both in the 20S CP and in its network of interactions following IFNγ stimulation. The fractionation protocol also revealed specific proteolytic activities and structural features of low-abundance microsomal proteasomes from U937 and KG1a cells. These could be linked to their important roles in the endoplasmic reticulum associated degradation pathway in leukemic cells.
Collapse
Affiliation(s)
- Bertrand Fabre
- CNRS/Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Pailleux F, Beaudry F. Internal standard strategies for relative and absolute quantitation of peptides in biological matrices by liquid chromatography tandem mass spectrometry. Biomed Chromatogr 2012; 26:881-91. [DOI: 10.1002/bmc.2757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/23/2012] [Indexed: 01/08/2023]
Affiliation(s)
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de biomédecine vétérinaire, Faculté de médecine vétérinaire; Université de Montréal, Saint-Hyacinthe; Québec; Canada
| |
Collapse
|
24
|
Lanz HL, Suijker J, Noteborn MH, Backendorf C. Proteasomal insensitivity of apoptin in tumor cells. Biochem Biophys Res Commun 2012; 422:169-73. [DOI: 10.1016/j.bbrc.2012.04.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 12/01/2022]
|