1
|
Qin H, Yang J, Jiang H, Huang S, Fu Q, Zhu B, Liu M, Chen G. Effect of 460 nm blue light PBM on human MeWo melanoma cells. JOURNAL OF BIOPHOTONICS 2024; 17:e202400071. [PMID: 38937982 DOI: 10.1002/jbio.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024]
Abstract
Photobiomodulation (PBM) using 460 nm blue light has been shown to have an inhibitory effect on skin cancer cells. In this study, we used a continuous LED light source with a wavelength of 460 nm and designed various combinations of power density (ranging from 6.4 to 25.6 mW) and dose (ranging from 0.96 to 30.72 J/cm2) to conduct treatment experiments on MeWo cells to investigate the effects of blue light on MeWo melanoma cells. We are focusing on cell viability, cytotoxicity, mitochondrial function, oxidative stress, and apoptosis. We found that blue light inhibits these melanoma cells through oxidative stress and DNA damage, and this inhibition intensifies at higher irradiance levels. Although the cells initially attempt to resist the stress induced by the treatment, they eventually undergo apoptosis over time. These findings contribute to understanding melanoma's molecular response to blue light PBM, lay the groundwork for future clinical applications.
Collapse
Affiliation(s)
- Haokuan Qin
- Academy for Engineering and Technology, Fudan University, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, China
| | - Shijie Huang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Baohua Zhu
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan City, China
| | - Muqing Liu
- Academy for Engineering and Technology, Fudan University, China
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| | - Gaofei Chen
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan City, China
| |
Collapse
|
2
|
Singh N, Khan FM, Bala L, Vera J, Wolkenhauer O, Pützer B, Logotheti S, Gupta SK. Logic-based modeling and drug repurposing for the prediction of novel therapeutic targets and combination regimens against E2F1-driven melanoma progression. BMC Chem 2023; 17:161. [PMID: 37993971 PMCID: PMC10666365 DOI: 10.1186/s13065-023-01082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Melanoma presents increasing prevalence and poor outcomes. Progression to aggressive stages is characterized by overexpression of the transcription factor E2F1 and activation of downstream prometastatic gene regulatory networks (GRNs). Appropriate therapeutic manipulation of the E2F1-governed GRNs holds the potential to prevent metastasis however, these networks entail complex feedback and feedforward regulatory motifs among various regulatory layers, which make it difficult to identify druggable components. To this end, computational approaches such as mathematical modeling and virtual screening are important tools to unveil the dynamics of these signaling networks and identify critical components that could be further explored as therapeutic targets. Herein, we integrated a well-established E2F1-mediated epithelial-mesenchymal transition (EMT) map with transcriptomics data from E2F1-expressing melanoma cells to reconstruct a core regulatory network underlying aggressive melanoma. Using logic-based in silico perturbation experiments of a core regulatory network, we identified that simultaneous perturbation of Protein kinase B (AKT1) and oncoprotein murine double minute 2 (MDM2) drastically reduces EMT in melanoma. Using the structures of the two protein signatures, virtual screening strategies were performed with the FDA-approved drug library. Furthermore, by combining drug repurposing and computer-aided drug design techniques, followed by molecular dynamics simulation analysis, we identified two potent drugs (Tadalafil and Finasteride) that can efficiently inhibit AKT1 and MDM2 proteins. We propose that these two drugs could be considered for the development of therapeutic strategies for the management of aggressive melanoma.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Biochemistry, BBDCODS, BBD University, Lucknow, Uttar Pradesh, India
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Faiz M Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Lakshmi Bala
- Department of Biochemistry, BBDCODS, BBD University, Lucknow, Uttar Pradesh, India
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Munich, Germany
- Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, India
- Stellenbosch Institute of Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch, South Africa
| | - Brigitte Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, Athens, Greece
| | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
- Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, India.
| |
Collapse
|
3
|
Drug Repurposing at the Interface of Melanoma Immunotherapy and Autoimmune Disease. Pharmaceutics 2022; 15:pharmaceutics15010083. [PMID: 36678712 PMCID: PMC9865219 DOI: 10.3390/pharmaceutics15010083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells have a remarkable ability to evade recognition and destruction by the immune system. At the same time, cancer has been associated with chronic inflammation, while certain autoimmune diseases predispose to the development of neoplasia. Although cancer immunotherapy has revolutionized antitumor treatment, immune-related toxicities and adverse events detract from the clinical utility of even the most advanced drugs, especially in patients with both, metastatic cancer and pre-existing autoimmune diseases. Here, the combination of multi-omics, data-driven computational approaches with the application of network concepts enables in-depth analyses of the dynamic links between cancer, autoimmune diseases, and drugs. In this review, we focus on molecular and epigenetic metastasis-related processes within cancer cells and the immune microenvironment. With melanoma as a model, we uncover vulnerabilities for drug development to control cancer progression and immune responses. Thereby, drug repurposing allows taking advantage of existing safety profiles and established pharmacokinetic properties of approved agents. These procedures promise faster access and optimal management for cancer treatment. Together, these approaches provide new disease-based and data-driven opportunities for the prediction and application of targeted and clinically used drugs at the interface of immune-mediated diseases and cancer towards next-generation immunotherapies.
Collapse
|
4
|
Santourlidis S, Schulz WA, Araúzo-Bravo MJ, Gerovska D, Ott P, Bendhack ML, Hassan M, Erichsen L. Epigenetics in the Diagnosis and Therapy of Malignant Melanoma. Int J Mol Sci 2022; 23:ijms23031531. [PMID: 35163453 PMCID: PMC8835790 DOI: 10.3390/ijms23031531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Epigenetic mechanisms are fundamentally important for cancer initiation and development. However, a survey of the literature reveals that, to date, they appear less comprehensively investigated in melanoma than in many other cancers, e.g., prostate, breast, and colon carcinoma. The aim of this review is to provide a short summary of epigenetic aspects of functional relevance for melanoma pathogenesis. In addition, some new perspectives from epigenetic research in other cancers with potential for melanoma diagnosis and therapy are introduced. For example, the PrimeEpiHit hypothesis in urothelial carcinoma, which, similarly to malignant melanoma, can also be triggered by a single exogenous noxa, states that one of the first steps for cancer initiation could be epigenetic changes in key genes of one-carbon metabolism. The application of such insights may contribute to further progress in the diagnosis and therapy of melanoma, a deadly type of cancer.
Collapse
Affiliation(s)
- Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (S.S.); (P.O.)
| | - Wolfgang A. Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Marcos J. Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (M.J.A.-B.); (D.G.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (M.J.A.-B.); (D.G.)
| | - Pauline Ott
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (S.S.); (P.O.)
| | - Marcelo L. Bendhack
- Department of Urology, University Hospital, Positivo University, Curitiba 80030-200, Brazil;
| | - Mohamed Hassan
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Institut National de la Santé et de la Recherché Médicale, University of Strasbourg, 67000 Strasbourg, France
| | - Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Duesseldorf, Germany
- Correspondence: ; Tel.: +49-0211-81-16905
| |
Collapse
|
5
|
Chen Z, Li W, Hu X, Liu M. Irradiance plays a significant role in photobiomodulation of B16F10 melanoma cells by increasing reactive oxygen species and inhibiting mitochondrial function. BIOMEDICAL OPTICS EXPRESS 2020; 11:27-39. [PMID: 32010497 PMCID: PMC6968738 DOI: 10.1364/boe.11.000027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
Melanoma is a type of aggressive cancer. Recent studies have indicated that blue light has an inhibition effect on melanoma cells, but the effect of photobiomodulation (PBM) parameters on the treatment of melanoma remains unknown. Thus, this study was aimed to investigate B16F10 melanoma cells responses to PBM with varying irradiance and doses, and further explored the molecular mechanism of PBM. Our results suggested that the responses of B16F10 melanoma cells to PBM with varying irradiance and dose were different and the inhibition of blue light on cells under high irradiance was better than low irradiance at a constant total dose (0.04, 0.07, 0.15, 0.22, 0.30, 0.37, 0.45, 0.56 or 1.12 J/cm2), presumably due to that high irradiance can produce more ROS, thus disrupting mitochondrial function.
Collapse
Affiliation(s)
- Zeqing Chen
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Wenqi Li
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Xiaojian Hu
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Muqing Liu
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai,200433, China
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
- Engineering Research Centre of Advanced Lighting Technology, Ministry of Education, Fudan University, 220th Handan Road, Shanghai, 200433, China
| |
Collapse
|
6
|
Dreyer FS, Cantone M, Eberhardt M, Jaitly T, Walter L, Wittmann J, Gupta SK, Khan FM, Wolkenhauer O, Pützer BM, Jäck HM, Heinzerling L, Vera J. A web platform for the network analysis of high-throughput data in melanoma and its use to investigate mechanisms of resistance to anti-PD1 immunotherapy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2315-2328. [PMID: 29410200 DOI: 10.1016/j.bbadis.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Abstract
Cellular phenotypes are established and controlled by complex and precisely orchestrated molecular networks. In cancer, mutations and dysregulations of multiple molecular factors perturb the regulation of these networks and lead to malignant transformation. High-throughput technologies are a valuable source of information to establish the complex molecular relationships behind the emergence of malignancy, but full exploitation of this massive amount of data requires bioinformatics tools that rely on network-based analyses. In this report we present the Virtual Melanoma Cell, an online tool developed to facilitate the mining and interpretation of high-throughput data on melanoma by biomedical researches. The platform is based on a comprehensive, manually generated and expert-validated regulatory map composed of signaling pathways important in malignant melanoma. The Virtual Melanoma Cell is a tool designed to accept, visualize and analyze user-generated datasets. It is available at: https://www.vcells.net/melanoma. To illustrate the utilization of the web platform and the regulatory map, we have analyzed a large publicly available dataset accounting for anti-PD1 immunotherapy treatment of malignant melanoma patients.
Collapse
|
7
|
Unraveling a tumor type-specific regulatory core underlying E2F1-mediated epithelial-mesenchymal transition to predict receptor protein signatures. Nat Commun 2017; 8:198. [PMID: 28775339 PMCID: PMC5543083 DOI: 10.1038/s41467-017-00268-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/15/2017] [Indexed: 12/18/2022] Open
Abstract
Cancer is a disease of subverted regulatory pathways. In this paper, we reconstruct the regulatory network around E2F, a family of transcription factors whose deregulation has been associated to cancer progression, chemoresistance, invasiveness, and metastasis. We integrate gene expression profiles of cancer cell lines from two E2F1-driven highly aggressive bladder and breast tumors, and use network analysis methods to identify the tumor type-specific core of the network. By combining logic-based network modeling, in vitro experimentation, and gene expression profiles from patient cohorts displaying tumor aggressiveness, we identify and experimentally validate distinctive, tumor type-specific signatures of receptor proteins associated to epithelial-mesenchymal transition in bladder and breast cancer. Our integrative network-based methodology, exemplified in the case of E2F1-induced aggressive tumors, has the potential to support the design of cohort- as well as tumor type-specific treatments and ultimately, to fight metastasis and therapy resistance.Deregulation of E2F family transcription factors is associated with cancer progression and metastasis. Here, the authors construct a map of the regulatory network around the E2F family, and using gene expression profiles, identify tumour type-specific regulatory cores and receptor expression signatures associated with epithelial-mesenchymal transition in bladder and breast cancer.
Collapse
|
8
|
KLF4 is regulated by RAS/RAF/MEK/ERK signaling through E2F1 and promotes melanoma cell growth. Oncogene 2017; 36:3322-3333. [PMID: 28068326 PMCID: PMC5474568 DOI: 10.1038/onc.2016.481] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/14/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Melanoma is the most lethal form of skin cancer and treatment of metastatic melanoma remains challenging. BRAF/MEK inhibitors show only temporary benefit due the occurrence of resistance and immunotherapy is effective only in a subset of patients. To improve patient survival, there is a need to better understand molecular mechanisms that drive melanoma growth and operate downstream of the mitogen activated protein kinase (MAPK) signaling. The Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor that plays a critical role in embryonic development, stemness and cancer, where it can act either as oncogene or tumor suppressor. KLF4 is highly expressed in post-mitotic epidermal cells, but its role in melanoma remains unknown. Here, we address the function of KLF4 in melanoma and its interaction with the MAPK signaling pathway. We find that KLF4 is highly expressed in a subset of human melanomas. Ectopic expression of KLF4 enhances melanoma cell growth by decreasing apoptosis. Conversely, knock-down of KLF4 reduces melanoma cell proliferation and induces cell death. In addition, depletion of KLF4 reduces melanoma xenograft growth in vivo. We find that the RAS/RAF/MEK/ERK signaling positively modulates KLF4 expression through the transcription factor E2F1, which directly binds to KLF4 promoter. Overall, our data demonstrate the pro-tumorigenic role of KLF4 in melanoma and uncover a novel ERK1/2-E2F1-KLF4 axis. These findings identify KLF4 as a possible new molecular target for designing novel therapeutic treatments to control melanoma growth.
Collapse
|
9
|
Yuan Y, Sturgis EM, Zhu L, Lu M, Li Y, Wei Q, Li G. A functional variant at the miRNA binding site in E2F1 gene is associated with risk and tumor HPV16 status of oropharynx squamous cell carcinoma. Mol Carcinog 2016; 56:1100-1106. [PMID: 27677255 DOI: 10.1002/mc.22576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
Human papillomavirus (HPV) activates E2F1-driven transcription via the E7-RB1-E2F pathway. Genetic polymorphisms in the 3' untranslated region (UTR) targeted by miRNAs can affect the regulation of target genes and individual cancer risk. Thus, we hypothesized that a polymorphism at the 3'UTR miRNA binding site of E2F1 gene (rs3213180) was associated with risk of oral squamous cell carcinoma (OSCC) and tumor HPV status of oropharynx squamous cell carcinoma (OPSCC). We determined the E2F1rs3213180 polymorphism and HPV16 L1 serology of 325 OSCC patients and 335 controls, and tumor HPV16 status of 552 OPSCC. Logistic regression models were used to calculate associations of E2F1rs3213180 polymorphism with risk of HPV-associated OSCC and tumor HPV status of OPSCC. The risk of HPV-associated OSCC was modified by the E2F1rs3213180 polymorphism. Patients with both HPV seropositivity and the Ins/Del or Ins/Ins genotype of E2F1rs3213180 had the highest risk of OSCC, while the lowest risk was detected in patients with HPV seronegativity and the Del/Del genotype. A similar and more prominent effect was detected in OPSCC, but not in oral cavity squamous cell carcinoma (OCSCC) patients. Notably, that effect trend was pronounced in never-smokers and never-drinkers. Furthermore, the patients with the E2F1rs3213180 Ins/Del or Ins/Ins genotype were 2.9 times more likely to have HPV-positive tumors than those with the Del/Del genotype. Our results suggest that the E2F1rs3213180 polymorphism may influence susceptibility to HPV-associated OSCC, particularly for OPSCC, never-smokers and never-drinkers, but not for patients with OCSCC. Additional larger population and functional studies are warranted to confirm our findings. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Yuan
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erich M Sturgis
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lijun Zhu
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Oral and Maxillofacial Surgery, Guangdong General Hospital and Guangdong Academy of Medical Science, Guangzhou, China
| | - Meixia Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Guojun Li
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
10
|
Schipper H, Alla V, Meier C, Nettelbeck DM, Herchenröder O, Pützer BM. Eradication of metastatic melanoma through cooperative expression of RNA-based HDAC1 inhibitor and p73 by oncolytic adenovirus. Oncotarget 2015; 5:5893-907. [PMID: 25071017 PMCID: PMC4171600 DOI: 10.18632/oncotarget.1839] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Malignant melanoma is a highly aggressive cancer that retains functional p53 and p73, and drug unresponsiveness largely depends on defects in death pathways after epigenetic gene silencing in conjunction with an imbalanced p73/DNp73 ratio. We constructed oncolytic viruses armed with an inhibitor of deacetylation and/or p73 to specifically target metastatic cancer. Arming of the viruses is aimed at lifting epigenetic blockage and re-opening apoptotic programs in a staggered manner enabling both, efficient virus replication and balanced destruction of target cells through apoptosis. Our results showed that cooperative expression of shHDAC1 and p73 efficiently enhances apoptosis induction and autophagy of infected cells which reinforces progeny production. In vitro analyses revealed 100% cytotoxicity after infecting cells with OV.shHDAC1.p73 at a lower virus dose compared to control viruses. Intriguingly, OV.shHDAC1.p73 acts as a potent inhibitor of highly metastatic xenograft tumors in vivo. Tumor expansion was significantly reduced after intratumoral injection of 3 × 108 PFU of either OV.shHDAC1 or OV.p73 and, most important, complete regression could be achieved in 100% of tumors treated with OV.shHDAC1.p73. Our results point out that the combination of high replication capacity and simultaneous restoration of cell death routes significantly enhance antitumor activity.
Collapse
Affiliation(s)
- Holger Schipper
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany; These authors contributed equally to the work
| | - Vijay Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany; These authors contributed equally to the work
| | - Claudia Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Dirk M Nettelbeck
- Helmholtz University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ottmar Herchenröder
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
11
|
Fufa TD, Harris ML, Watkins-Chow DE, Levy D, Gorkin DU, Gildea DE, Song L, Safi A, Crawford GE, Sviderskaya EV, Bennett DC, Mccallion AS, Loftus SK, Pavan WJ. Genomic analysis reveals distinct mechanisms and functional classes of SOX10-regulated genes in melanocytes. Hum Mol Genet 2015; 24:5433-50. [PMID: 26206884 PMCID: PMC4572067 DOI: 10.1093/hmg/ddv267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/09/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
SOX10 is required for melanocyte development and maintenance, and has been linked to melanoma initiation and progression. However, the molecular mechanisms by which SOX10 guides the appropriate gene expression programs necessary to promote the melanocyte lineage are not fully understood. Here we employ genetic and epigenomic analysis approaches to uncover novel genomic targets and previously unappreciated molecular roles of SOX10 in melanocytes. Through global analysis of SOX10-binding sites and epigenetic characteristics of chromatin states, we uncover an extensive catalog of SOX10 targets genome-wide. Our findings reveal that SOX10 predominantly engages 'open' chromatin regions and binds to distal regulatory elements, including novel and previously known melanocyte enhancers. Integrated chromatin occupancy and transcriptome analysis suggest a role for SOX10 in both transcriptional activation and repression to regulate functionally distinct classes of genes. We demonstrate that distinct epigenetic signatures and cis-regulatory sequence motifs predicted to bind putative co-regulatory transcription factors define SOX10-activated and SOX10-repressed target genes. Collectively, these findings uncover a central role of SOX10 as a global regulator of gene expression in the melanocyte lineage by targeting diverse regulatory pathways.
Collapse
Affiliation(s)
- Temesgen D Fufa
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melissa L Harris
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Denise Levy
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David U Gorkin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Derek E Gildea
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA, Department of Pediatrics, Division of Molecular Genetics, Duke University, Durham, NC 27708, USA and
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA, Department of Pediatrics, Division of Molecular Genetics, Duke University, Durham, NC 27708, USA and
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA, Department of Pediatrics, Division of Molecular Genetics, Duke University, Durham, NC 27708, USA and
| | - Elena V Sviderskaya
- Molecular Cell Sciences Research Centre, St George's, University of London, London SW17 0RE, UK
| | - Dorothy C Bennett
- Molecular Cell Sciences Research Centre, St George's, University of London, London SW17 0RE, UK
| | - Andrew S Mccallion
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA,
| |
Collapse
|
12
|
Oh PS, Na KS, Hwang H, Jeong HS, Lim S, Sohn MH, Jeong HJ. Effect of blue light emitting diodes on melanoma cells: Involvement of apoptotic signaling. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 142:197-203. [DOI: 10.1016/j.jphotobiol.2014.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/24/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
|
13
|
Son SW, Kim HG, Han JM, Lee JS, Choi MK, Lee JS, Son CG. Anti-melanoma activity of Cynanchi atrati Radix is mediated by regulation of NF-kappa B activity and pro-apoptotic proteins. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:250-257. [PMID: 24583240 DOI: 10.1016/j.jep.2014.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/16/2014] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cynanchi atrati Radix has been traditionally prescribed for patients with inflammatory fever or chronic tumoral disorders. Melanoma is one of the most devastating cancer types, in which overexpression of nuclear factor kappa B (NF-κB) enables the cancer to survive without apoptosis. To identify a potential anti-melanoma candidate, we evaluated the apoptotic activity of an ethanol extract of Cynanchi atrati Radix (CAE) on melanoma and its underlying mechanisms. MATERIALS AND METHODS Sixty C57BL/6N mice with melanoma were orally administrated CAE (100 or 200mg/kg) or distilled water for 10 days. Survival, tumor weight and volume were monitored and measured. Intratumoral apoptotic change was measured using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. To confirm the pro-apoptotic activity of CAE (10, 50 or 100μg/mL) compared to positive drug (10μg/mL of IKK-2 inhibitor IV), cell proliferation, caspase-3/7 activity, flow cytometric analysis, TUNEL and DAPI staining, immunoblotting and gene expression analyses for apoptosis-associated genes were conducted using B16F10 cell line. RESULTS CAE administration remarkably improved survivability with a significant reduction in tumor weight (p<0.01) and volume (p<0.01), as well as increased apoptotic bodies in melanoma tissue. The CAE treatment significantly inhibited proliferation of B16F10 cells (p<0.001), but increased caspase-3/7 activity (p<0.01 or 0.001) and apoptotic population. The CAE partially blocked nuclear translocation of NF-κB but activated the p53-associated apoptotic pathway. CONCLUSION These results indicate that the CAE has anti-melanoma potential, and the underlying mechanisms involve inhibition of the activities of NF-κB and its target proteins as well as promoting the activities of pro-apoptotic proteins.
Collapse
Affiliation(s)
- Seung-Wan Son
- Department of Biomedical Engineering, College of Health Science, Korea University, Seongbuk-Gu, Seoul 136-703, Republic of Korea
| | - Hyeong-Geug Kim
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical College of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | - Jong-Min Han
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical College of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical College of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | - Min-Kyung Choi
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical College of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | - Jong-Seok Lee
- Gyeonggi Biocenter, Gyeonggi Institute of Science & Technology Promotion (GSTEP), Suwon, Gyeonggi-do 443-270, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical College of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea.
| |
Collapse
|
14
|
Liu D, Liu X, Xing M. Activities of multiple cancer-related pathways are associated with BRAF mutation and predict the resistance to BRAF/MEK inhibitors in melanoma cells. Cell Cycle 2013; 13:208-19. [PMID: 24200969 DOI: 10.4161/cc.26971] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drug resistance is a major obstacle in the targeted therapy of melanoma using BRAF/MEK inhibitors. This study was to identify BRAF V600E-associated oncogenic pathways that predict resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors. We took in silico approaches to analyze the activities of 24 cancer-related pathways in melanoma cells and identify those whose activation was associated with BRAF V600E and used the support vector machine (SVM) algorithm to predict the resistance of BRAF-mutated melanoma cells to BRAF/MEK inhibitors. We then experimentally confirmed the in silico findings. In a microarray gene expression dataset of 63 melanoma cell lines, we found that activation of multiple oncogenic pathways preferentially occurred in BRAF-mutated melanoma cells. This finding was reproduced in 5 additional independent melanoma datasets. Further analysis of 46 melanoma cell lines that harbored BRAF mutation showed that 7 pathways, including TNFα, EGFR, IFNα, hypoxia, IFNγ, STAT3, and MYC, were significantly differently expressed in AZD6244-resistant compared with responsive melanoma cells. A SVM classifier built on this 7-pathway activation pattern correctly predicted the response of 10 BRAF-mutated melanoma cell lines to the MEK inhibitor AZD6244 in our experiments. We experimentally showed that TNFα, EGFR, IFNα, and IFNγ pathway activities were also upregulated in melanoma cell A375 compared with its sub-line DRO, while DRO was much more sensitive to AZD6244 than A375. In conclusion, we have identified specific oncogenic pathways preferentially activated in BRAF-mutated melanoma cells and a pathway pattern that predicts resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors, providing novel clinical implications for melanoma therapy.
Collapse
Affiliation(s)
- Dingxie Liu
- Laboratory for Cellular and Molecular Thyroid Research; Division of Endocrinology and Metabolism; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Xuan Liu
- Department of Electrical and Computer Engineering; Johns Hopkins University; Baltimore, MD USA
| | - Mingzhao Xing
- Laboratory for Cellular and Molecular Thyroid Research; Division of Endocrinology and Metabolism; Johns Hopkins University School of Medicine; Baltimore, MD USA
| |
Collapse
|