1
|
Hussain S, Mursal M, Verma G, Hasan SM, Khan MF. Targeting oncogenic kinases: Insights on FDA approved tyrosine kinase inhibitors. Eur J Pharmacol 2024; 970:176484. [PMID: 38467235 DOI: 10.1016/j.ejphar.2024.176484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Protein kinases play pivotal roles in various biological functions, influencing cell differentiation, promoting survival, and regulating the cell cycle. The disruption of protein kinase activity is intricately linked to pathways in tumor development. This manuscript explores the transformative impact of protein kinase inhibitors on cancer therapy, particularly their efficacy in cases driven by targeted mutations. Focusing on key tyrosine kinase inhibitors (TKIs) like Bcr-Abl, Epidermal Growth Factor Receptor (EGFR), and Vascular Endothelial Growth Factor Receptor (VEGFR), it targets critical kinase families in cancer progression. Clinical trial details of these TKIs offer insights into their therapeutic potentials. Learning from FDA-approved kinase inhibitors, the review dissects trends in kinase drug development since imatinib's paradigm-shifting approval in 2001. TKIs have evolved into pivotal drugs, extending beyond oncology. Ongoing clinical trials explore novel kinase targets, revealing the vast potential within the human kinome. The manuscript provides a detailed analysis of advancements until 2022, discussing the roles of specific oncogenic protein kinases in cancer development and carcinogenesis. Our exploration on PubMed for relevant and significant TKIs undergoing pre-FDA approval phase III clinical trials enriches the discussion with valuable findings. While kinase inhibitors exhibit lower toxicity than traditional chemotherapy in cancer treatment, challenges like resistance and side effects emphasize the necessity of understanding resistance mechanisms, prompting the development of novel inhibitors like osimertinib targeting specific mutant proteins. The review advocates thorough research on effective combination therapies, highlighting the future development of more selective RTKIs to optimize patient-specific cancer treatment and reduce adverse events.
Collapse
Affiliation(s)
- Sahil Hussain
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohd Mursal
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Garima Verma
- RWE Specialist, HealthPlix Technologies, Bengaluru, Karnataka 560103, India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohemmed Faraz Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
2
|
Kreidieh F, McQuade J. Novel insights into cardiovascular toxicity of cancer targeted and immune therapies: Beyond ischemia with non-obstructive coronary arteries (INOCA). AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 40:100374. [PMID: 38510501 PMCID: PMC10946000 DOI: 10.1016/j.ahjo.2024.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Novel immune and targeted therapies approved over the past 2 decades have resulted in dramatic improvements in cancer-specific outcomes for many cancer patients. However, many of these agents can induce cardiovascular toxicity in a subset of patients. The field of cardio-oncology was established based on observations that anti-neoplastic chemotherapies and mantle radiation can lead to premature cardiomyopathy in cancer survivors. While conventional chemotherapy, targeted therapy, and immune therapies can all result in cardiovascular adverse events, the mechanisms, timing, and incidence of these events are inherently different. Many of these effects converge upon the coronary microvasculature to involve, through endocardial endothelial cells, a more direct effect through close proximity to cardiomyocyte with cellular communication and signaling pathways. In this review, we will provide an overview of emerging paradigms in the field of Cardio-Oncology, particularly the role of the coronary microvasculature in mediating cardiovascular toxicity of important cancer targeted and immune therapies. As the number of cancer patients treated with novel immune and targeted therapies grows exponentially and subsequently the number of long-term cancer survivors dramatically increases, it is critical that cardiologists and cardiology researchers recognize the unique potential cardiovascular toxicities of these agents.
Collapse
Affiliation(s)
- Firas Kreidieh
- Instructor of Clinical Medicine- Division of Hematology-Oncology; Associate Director- Internal Medicine Residency Program, American University of Beirut, Beirut, Lebanon
| | - Jennifer McQuade
- Associate Professor and Physician Scientist in Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
3
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
4
|
Zhong Z, Xu M, Tan J. Identification of an Oxidative Stress-Related LncRNA Signature for Predicting Prognosis and Chemotherapy in Patients With Hepatocellular Carcinoma. Pathol Oncol Res 2022; 28:1610670. [PMID: 36277962 PMCID: PMC9579291 DOI: 10.3389/pore.2022.1610670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 12/16/2022]
Abstract
Background: Oxidative stress plays a critical role in oncogenesis and tumor progression. However, the prognostic role of oxidative stress-related lncRNA in hepatocellular carcinomas (HCC) has not been fully explored. Methods: We used the gene expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify oxidative stress-related differentially expressed lncRNAs (DElncRNAs) by pearson correlation analysis. A four-oxidative stress-related DElncRNA signature was constructed by LASSO regression and Cox regression analyses. The predictive signature was further validated by Kaplan-Meier (K-M) survival analysis, receiver operating characteristic (ROC) curves, nomogram and calibration plots, and principal component analysis (PCA). Single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between the signature and immune status. Finally, the correlation between the signature and chemotherapeutic response of HCC patients was analyzed. Results: In our study, the four-DElncRNA signature was not only proved to be a robust independent prognostic factor for overall survival (OS) prediction, but also played a crucial role in the regulation of progression and chemotherapeutic response of HCC. ssGSEA showed that the signature was correlated with the infiltration level of immune cells. HCC patients in high-risk group were more sensitive to the conventional chemotherapeutic drugs including Sorafenib, lapatinib, Nilotinib, Gefitinib, Erlotinib and Dasatinib, which pave the way for targeting DElncRNA-associated treatments for HCC patients. Conclusion: Our study has originated a prognostic signature for HCC based on oxidative stress-related DElncRNAs, deepened the understanding of the biological role of four key DElncRNAs in HCC and laid a theoretical foundation for the choice of chemotherapy.
Collapse
Affiliation(s)
- Zixuan Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
- Department of Experimental Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| |
Collapse
|
5
|
Jiang L, Zeng Y, Ai L, Yan H, Yang X, Luo P, Yang B, Xu Z, He Q. Decreased HMGB1 expression contributed to cutaneous toxicity caused by lapatinib. Biochem Pharmacol 2022; 201:115105. [PMID: 35617997 DOI: 10.1016/j.bcp.2022.115105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
The application of lapatinib, a widely used dual inhibitor of human epidermal growth factor receptor 1 (EGFR/ERBB1) and 2 (HER2/ERBB2), has been seriously limited due to cutaneous toxicity. However, the specific mechanism of lapatinib-induced cutaneous toxicity has not been clarified, leading to the lack of an effective strategy to improve clinical safety. Here, we found that lapatinib could induce mitochondrial dysfunction, lead to DNA damage and ultimately cause apoptosis of keratinocytes. In addition, we found that lapatinib could induce an aberrant immune response and promote the release of inflammatory factors in vitro and in vivo. Mechanistically, downregulated expression of the DNA repair protein HMGB1 played a critical role in these toxic reaction processes. Overexpression of HMGB1 inhibited keratinocyte apoptosis and inflammatory reactions. Therefore, restoring HMGB1 expression might be an effective remedy against lapatinib-induced cutaneous toxicity. Finally, we found that saikosaponin A could significantly rescue the reduced HMGB1 transcription, which could alleviate lapatinib-induced DNA damage, inhibit keratinocyte apoptosis and further prevent the toxicity of lapatinib in mice. Collectively, our study might bring new hope to clinicians and tumor patients and shed new light on the prevention of cutaneous adverse drug reactions induced by EGFR inhibitors.
Collapse
Affiliation(s)
- Liyu Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China; Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, P.R. China
| | - Yan Zeng
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Leilei Ai
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P.R. China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, Zhejiang, P.R. China; Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, P.R. China.
| |
Collapse
|
6
|
Zhong Y, Peng F, Luo X, Wang X, Yang B, Tang X, Xu Z, Ren L, Wang Z, Peng C, Wang N. A pyroptosis-related gene signature for prognostic and immunological evaluation in breast cancer. Front Oncol 2022; 12:964508. [PMID: 36936274 PMCID: PMC10020702 DOI: 10.3389/fonc.2022.964508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Pyroptosis exerts an undesirable impact on the clinical outcome of breast cancer. Since any single gene is insufficient to be an appropriate marker for pyroptosis, our aim is to develop a pyroptosis-related gene (PRG) signature to predict the survival status and immunological landscape for breast cancer patients. Methods The information of breast cancer patients was retrieved from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify the gene expressions of this signature in breast cancer. Its prognostic value was evaluated by univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, receiver operating characteristics (ROCs), univariate/multivariate analysis, and nomogram. Analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to explore its potential biological function in breast cancer. The potential correlation between this signature and tumor immunity was revealed based on single sample gene set enrichment analysis (ssGSEA), ESTIMATE and CIBERSORT algorithms. Results A PRG signature containing GSDMC, GZMB, IL18, and TP63 was created in a TCGA training cohort and validated in two validation GEO cohorts GSE58812 and GSE37751. Compared with a human mammary epithelial cell line MCF-10A, the expression levels of GSDMC, GZMB and IL18 were upregulated, while TP63 was found with lower expression level in breast cancer cells SK-BR-3, BT-549, MCF-7, and MDA-MB-231 using RT-qPCR assay. Based on univariate and multivariate Cox models, ROC curve, nomogram as well as calibration curve, it was revealed that this signature with high-risk score could independently predict poor clinical outcomes in breast cancer. Enrichment analyses demonstrated that the involved mechanism was tightly linked to immune-related processes. SsGSEA, ESTIMATE and CIBERSORT algorithms further pointed out that the established model might exert an impact on immune cell abundance, immune cell types and immune-checkpoint markers. Furthermore, individuals with breast cancer responded differently to these therapeutic agents based on this signature. Conclusions Our data suggested that this PRG signature with high risk was tightly associated with impaired immune function, possibly resulting in an unfavorable outcome for breast cancer patients.
Collapse
Affiliation(s)
- Yue Zhong
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fu Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xiaoru Luo
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bowen Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinglinzi Tang
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zheng Xu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Linlin Ren
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- *Correspondence: Zhiyu Wang, ; Cheng Peng, ; Neng Wang,
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Zhiyu Wang, ; Cheng Peng, ; Neng Wang,
| | - Neng Wang
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- *Correspondence: Zhiyu Wang, ; Cheng Peng, ; Neng Wang,
| |
Collapse
|
7
|
ICAM-1 Targeted Drug Combination Nanoparticles Enhanced Gemcitabine-Paclitaxel Exposure and Breast Cancer Suppression in Mouse Models. Pharmaceutics 2021; 14:pharmaceutics14010089. [PMID: 35056985 PMCID: PMC8779833 DOI: 10.3390/pharmaceutics14010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the availability of molecularly targeted treatments such as antibodies and small molecules for human epidermal growth factor receptor 2 (HER2), hormone receptor (HR), and programmed death-ligand 1 (PD-L1), limited treatment options are available for advanced metastatic breast cancer (MBC), which constitutes ~90% mortality. Many of these monotherapies often lead to drug resistance. Novel MBC-targeted drug-combination therapeutic approaches that may reduce resistance are urgently needed. We investigated intercellular adhesion molecule-1 (ICAM-1), which is abundant in MBC, as a potential target to co-localize two current drug combinations, gemcitabine (G) and paclitaxel (T), assembled in a novel drug-combination nanoparticle (GT DcNP) form. With an ICAM-1-binding peptide (referred to as LFA1-P) coated on GT DcNPs, we evaluated the role of the LFA1-P density in breast cancer cell localization in vitro and in vivo. We found that 1–2% LFA1-P peptide incorporated on GT DcNPs provided optimal cancer cell binding in vitro with ~4× enhancement compared to non-peptide GT DcNPs. The in vivo probing of GT DcNPs labeled with a near-infrared marker, indocyanine green, in mice by bio-imaging and G and T analyses indicated LFA1-P enhanced drug and GT DcNP localization in breast cancer cells. The target/healthy tissue (lung/gastrointestinal (GI)) ratio of particles increased by ~60× compared to the non-ligand control. Collectively, these data indicated that LFA1 on GT DcNPs may provide ICAM-1-targeted G and T drug combination delivery to advancing MBC cells found in lung tissues. As ICAM-1 is generally expressed even in breast cancers that are triple-negative phenotypes, which are unresponsive to inhibitors of nuclear receptors or HER2/estrogen receptor (ER) agents, ICAM-1-targeted LFA1-P-coated GT DcNPs should be considered for clinical development to improve therapeutic outcomes of MBCs.
Collapse
|
8
|
Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers (Basel) 2021; 13:cancers13174287. [PMID: 34503097 PMCID: PMC8428369 DOI: 10.3390/cancers13174287] [Citation(s) in RCA: 608] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Breast cancer is the most common cancer among women. It is estimated that 2.3 million new cases of BC are diagnosed globally each year. Based on mRNA gene expression levels, BC can be divided into molecular subtypes that provide insights into new treatment strategies and patient stratifications that impact the management of BC patients. This review addresses the overview on the BC epidemiology, risk factors, classification with an emphasis on molecular types, prognostic biomarkers, as well as possible treatment modalities. Abstract Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide with more than 2 million new cases in 2020. Its incidence and death rates have increased over the last three decades due to the change in risk factor profiles, better cancer registration, and cancer detection. The number of risk factors of BC is significant and includes both the modifiable factors and non-modifiable factors. Currently, about 80% of patients with BC are individuals aged >50. Survival depends on both stage and molecular subtype. Invasive BCs comprise wide spectrum tumors that show a variation concerning their clinical presentation, behavior, and morphology. Based on mRNA gene expression levels, BC can be divided into molecular subtypes (Luminal A, Luminal B, HER2-enriched, and basal-like). The molecular subtypes provide insights into new treatment strategies and patient stratifications that impact the management of BC patients. The eighth edition of TNM classification outlines a new staging system for BC that, in addition to anatomical features, acknowledges biological factors. Treatment of breast cancer is complex and involves a combination of different modalities including surgery, radiotherapy, chemotherapy, hormonal therapy, or biological therapies delivered in diverse sequences.
Collapse
Affiliation(s)
- Sergiusz Łukasiewicz
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.C.); (A.F.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.C.); (A.F.)
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Robert Sitarz
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence:
| | - Andrzej Stanisławek
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
- Department of Oncology, Chair of Oncology and Environmental Health, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
9
|
Gray M, Meehan J, Martínez-Pérez C, Kay C, Turnbull AK, Morrison LR, Pang LY, Argyle D. Naturally-Occurring Canine Mammary Tumors as a Translational Model for Human Breast Cancer. Front Oncol 2020; 10:617. [PMID: 32411603 PMCID: PMC7198768 DOI: 10.3389/fonc.2020.00617] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/03/2020] [Indexed: 01/03/2023] Open
Abstract
Despite extensive research over many decades, human breast cancer remains a major worldwide health concern. Advances in pre-clinical and clinical research has led to significant improvements in recent years in how we manage breast cancer patients. Although survival rates of patients suffering from localized disease has improved significantly, the prognosis for patients diagnosed with metastatic disease remains poor with 5-year survival rates at only 25%. In vitro studies using immortalized cell lines and in vivo mouse models, typically using xenografted cell lines or patient derived material, are commonly used to study breast cancer. Although these techniques have undoubtedly increased our molecular understanding of breast cancer, these research models have significant limitations and have contributed to the high attrition rates seen in cancer drug discovery. It is estimated that only 3-6% of drugs that show promise in these pre-clinical models will reach clinical use. Models that can reproduce human breast cancer more accurately are needed if significant advances are to be achieved in improving cancer drug research, treatment outcomes, and prognosis. Canine mammary tumors are a naturally-occurring heterogenous group of cancers that have several features in common with human breast cancer. These similarities include etiology, signaling pathway activation and histological classification. In this review article we discuss the use of naturally-occurring canine mammary tumors as a translational animal model for human breast cancer research.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Cancer Research UK Edinburgh Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Cancer Research UK Edinburgh Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Cancer Research UK Edinburgh Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Arran K Turnbull
- Translational Oncology Research Group, Cancer Research UK Edinburgh Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Linda R Morrison
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Design, synthesis and biological evaluation of novel substituted purine isosters as EGFR kinase inhibitors, with promising pharmacokinetic profile and in vivo efficacy. Eur J Med Chem 2019; 176:393-409. [DOI: 10.1016/j.ejmech.2019.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 01/07/2023]
|
11
|
Novel promising 4-anilinoquinazoline-based derivatives as multi-target RTKs inhibitors: Design, molecular docking, synthesis, and antitumor activities in vitro and vivo. Bioorg Med Chem 2019; 27:114938. [PMID: 31488358 DOI: 10.1016/j.bmc.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 11/23/2022]
Abstract
4-Anilinoquinazoline derivatives function as tyrosine kinase inhibitors (TKIs). Novel TKIs are needed for cancer mutations and drug-resistant cells. We designed and synthesized 4-anilinoquinazoline derivatives with substitutions at quinazoline positions 6, 7 and 4 using a binding model with multi-target receptor tyrosine kinases, and assessed their antitumor activity against five human tumor cell lines (HepG2, A549, MCF-7, DU145, SH-SY5Y). The majority of the compounds inhibited the proliferation of all the cancer cell types, with some compounds displaying selective inhibition. Compounds 21, 25, 27, and 37 displayed IC50 values of 7.588, 8.619, 6.936, and 8.516 μM, respectively, for A549 cells, which were much lower than that of Gefitinib (14.803 μM). Compound 32 displayed an IC50 value of 2.756 μM for DU145 cells. The representative compound 40 had unexceptionable broad-spectrum inhibition for all cancer cell types, and demonstrate inhibition of vascular endothelial growth factor receptor 2 (VEGFR-2), platelet-derived growth factor receptor beta (PDGFR-β), and epidermal growth factor receptor (EGFR) with IC50 values of 46.4, 673.6 and 384.8 nM, respectively, which were similar to those of Sorafenib for VEGFR-2 and PDGFR-β (140.6 and 582.7 nM, respectively). Molecular docking results supported the molecular level assay results. Data for production of reactive oxygen species and assessment of matrix metalloproteinase corroborated the strong anti-proliferative effect of compound 40. The compound also displayed robust antitumor efficacy and relativity lower toxicity in a xenograft model. These attributes were similar to those of Sorafenib. Compound 40 drug warrants further study as a candidate.
Collapse
|
12
|
Jin H, Dan HG, Rao GW. Research progress in quinazoline derivatives as multi-target tyrosine kinase inhibitors. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2017-0066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), are involved in multiple human tumors. Therefore, RTKs are attractive targets for various antitumor strategies. Two classes of tyrosine kinase antagonists were applied in the clinic for monoclonal antibodies and small-molecule tyrosine kinase inhibitors. A well-studied class of small-molecule inhibitors is represented by 4-anilinoquinazolines, exemplified by gefitinib and erlotinib as mono-targeted EGFR inhibitors, which were approved for the treatment of non-small-cell lung cancer. Mono-target drugs may result in drug resistance and the innovation of multi-target drugs has grown up to be an active field. Recent advances in research on antitumor bioactivity of 4-anilino(or phenoxy)quinazoline derivatives with multiple targets are reviewed in this paper. At the same time, synthetic methods of quinazolines were introduced from the point of building the ring skeleton and based on the types of reaction.
Collapse
|
13
|
Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer 2018; 17:34. [PMID: 29455658 PMCID: PMC5817867 DOI: 10.1186/s12943-018-0797-x] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a multifactorial disease and driven by aberrant regulation of cell signaling pathways due to the acquisition of genetic and epigenetic changes. An array of growth factors and their receptors is involved in cancer development and metastasis. Receptor Tyrosine Kinases (RTKs) constitute a class of receptors that play important role in cancer progression. RTKs are cell surface receptors with specialized structural and biological features which respond to environmental cues by initiating appropriate signaling cascades in tumor cells. RTKs are known to regulate various downstream signaling pathways such as MAPK, PI3K/Akt and JAK/STAT. These pathways have a pivotal role in the regulation of cancer stemness, angiogenesis and metastasis. These pathways are also imperative for a reciprocal interaction of tumor and stromal cells. Multi-faceted role of RTKs renders them amenable to therapy in breast cancer. However, structural mutations, gene amplification and alternate pathway activation pose challenges to anti-RTK therapy.
Collapse
Affiliation(s)
- Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Sumit Das
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Vinoth Prasanna Gunasekaran
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Amit Singh Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77054, USA
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, SP Pune University Campus, Pune, 411007, India.
| |
Collapse
|
14
|
De Tursi M, Carella C. Lapatinib in Second-Line Treatment for Metastatic Breast Cancer: Rapid Clinical Benefit and Long-Term Response. TUMORI JOURNAL 2018. [DOI: 10.1177/030089161309900615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lapatinib, an oral dual ErbB1/2 tyrosine kinase inhibitor, is effective in the treatment of metastatic breast cancer that has progressed after trastuzumab-based first-line chemotherapy. Moreover, lapatinib has been found to be effective in patients with metastatic brain involvement. Here we report the case of a 55-year-old woman with metastatic breast cancer and brain metastasis who achieved rapid symptom improvement and long-term disease control.
Collapse
Affiliation(s)
- Michele De Tursi
- Cattedra di Oncologia Medica, Università G D'Annunzio, Chieti, Italy
| | - Consiglia Carella
- Cattedra di Oncologia Medica, Università G D'Annunzio, Chieti, Italy
| |
Collapse
|
15
|
Yu X, Wang T, Lou Y, Li Y. Combination ofIn SilicoAnalysis andIn VitroAssay to Investigate Drug Response to Human Epidermal Growth Factor Receptor 2 Mutations in Lung Cancer. Mol Inform 2015; 35:25-35. [DOI: 10.1002/minf.201500030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/23/2015] [Indexed: 11/07/2022]
|
16
|
Zhang L, Zhang S, Ruan SB, Zhang QY, He Q, Gao HL. Lapatinib-incorporated lipoprotein-like nanoparticles: preparation and a proposed breast cancer-targeting mechanism. Acta Pharmacol Sin 2014; 35:846-52. [PMID: 24902791 DOI: 10.1038/aps.2014.26] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/21/2014] [Indexed: 12/15/2022] Open
Abstract
AIM Lapatinib is a dual inhibitor of EGFR and human epidermal growth factor receptor 2 (HER2), and used to treat advanced breast cancer. To overcome its poor water solubility, we constructed lapatinib-incorporated lipoprotein-like nanoparticles (LTNPs), and evaluated the particle characteristics and possible anti-breast cancer mechanisms. METHODS LTNPs (lapatinib bound to albumin as a core, and egg yolk lecithin forming a lipid corona) were prepared. The particle characteristics were investigated using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The uptake and subcellular localization of LTNPs, as well as the effects of LTNPs on cell cycle were examined in BT-474 human breast cancer cells in vitro. Mice bearing BT-474 subcutaneous xenograft were intravenously injected with coumarin-6 loaded LTNPs (30 mg/kg) to study the targeting mechanisms in vivo. RESULTS The LTNPs particles were generally spherical but flexible under TEM and AFM, and approximately 62.1 nm in size with a zeta potential of 22.80 mV. In BT-474 cells, uptake of LTNPs was mediated by endosomes through energy-dependent endocytosis involving clathrin-dependent pinocytosis and macropinocytosis, and they could effectively escape from endosomes to the cytoplasm. Treatment of BT-474 cells with LTNPs (20 μg/mL) induced a significant cell arrest at G0/G1 phase compared with the same concentration of lapatinib suspension. In mice bearing BT-474 xenograft, intravenously injected LTNPs was found to target and accumulate in tumors, and colocalized with HER2 and SPRAC (secreted protein, acidic and rich in cysteine). CONCLUSION LTNPs can be taken up into breast cancer cells through specific pathways in vitro, and targeted to breast cancer xenograft in vivo via enhanced permeability and retention effect and SPARC.
Collapse
|
17
|
Parma J, Pavlick A, Schiff R, Osborne CK, Chang JC, Rimawi M, Trivedi MV. Development of acneiform rash does not predict response to lapatinib treatment in patients with breast cancer. Pharmacotherapy 2013; 33:1126-9. [PMID: 23744830 DOI: 10.1002/phar.1308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
STUDY OBJECTIVE To determine if development of acneiform rash is a predictor of objective response rate with lapatinib. DESIGN Subanalysis of data from a prospective, phase II study. SETTING Academic breast care clinic. PATIENTS Forty-nine treatment-naïve patients with human epidermal growth factor receptor-2 (HER2)-positive locally advanced breast cancer, who were treated with neoadjuvant lapatinib monotherapy for 6 weeks; 47 patients were included in the final analysis. MEASUREMENTS AND MAIN RESULTS Of the 49 patients enrolled, 33 (67%) developed a rash of any type, and 26 (55%) had acneiform rash. Of the 26 evaluable patients with acneiform rash (55%), 19 (73%) responded to lapatinib and 7 (27%) did not. Of the 21 evaluable patients without acneiform rash, 11 (67%) responded to treatment and 7 (33%) did not. Thus, no association was found between the occurrence of acneiform rash and response to lapatinib monotherapy. CONCLUSION This study does not support the development of the acneiform rash as a predictor of clinical efficacy of lapatinib in the treatment of breast cancer.
Collapse
Affiliation(s)
- Jennifer Parma
- University of Houston College of Pharmacy, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
18
|
Gao H, Cao S, Chen C, Cao S, Yang Z, Pang Z, Xi Z, Pan S, Zhang Q, Jiang X. Incorporation of lapatinib into lipoprotein-like nanoparticles with enhanced water solubility and anti-tumor effect in breast cancer. Nanomedicine (Lond) 2013; 8:1429-42. [PMID: 23451915 DOI: 10.2217/nnm.12.180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM The poor water solubility of many active compounds is a serious deterrent to their use as commercial drugs. Lapatinib is a dual inhibitor of the EGF receptor and EGF receptor 2 approved by the US FDA to treat advanced breast cancer. This study prepares lapatinib-incorporated lipoprotein-like nanoparticles (LTNPs) to enhance the water solubility and elevate the anti-tumor effect of lapatinib. MATERIALS & METHODS Bovine albumin was used to bind with lapatinib, and egg yolk lecithin was used to stabilize the conjugation of bovine albumin and lapatinib. The characteristics of LTNPs were evaluated by several experiments. Cell uptake and toxicity were performed on BT-474 cells. In vivo anti-tumor effect was performed on BT-474 xenograft-bearing mice. RESULTS LTNPs contained a lipid corona and a core of lapatinib and albumin. LTNPs could be effectively taken up by BT-474 cells and induced apoptosis. An in vivo study demonstrated that LTNPs could passively distribute into a tumor via the enhanced permeability and retention effect and induce anti-tumor activity in breast cancer. CONCLUSION The authors present a convenient nanoformulation with improved anti-tumor effect, which is a promising candidate for clinical trials.
Collapse
Affiliation(s)
- Huile Gao
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, 826 Zhangheng Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang F, Drabier R. IPAD: the Integrated Pathway Analysis Database for Systematic Enrichment Analysis. BMC Bioinformatics 2012; 13 Suppl 15:S7. [PMID: 23046449 PMCID: PMC3439721 DOI: 10.1186/1471-2105-13-s15-s7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Next-Generation Sequencing (NGS) technologies and Genome-Wide Association Studies (GWAS) generate millions of reads and hundreds of datasets, and there is an urgent need for a better way to accurately interpret and distill such large amounts of data. Extensive pathway and network analysis allow for the discovery of highly significant pathways from a set of disease vs. healthy samples in the NGS and GWAS. Knowledge of activation of these processes will lead to elucidation of the complex biological pathways affected by drug treatment, to patient stratification studies of new and existing drug treatments, and to understanding the underlying anti-cancer drug effects. There are approximately 141 biological human pathway resources as of Jan 2012 according to the Pathguide database. However, most currently available resources do not contain disease, drug or organ specificity information such as disease-pathway, drug-pathway, and organ-pathway associations. Systematically integrating pathway, disease, drug and organ specificity together becomes increasingly crucial for understanding the interrelationships between signaling, metabolic and regulatory pathway, drug action, disease susceptibility, and organ specificity from high-throughput omics data (genomics, transcriptomics, proteomics and metabolomics). Results We designed the Integrated Pathway Analysis Database for Systematic Enrichment Analysis (IPAD, http://bioinfo.hsc.unt.edu/ipad), defining inter-association between pathway, disease, drug and organ specificity, based on six criteria: 1) comprehensive pathway coverage; 2) gene/protein to pathway/disease/drug/organ association; 3) inter-association between pathway, disease, drug, and organ; 4) multiple and quantitative measurement of enrichment and inter-association; 5) assessment of enrichment and inter-association analysis with the context of the existing biological knowledge and a "gold standard" constructed from reputable and reliable sources; and 6) cross-linking of multiple available data sources. IPAD is a comprehensive database covering about 22,498 genes, 25,469 proteins, 1956 pathways, 6704 diseases, 5615 drugs, and 52 organs integrated from databases including the BioCarta, KEGG, NCI-Nature curated, Reactome, CTD, PharmGKB, DrugBank, PharmGKB, and HOMER. The database has a web-based user interface that allows users to perform enrichment analysis from genes/proteins/molecules and inter-association analysis from a pathway, disease, drug, and organ. Moreover, the quality of the database was validated with the context of the existing biological knowledge and a "gold standard" constructed from reputable and reliable sources. Two case studies were also presented to demonstrate: 1) self-validation of enrichment analysis and inter-association analysis on brain-specific markers, and 2) identification of previously undiscovered components by the enrichment analysis from a prostate cancer study. Conclusions IPAD is a new resource for analyzing, identifying, and validating pathway, disease, drug, organ specificity and their inter-associations. The statistical method we developed for enrichment and similarity measurement and the two criteria we described for setting the threshold parameters can be extended to other enrichment applications. Enriched pathways, diseases, drugs, organs and their inter-associations can be searched, displayed, and downloaded from our online user interface. The current IPAD database can help users address a wide range of biological pathway related, disease susceptibility related, drug target related and organ specificity related questions in human disease studies.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Academic and Institutional Resources and Technology, University of North Texas Health Science Center, Fort Worth, USA
| | | |
Collapse
|
20
|
Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M, Morelli D, Villa A, Della Mina P, Menard S, Filipazzi P, Rivoltini L, Tagliabue E, Pupa SM. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 2012; 227:658-67. [PMID: 21465472 DOI: 10.1002/jcp.22773] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are endosome-derived nanovesicles actively released into the extracellular environment and biological fluids, both under physiological and pathological conditions, by different cell types. We characterized exosomes constitutively secreted by HER2-overexpressing breast carcinoma cell lines and analyzed in vitro and in vivo their potential role in interfering with the therapeutic activity of the humanized antibody Trastuzumab and the dual tyrosine kinase inhibitor (TKI) Lapatinib anti-HER2 biodrugs. We show that exosomes released by the HER2-overexpressing tumor cell lines SKBR3 and BT474 express a full-length HER2 molecule that is also activated, although to a lesser extent than in the originating cells. Release of these exosomes was significantly modulated by the growth factors EGF and heregulin, two of the known HER2 receptor-activating ligands and naturally present in the surrounding tumor microenvironment. Exosomes secreted either in HER2-positive tumor cell-conditioned supernatants or in breast cancer patients' serum bound to Trastuzumab. Functional assays revealed that both xenogeneic and autologous HER2-positive nanovesicles, but not HER2-negative ones, inhibited Trastuzumab activity on SKBR3 cell proliferation. By contrast, Lapatinib activity on SKBR3 cell proliferation was unaffected by the presence of autologous exosomes. Together, these findings point to the role of HER2-positive exosomes in modulating sensitivity to Trastuzumab, and, consequently, to HER2-driven tumor aggressiveness.
Collapse
Affiliation(s)
- Valentina Ciravolo
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sun YL, Patel A, Kumar P, Chen ZS. Role of ABC transporters in cancer chemotherapy. CHINESE JOURNAL OF CANCER 2012; 31:51-7. [PMID: 22257384 PMCID: PMC3777472 DOI: 10.5732/cjc.011.10466] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multidrug resistance (MDR) in cancer cells can significantly attenuate the response to chemotherapy and increase the likelihood of mortality. The major mechanism involved in conferring MDR is the overexpression of ATP-binding cassette (ABC) transporters, which can increase efflux of drugs from cancer cells, thereby decreasing intracellular drug concentration. Modulators of ABC transporters have the potential to augment the efficacy of anticancer drugs. This editorial highlights some major findings related to ABC transporters and current strategies to overcome MDR.
Collapse
Affiliation(s)
- Yue-Li Sun
- Department of Pharmaceutical Sciences, St. John's University, Jamaica, NY 11439, USA
| | | | | | | |
Collapse
|
22
|
He M, Wei MJ. Reversing multidrug resistance by tyrosine kinase inhibitors. CHINESE JOURNAL OF CANCER 2012; 31:126-33. [PMID: 22237041 PMCID: PMC3777484 DOI: 10.5732/cjc.011.10315] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recently, a large number of tyrosine kinase inhibitors (TKIs) have been developed as anticancer agents. These TKIs can specifically and selectively inhibit tumor cell growth and metastasis by targeting various tyrosine kinases and thereby interfering with cellular signaling pathways. The therapeutic potential of TKIs has been hindered by multidrug resistance (MDR), which is commonly caused by overexpression of ATP-binding cassette (ABC) membrane transporters. Interestingly, some TKIs have also been found to reverse MDR by directly inhibiting the function of ABC transporters and enhancing the efficacy of conventional chemotherapeutic drugs. In this review, we discuss ABC transporter-mediated MDR to TKIs and MDR reversal by TKIs.
Collapse
Affiliation(s)
- Miao He
- Department of Pharmacology, Pharmaceutical College of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | | |
Collapse
|
23
|
Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, Lluch A, Staroslawska E, de la Haba-Rodriguez J, Im SA, Pedrini JL, Poirier B, Morandi P, Semiglazov V, Srimuninnimit V, Bianchi G, Szado T, Ratnayake J, Ross G, Valagussa P. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 2011; 13:25-32. [PMID: 22153890 DOI: 10.1016/s1470-2045(11)70336-9] [Citation(s) in RCA: 1603] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Studies with pertuzumab, a novel anti-HER2 antibody, show improved efficacy when combined with the established HER2-directed antibody trastuzumab in breast cancer therapy. We investigated the combination of pertuzumab or trastuzumab, or both, with docetaxel and the combination of pertuzumab and trastuzumab without chemotherapy in the neoadjuvant setting. METHODS In this multicentre, open-label, phase 2 study, treatment-naive women with HER2-positive breast cancer were randomly assigned (1:1:1:1) centrally and stratified by operable, locally advanced, and inflammatory breast cancer, and by hormone receptor expression to receive four neoadjuvant cycles of: trastuzumab (8 mg/kg loading dose, followed by 6 mg/kg every 3 weeks) plus docetaxel (75 mg/m(2), escalating, if tolerated, to 100 mg/m(2) every 3 weeks; group A) or pertuzumab (loading dose 840 mg, followed by 420 mg every 3 weeks) and trastuzumab plus docetaxel (group B) or pertuzumab and trastuzumab (group C) or pertuzumab plus docetaxel (group D). The primary endpoint, examined in the intention-to-treat population, was pathological complete response in the breast. Neither patients nor investigators were masked to treatment. This study is registered with ClinicalTrials.gov, number NCT00545688. FINDINGS Of 417 eligible patients, 107 were randomly assigned to group A, 107 to group B, 107 to group C, and 96 to group D. Patients given pertuzumab and trastuzumab plus docetaxel (group B) had a significantly improved pathological complete response rate (49 of 107 patients; 45·8% [95% CI 36·1-55·7]) compared with those given trastuzumab plus docetaxel (group A; 31 of 107; 29·0% [20·6-38·5]; p=0·0141). 23 of 96 (24·0% [15·8-33·7]) women given pertuzumab plus docetaxel (group D) had a pathological complete response, as did 18 of 107 (16·8% [10·3-25·3]) given pertuzumab and trastuzumab (group C). The most common adverse events of grade 3 or higher were neutropenia (61 of 107 women in group A, 48 of 107 in group B, one of 108 in group C, and 52 of 94 in group D), febrile neutropenia (eight, nine, none, and seven, respectively), and leucopenia (13, five, none, and seven, respectively). The number of serious adverse events was similar in groups A, B, and D (15-20 serious adverse events per group in 10-17% of patients) but lower in group C (four serious adverse events in 4% of patients). INTERPRETATION Patients given pertuzumab and trastuzumab plus docetaxel (group B) had a significantly improved pathological complete response rate compared with those given trastuzumab plus docetaxel, without substantial differences in tolerability. Pertuzumab and trastuzumab without chemotherapy eradicated tumours in a proportion of women and showed a favourable safety profile. These findings justify further exploration in adjuvant trials and support the neoadjuvant approach for accelerating drug assessment in early breast cancer. FUNDING F Hoffmann-La Roche.
Collapse
Affiliation(s)
- Luca Gianni
- Oncologia Medica, San Raffaele Cancer Centre, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Synergistic antitumor activity of lapatinib and retinoids on a novel subtype of breast cancer with coamplification of ERBB2 and RARA. Oncogene 2011; 31:3431-43. [DOI: 10.1038/onc.2011.506] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Spano JP, Falandry C, Chaibi P, Freyer G. Current targeted therapies in breast cancer: clinical applications in the elderly woman. Oncologist 2011; 16:1144-53. [PMID: 21705664 DOI: 10.1634/theoncologist.2011-0028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The incidence of breast cancer is two to three times higher in women aged ≥65 years than in the whole population, whereas their mortality rate is threefold to fourfold higher. Targeted therapies allow significantly longer disease-free survival times. Nevertheless, in an elderly population, these treatments need to be prescribed with caution. This paper reviews the treatments of breast cancer in the elderly, and the issues of targeted therapies and their toxicities. Patients with human epidermal growth factor receptor (HER)-2(+) breast cancer benefit from trastuzumab; although cardiotoxic effects are observed in <5% of patients when given alone, they affect ~25% of patients when combined with anthracyclines. Bevacizumab leads to a longer progression-free survival time and lower risk for progression in patients with metastatic breast cancer when added to paclitaxel or docetaxel. Although generally well tolerated, it is associated with a higher risk for arterial thromboembolism and hypertension. Lapatinib is approved for the treatment of advanced or metastatic breast cancer in patients not responding to trastuzumab, combined with capecitabine chemotherapy. The most frequent side effects concern the gastrointestinal system and dermatologic symptoms. The life expectancy of breast cancer patients should be taken into account to determine the appropriateness of treatments. The quality of life of elderly cancer patients must be assessed with an appropriate tool. Older patients exhibit greater vulnerability, suggesting identification and exclusion of patients at high cardiac risk. Future recommendations for the treatment of elderly women with breast cancer should include a multidisciplinary approach and a global geriatric assessment before treatment with anti-HER-2 therapy or bevacizumab.
Collapse
Affiliation(s)
- Jean-Philippe Spano
- Groupe Hospitalier de la Pitié-Salpétrière, Département d’Oncologie Médicale du Prof. David Khayat, Paris, France.
| | | | | | | |
Collapse
|