1
|
Zhang SS, He Y, Wei MX. Novel coumarin-piperazine-2(5H)-furanone hybrids as potential anti-lung cancer agents: Synthesis, biological evaluation and molecular docking studies. Fitoterapia 2024; 177:106105. [PMID: 38969273 DOI: 10.1016/j.fitote.2024.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Novel coumarin-piperazine-2(5H)-furanone hybrids 5a-l were efficiently synthesized by introducing a furanone scaffold into coumarin using piperazine as a linker. The cytotoxicity of all hybrids 5a-l were evaluated by MTT assay on human lung cancer A549 cells and normal human lung fibroblast WI-38 cells with cytarabine (CAR) as a positive control. Hybrid 5l (IC50 = 11.28 μM) was the most toxic to A549 cells, 18-fold more toxic than the reference CAR (IC50 = 202.57 μM). Moreover, hybrid 5l (IC50 = 411.93 μM) was less toxic to WI-38 cells, with a much higher selectivity (5l, SI ≈ 37, WI-38/A549) than CAR (SI ≈ 2). Structure-activity relationship analysis showed that both the cytotoxicity against A549 cells and selectivity (WI-38/A549) were greatly improved when the bornyl group was incorporated in the hybrids (5c, 5f, 5i and 5l). Further, hybrid 5l was more toxic and selective against four types of human lung cancer cells (A549, Calu-1, PC-9 and H460; IC50 = 5.72-45.46 μM; SI ≈ 9-72) than three other types of human cancer cells (SK-BR-3, 786-O and SK-OV-3, IC50 = 39.07-130.82 μM; SI ≈ 0-2), showing remarkable specificity. In particular, hybrid 5l (IC50 = 5.72 μM) showed the highest cytotoxicity against H460 cells with the highest selectivity of up to 72 (WI-38/H460). Flow cytometric analysis showed that hybrid 5l induced apoptosis in H460 cells in a concentration-dependent manner. Molecular docking studies revealed a high binding affinity of hybrid 5l with CDK2 protein. Hybrid 5l is expected to be a leading candidate for anti-lung cancer agents.
Collapse
Affiliation(s)
- Si-Si Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu He
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Meng-Xue Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Song YW, Park JY, Kwon YH, Jang WE, Kim SJ, Seo JT, Moon SJ, Jung UW. Host modulation therapy for improving the osseointegration of dental implants under bone healing-suppressed conditions: a preclinical rodent-model experiment. J Periodontal Implant Sci 2024; 54:177-188. [PMID: 37857517 PMCID: PMC11227931 DOI: 10.5051/jpis.2301800090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 10/21/2023] Open
Abstract
PURPOSE Placing dental implants in areas with low bone density or in conditions where bone healing is suppressed is challenging for clinicians. An experiment using a rodent model was performed with the aim of determining the efficacy of host modulation by increasing the systemic level of cholesterol sulfate (CS) using Irosustat in the context of the bone healing process around dental implants. METHODS In 16 ovariectomised female Sprague-Dawley rats, 2 implant fixtures were placed in the tibial bones (1 fixture on each side). At 1 week after surgery, the high-CS group (n=8) received Irosustat-mixed feed, while the control group (n=8) was fed conventionally. Block specimens were obtained at 5 weeks post-surgery for histologic analysis and the data were evaluated statistically (P<0.05). RESULTS Unlike the high-CS group, half of the specimens in the control group demonstrated severe bone resorption along with a periosteal reaction in the cortex. The mean percentages of bone-to-implant contact (21.5%) and bone density (28.1%) near the implant surface were significantly higher in the high-CS group than in the control group (P<0.05), as was the number of Haversian canals (by 5.3). CONCLUSIONS Host modulation by increasing the CS level may enhance the osseointegration of dental implants placed under conditions of impaired bone healing.
Collapse
Affiliation(s)
- Young Woo Song
- Department of Periodontology, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, Korea
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jin-Young Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea
| | - Yoon-Hee Kwon
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea
| | - Wooyoung Eric Jang
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Sung-Jin Kim
- Department of Oral Histology and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jeong Taeg Seo
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea.
| |
Collapse
|
3
|
Mushtaq A, Wu P, Naseer MM. Recent drug design strategies and identification of key heterocyclic scaffolds for promising anticancer targets. Pharmacol Ther 2024; 254:108579. [PMID: 38160914 DOI: 10.1016/j.pharmthera.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Cancer, a noncommunicable disease, is the leading cause of mortality worldwide and is anticipated to rise by 75% in the next two decades, reaching approximately 25 million cases. Traditional cancer treatments, such as radiotherapy and surgery, have shown limited success in reducing cancer incidence. As a result, the focus of cancer chemotherapy has switched to the development of novel small molecule antitumor agents as an alternate strategy for combating and managing cancer rates. Heterocyclic compounds are such agents that bind to specific residues in target proteins, inhibiting their function and potentially providing cancer treatment. This review focuses on privileged heterocyclic pharmacophores with potent activity against carbonic anhydrases and kinases, which are important anticancer targets. Evaluation of ongoing pre-clinical and clinical research of heterocyclic compounds with potential therapeutic value against a variety of malignancies as well as the provision of a concise summary of the role of heterocyclic scaffolds in various chemotherapy protocols have also been discussed. The main objective of the article is to highlight key heterocyclic scaffolds involved in recent anticancer drug design that demands further attention from the drug development community to find more effective and safer targeted small-molecule anticancer agents.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany.
| |
Collapse
|
4
|
Chen W, Amir MB, Liao Y, Yu H, He W, Lu Z. New Insights into the Plutella xylostella Detoxifying Enzymes: Sequence Evolution, Structural Similarity, Functional Diversity, and Application Prospects of Glucosinolate Sulfatases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10952-10969. [PMID: 37462091 PMCID: PMC10375594 DOI: 10.1021/acs.jafc.3c03246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Brassica plants have glucosinolate (GLs)-myrosinase defense mechanisms to deter herbivores. However, Plutella xylostella specifically feeds on Brassica vegetables. The larvae possess three glucosinolate sulfatases (PxGSS1-3) that compete with plant myrosinase for shared GLs substrates and produce nontoxic desulfo-GLs (deGLs). Although PxGSSs are considered potential targets for pest control, the lack of a comprehensive review has hindered the development of PxGSSs-targeted pest control methods. Recent advances in integrative multi-omics analysis, substrate-enzyme kinetics, and molecular biological techniques have elucidated the evolutionary origin and functional diversity of these three PxGSSs. This review summarizes research progress on PxGSSs over the past 20 years, covering sequence properties, evolution, protein modification, enzyme activity, structural variation, substrate specificity, and interaction scenarios based on functional diversity. Finally, we discussed the potential applications of PxGSSs-targeted pest control technologies driven by artificial intelligence, including CRISPR/Cas9-mediated gene drive, transgenic plant-mediated RNAi, small-molecule inhibitors, and peptide inhibitors. These technologies have the potential to overcome current management challenges and promote the development and field application of PxGSSs-targeted pest control.
Collapse
Affiliation(s)
- Wei Chen
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Muhammad Bilal Amir
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- South
China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuan Liao
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Haizhong Yu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- State
Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops,
International Joint Research Laboratory of Ecological Pest Control, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanjun Lu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
5
|
Shahin AI, Zaraei SO, AlKubaisi BO, Ullah S, Anbar HS, El-Gamal R, Menon V, Abdel-Maksoud MS, Oh CH, El-Awady R, Gelsleichter NE, Pelletier J, Sévigny J, Iqbal J, Al-Tel TH, El-Gamal MI. Design and synthesis of new adamantyl derivatives as promising antiproliferative agents. Eur J Med Chem 2023; 246:114958. [PMID: 36470105 DOI: 10.1016/j.ejmech.2022.114958] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
A series of adamantyl carboxamide derivatives containing sulfonate or sulfonamide moiety were designed as multitargeted inhibitors of ectonucleotide pyrophosphatases/phosphodiesterases (NPPs) and carbonic anhydrases (CAs). The target compounds were investigated for their antiproliferative activity against NCI-60 cancer cell lines panel. Three main series composed of 3- and 4-aminophenol, 4-aminoaniline, and 5-hydroxyindole scaffolds were designed based on a lead compound (A). Compounds 1e (benzenesulfonyl) and 1i (4-fluorobenzenesulfonyl) of 4-aminophenol backbone exhibited the most promising antiproliferative activity. Both compounds exhibited a broad-spectrum and potent inhibition against all the nine tested cancer subtypes. Both compounds showed nanomolar IC50 values over several cancer cell lines that belong to leukemia and colon cancer such as K-562, RPMI-8226, SR, COLO 205, HCT-116, HCT-15, HT29, KM12, and SW-620 cell lines. Compounds 1e and 1i induced apoptosis in K-562 leukemia cells in a dose-dependent manner. Compound 1i showed the highest cytotoxic activity with IC50 value of 200 nM against HT29 cell line. In addition, compounds 1e and 1i were tested against normal breast cells (HME1) and normal skin fibroblast cells (F180) and the results revealed that the compounds are safe toward normal cells compared to cancers cells. Enzymatic assays against NPP1-3 and carbonic anhydrases II, IX, and XII were performed to investigate the possible molecular target(s) of compounds 1e and 1i. Furthermore, a molecular docking study was performed to predict the binding modes of compounds 1e and 1i in the active site of the most sensitive enzymes subtypes.
Collapse
Affiliation(s)
- Afnan I Shahin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Bilal O AlKubaisi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Varsha Menon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre NRC (ID: 60014618), Dokki, Giza, 12622, Egypt
| | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul, 130-650, Republic of Korea; Department of Biomolecular Science, Korea University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Raafat El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nicolly Espindola Gelsleichter
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammed I El-Gamal
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
6
|
Mahapatra M, Mekap SK, Mal S, Sahoo J, Sahoo SK, Paidesetty SK. Coumaryl-sulfonamide moiety: Unraveling their synthetic strategy and specificity toward hCA IX/XII, facilitating anticancer drug development. Arch Pharm (Weinheim) 2023; 356:e2200508. [PMID: 36587981 DOI: 10.1002/ardp.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023]
Abstract
Currently, cancer is the most grieving threat to society. The cancer-related death rate has had an ascending trend, despite the implementation of numerous treatment strategies or the discovery of an array of potent molecules against several pathways of cancer growth. The need of the hour is to prevent the multidrug resistance toll, and the current efforts have been bestowed upon a versatile small molecule scaffold, coumarin (benz[α]pyrone), a natural compound possessing interesting affinity toward the cancer target human carbonic anhydrase (hCA), focusing on hCA I, II, IX, and XII. Along with coumarin, the age-old known antibacterial drug sulfonamide, when conjugated at positions 3, 7, and 8 of coumarin either with a linker group or as a single entity, has been reported to enhance the affinity of coumarin toward the overexpressed enzymes in tumor cell lines. The sulfonamides have been listed as obsolete drugs due to the severe side effects caused by them; however, their affinity toward the hCA-zinc-binding core has attracted the attention of researchers. Hence, in the process of drug development, coumarin and sulfonamides have remained the choice of last resort. To unveil the synthetic strategy of coumarin-sulfonamide conjugation, their rationale for inhibiting cancer cells/enzymes, and their affinity toward various types of carcinoma have been the sole goal of the researchers. This review specifically focuses on the mechanism of action and the structure-activity relationship through synthetic strategies and the binding affinity of coumaryl-sulfonamide conjugates with the anticancer targets possessing the highest enzyme affinity, since 2008.
Collapse
Affiliation(s)
- Monalisa Mahapatra
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Suman K Mekap
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, R. Sitapur, Odisha, India
| | - Suvadeep Mal
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Jyotirmaya Sahoo
- School of Pharmacy, Arka Jain University, Jameshedpur, Jharkand, India
| | | | - Sudhir K Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Chang CN, Lin IC, Lin TS, Chiu PF, Lu YL, Narwane M, Liu IC, Hng Y, Tsai KC, Lin MH, S. Y. Hsieh Y, Chen MJ, Liang PH. The Design, Structure–Activity, and kinetic studies of 3-Benzyl-5-oxa-1,2,3,4-Tetrahydro-2H-chromeno-(3,4-c)pyridin-8-yl sulfamates as Steroid sulfatase inhibitors. Bioorg Chem 2022; 129:106148. [DOI: 10.1016/j.bioorg.2022.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
|
8
|
Grigoropoulou S, Manou D, Antoniou AI, Tsirogianni A, Siciliano C, Theocharis AD, Athanassopoulos CM. Synthesis and Antiproliferative Activity of Novel Dehydroabietic Acid-Chalcone Hybrids. Molecules 2022; 27:3623. [PMID: 35684559 PMCID: PMC9181926 DOI: 10.3390/molecules27113623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
Dehydroabietic Acid (DHA, 1) derivatives are known for their antiproliferative properties, among others. In the context of this work, DHA was initially modified to two key intermediates bearing a C18 methyl ester, a phenol moiety at C12, and an acetyl or formyl group at C13 position. These derivatives allowed us to synthesize a series of DHA-chalcone hybrids, suitable for structure-activity relationship studies (SARS), following their condensation with a variety of aryl-aldehydes and methyl ketones. The antiproliferative evaluation of the synthesized DHA-chalcone hybrids against three breast cancer cell lines (the estrogen-dependent MCF-7 and the estrogen-independent MDA-MB-231 and Hs578T) showed that eight derivatives (33, 35, 37, 38, 39, 41, 43, 44) exhibit low micromolar activity levels (IC50 2.21-11.5 μΜ/MCF-7). For instance, some of them showed better activity compared to the commercial anticancer drug 5-FU against MCF-7 cells (33, 41, 43, 44) and against MDA-MB231 (33 and 41). Hybrid 38 is a promising lead compound for the treatment of MCF-7 breast cancer, exhibiting comparable activity to 5-FU and being 12.9 times less toxic (SI = 22.7). Thus, our findings suggest that DHA-chalcone hybrids are drug candidates worth pursuing for further development in the search for novel breast cancer therapies.
Collapse
Affiliation(s)
- Sophia Grigoropoulou
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Antonia I Antoniou
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Artemis Tsirogianni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, Edificio Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | | |
Collapse
|
9
|
Gan X, Wu S, Geng F, Dong J, Zhou Y. Photocatalytic C–H alkylation of coumarins mediated by triphenylphosphine and sodium iodide. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Ciupak O, Daśko M, Biernacki K, Rachon J, Masłyk M, Kubiński K, Martyna A, Demkowicz S. New potent steroid sulphatase inhibitors based on 6-(1-phenyl-1 H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate derivatives. J Enzyme Inhib Med Chem 2021; 36:238-247. [PMID: 33322953 PMCID: PMC7744152 DOI: 10.1080/14756366.2020.1858820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the present work, we report a new class of potent steroid sulphatase (STS) inhibitors based on 6-(1-phenyl-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate derivatives. Within the set of new STS inhibitors, 6-(1-(1,2,3-trifluorophenyl)-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate 3L demonstrated the highest activity in the enzymatic assay inhibiting the STS activity to 7.98% at 0.5 µM concentration. Furthermore, to verify whether the obtained STS inhibitors are able to pass through the cellular membrane effectively, cell line experiments have been carried out. We found that the lowest STS activities were measured in the presence of compound 3L (remaining STS activity of 5.22%, 27.48% and 99.0% at 100, 10 and 1 nM concentrations, respectively). The measured STS activities for Irosustat (used as a reference) were 5.72%, 12.93% and 16.83% in the same concentration range. Moreover, a determined IC50 value of 15.97 nM for 3L showed that this compound is a very promising candidate for further preclinical investigations.
Collapse
Affiliation(s)
- Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
11
|
Foster PA. Steroid Sulphatase and Its Inhibitors: Past, Present, and Future. Molecules 2021; 26:2852. [PMID: 34064842 PMCID: PMC8151039 DOI: 10.3390/molecules26102852] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022] Open
Abstract
Steroid sulphatase (STS), involved in the hydrolysis of steroid sulphates, plays an important role in the formation of both active oestrogens and androgens. Since these steroids significantly impact the proliferation of both oestrogen- and androgen-dependent cancers, many research groups over the past 30 years have designed and developed STS inhibitors. One of the main contributors to this field has been Prof. Barry Potter, previously at the University of Bath and now at the University of Oxford. Upon Prof. Potter's imminent retirement, this review takes a look back at the work on STS inhibitors and their contribution to our understanding of sulphate biology and as potential therapeutic agents in hormone-dependent disease. A number of potent STS inhibitors have now been developed, one of which, Irosustat (STX64, 667Coumate, BN83495), remains the only one to have completed phase I/II clinical trials against numerous indications (breast, prostate, endometrial). These studies have provided new insights into the origins of androgens and oestrogens in women and men. In addition to the therapeutic role of STS inhibition in breast and prostate cancer, there is now good evidence to suggest they may also provide benefits in patients with colorectal and ovarian cancer, and in treating endometriosis. To explore the potential of STS inhibitors further, a number of second- and third-generation inhibitors have been developed, together with single molecules that possess aromatase-STS inhibitory properties. The further development of potent STS inhibitors will allow their potential therapeutic value to be explored in a variety of hormone-dependent cancers and possibly other non-oncological conditions.
Collapse
Affiliation(s)
- Paul A. Foster
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; ; Tel.: +44-121-414-3776
- Centre for Endocrinology, Metabolism and Diabetes, University of Birmingham, Birmingham Health Partners, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Daśko M, Demkowicz S, Biernacki K, Ciupak O, Kozak W, Masłyk M, Rachon J. Recent progress in the development of steroid sulphatase inhibitors - examples of the novel and most promising compounds from the last decade. J Enzyme Inhib Med Chem 2020; 35:1163-1184. [PMID: 32363947 PMCID: PMC7241464 DOI: 10.1080/14756366.2020.1758692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review article is to provide an overview of recent achievements in the synthesis of novel steroid sulphatase (STS) inhibitors. STS is a crucial enzyme in the biosynthesis of active hormones (including oestrogens and androgens) and, therefore, represents an extremely attractive molecular target for the development of hormone-dependent cancer therapies. The inhibition of STS may effectively reduce the availability of active hormones for cancer cells, causing a positive therapeutic effect. Herein, we report examples of novel STS inhibitors based on steroidal and nonsteroidal cores that contain various functional groups (e.g. sulphamate and phosphorus moieties) and halogen atoms, which may potentially be used in therapies for hormone-dependent cancers. The presented work also includes examples of multitargeting agents with STS inhibitory activities. Furthermore, the fundamental discoveries in the development of the most promising drug candidates exhibiting STS inhibitory activities are highlighted.
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Witold Kozak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
13
|
Armstrong CM, Liu C, Liu L, Yang JC, Lou W, Zhao R, Ning S, Lombard AP, Zhao J, D'Abronzo LS, Evans CP, Li PK, Gao AC. Steroid Sulfatase Stimulates Intracrine Androgen Synthesis and is a Therapeutic Target for Advanced Prostate Cancer. Clin Cancer Res 2020; 26:6064-6074. [PMID: 32928794 DOI: 10.1158/1078-0432.ccr-20-1682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Most patients with prostate cancer receiving enzalutamide or abiraterone develop resistance. Clinical evidence indicates that serum levels of dehydroepiandrosterone sulfate (DHEAS) and biologically active DHEA remain in the high range despite antiandrogen treatment. The conversion of DHEAS into DHEA by steroid sulfatase (STS) may contribute to sustained intracrine androgen synthesis. Here, we determine the contribution of STS to treatment resistance and explore the potential of targeting STS to overcome resistance in prostate cancer. EXPERIMENTAL DESIGN STS expression was examined in patients and cell lines. In vitro, STS activity and expression were modulated using STS-specific siRNA or novel STS inhibitors (STSi). Cell growth, colony formation, androgen production, and gene expression were examined. RNA-sequencing analysis was conducted on VCaP cells treated with STSi. Mice were treated with STSis with or without enzalutamide to determine their effects in vivo. RESULTS STS is overexpressed in patients with castration-resistant prostate cancer (CRPC) and resistant cells. STS overexpression increases intracrine androgen synthesis, cell proliferation, and confers resistance to enzalutamide and abiraterone. Inhibition of STS using siRNA suppresses prostate cancer cell growth. Targeting STS activity using STSi inhibits STS activity, suppresses androgen receptor transcriptional activity, and reduces the growth of resistant C4-2B and VCaP prostate cancer cells. STSis significantly suppress resistant VCaP tumor growth, decrease serum PSA levels, and enhance enzalutamide treatment in vitro and in vivo. CONCLUSIONS These studies suggest that STS drives intracrine androgen synthesis and prostate cancer proliferation. Targeting STS represents a therapeutic strategy to treat CRPC and improve second-generation antiandrogen therapy.
Collapse
Affiliation(s)
- Cameron M Armstrong
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Liangren Liu
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Joy C Yang
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Wei Lou
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Ruining Zhao
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Alan P Lombard
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Jinge Zhao
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Leandro S D'Abronzo
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, Sacramento, California.,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, Sacramento, California. .,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California.,VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
14
|
Hng Y, Lin MH, Lin TS, Liu IC, Lin IC, Lu YL, Chang CN, Chiu PF, Tsai KC, Chen MJ, Liang PH. Design and synthesis of 3-benzylaminocoumarin-7-O-sulfamate derivatives as steroid sulfatase inhibitors. Bioorg Chem 2020; 96:103618. [PMID: 32059152 DOI: 10.1016/j.bioorg.2020.103618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 01/06/2023]
Abstract
Steroid sulfatase (STS) is a sulfatase enzyme that catalyzes the conversion of sulfated steroid precursors to free steroid. The inhibition of STS could abate estrogenic steroids that stimulate the proliferation and development of breast cancer, and therefore STS is a potential target for adjuvant endocrine therapy. In this study, a series of 3-benzylaminocoumarin-7-O-sulfamate derivatives targeting STS were designed and synthesized. Structure-relationship activities (SAR) analysis revealed that attachment of a benzylamino group at the 3-position of coumarin improved inhibitory activity. Compound 3j was found to have the highest inhibition activity against human placenta isolated STS (IC50 0.13 μM) and MCF-7 cell lines (IC50 1.35 µM). Kinetic studies found compound 3j to be an irreversible inhibitor of STS, with KI and kinact value of 86.9 nM and 158.7 min-1, respectively.
Collapse
Affiliation(s)
- Yue Hng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Tzung-Sheng Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - I-Chen Liu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - I-Chun Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yeh-Lin Lu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chiao-Nien Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pei-Fang Chiu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology and Livia Shangyu Wan Scholar, National Taiwan University Hospital, National Taiwan University, College of Medicine, Taipei 100, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Genomics Research Center, Academia Sinica, Taipei 128, Taiwan.
| |
Collapse
|
15
|
Sabt A, Abdelhafez OM, El-Haggar RS, Madkour HMF, Eldehna WM, El-Khrisy EEDAM, Abdel-Rahman MA, Rashed LA. Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: synthesis, in vitro biological evaluation, and QSAR studies. J Enzyme Inhib Med Chem 2018; 33:1095-1107. [PMID: 29944015 PMCID: PMC6022226 DOI: 10.1080/14756366.2018.1477137] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/07/2022] Open
Abstract
Herein, we report the synthesis of different novel sets of coumarin-6-sulfonamide derivatives bearing different functionalities (4a, b, 8a-d, 11a-d, 13a, b, and 15a-c), and in vitro evaluation of their growth inhibitory activity towards the proliferation of three cancer cell lines; HepG2 (hepatocellular carcinoma), MCF-7 (breast cancer), and Caco-2 (colon cancer). HepG2 cells were the most sensitive cells to the influence of the target coumarins. Compounds 13a and 15a emerged as the most active members against HepG2 cells (IC50 = 3.48 ± 0.28 and 5.03 ± 0.39 µM, respectively). Compounds 13a and 15a were able to induce apoptosis in HepG2 cells, as assured by the upregulation of the Bax and downregulation of the Bcl-2, besides boosting caspase-3 levels. Besides, compound 13a induced a significant increase in the percentage of cells at Pre-G1 by 6.4-folds, with concurrent significant arrest in the G2-M phase by 5.4-folds compared to control. Also, 13a displayed significant increase in the percentage of annexin V-FITC positive apoptotic cells from 1.75-13.76%. Moreover, QSAR models were established to explore the structural requirements controlling the anti-proliferative activities.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Egypt
| | - Omaima M. Abdelhafez
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Egypt
| | - Radwan S. El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | | | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Mohamed A. Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Laila. A. Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Ganeshapillai D, Woo LWL, Thomas MP, Purohit A, Potter BVL. C-3- and C-4-Substituted Bicyclic Coumarin Sulfamates as Potent Steroid Sulfatase Inhibitors. ACS OMEGA 2018; 3:10748-10772. [PMID: 30320251 PMCID: PMC6173509 DOI: 10.1021/acsomega.8b01383] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Synthetic routes to potent bicyclic nonsteroidal sulfamate-based active-site-directed inhibitors of the enzyme steroid sulfatase (STS), an emerging target in the treatment of postmenopausal hormone-dependent diseases, including breast cancer, are described. Sulfamate analogs 9-27 and 28-46 of the core in vivo active two-ring coumarin template, modified at the 4- and 3-positions, respectively, were synthesized to expand structure-activity relationships. α-Alkylacetoacetates were used to synthesize coumarin sulfamate derivatives with 3-position modifications, and the bicyclic ring of other parent coumarins was primarily constructed via the Pechmann synthesis of hydroxyl coumarins. Compounds were examined for STS inhibition in intact MCF-7 breast cancer cells and in placental microsomes. Low nanomolar potency STS inhibitors were achieved, and some were found to inhibit the enzyme in MCF-7 cells ca. 100-500 more potently than the parent 4-methylcoumarin-7-O-sulfamate 3, with the best compounds close in potency to the tricyclic clinical drug Irosustat. 3-Hexyl-4-methylcoumarin-7-O-sulfamate 29 and 3-benzyl-4-methylcoumarin-7-O-sulfamate 41 were particularly effective inhibitors with IC50 values of 0.68 and 1 nM in intact MCF-7 cells and 8 and 32 nM for placental microsomal STS, respectively. They were docked into the STS active site for comparison with estrone 3-O-sulfamate and Irosustat, showing their sulfamate group close to the catalytic hydrated formylglycine residue and their pendant group lying between the hydrophobic sidechains of L103, F178, and F488. Such highly potent STS inhibitors expand the structure-activity relationship for these coumarin sulfamate-based agents that possess therapeutic potential and may be worthy of further development.
Collapse
Affiliation(s)
- Dharshini Ganeshapillai
- Medicinal
Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - L. W. Lawrence Woo
- Medicinal
Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Mark P. Thomas
- Medicinal
Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Atul Purohit
- Section
of Investigative Medicine, Diabetes, Endocrinology & Metabolism, Imperial College London, 6th Floor, Commonwealth Building (6N2B), Hammersmith
Hospital, Du Cane Road, London W12 0NN, U.K.
| | - Barry V. L. Potter
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
- Medicinal
Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
17
|
Nussbaumer P. Challenging medicinal chemistry: ups and downs in a drug discovery project. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Palmieri C, Szydlo R, Miller M, Barker L, Patel NH, Sasano H, Barwick T, Tam H, Hadjiminas D, Lee J, Shaaban A, Nicholas H, Coombes RC, Kenny LM. IPET study: an FLT-PET window study to assess the activity of the steroid sulfatase inhibitor irosustat in early breast cancer. Breast Cancer Res Treat 2017; 166:527-539. [PMID: 28795252 PMCID: PMC5668341 DOI: 10.1007/s10549-017-4427-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/26/2017] [Indexed: 10/24/2022]
Abstract
BACKGROUND Steroid sulfatase (STS) is involved in oestrogen biosynthesis and irosustat is a first generation, irreversible steroid sulfatase inhibitor. A pre-surgical window-of-opportunity study with irosustat was undertaken in estrogen receptor-positive (ER+) breast cancer to assess the effect of irosustat on tumour cell proliferation as measured by 3'-deoxy-3'-[18F] fluorothymidine uptake measured by PET scanning (FLT-PET) and Ki67. METHODS Postmenopausal women with untreated ER+ early breast cancer were recruited, and imaged with FLT-PET at baseline and after at least 2 weeks treatment with irosustat, 40 mg once daily orally. The primary endpoint was changed in FLT uptake; secondary endpoints included safety and tolerability of irosustat, changes in tumoral Ki67 and steroidogenic enzymes expression and circulating steroid hormone levels. RESULTS Thirteen women were recruited, and ten started irosustat for 2 weeks, followed by repeat FLT-PET scans in eight. Defining response as decreases of ≥20% in standardized uptake value (SUV) or ≥30% in Ki, 1 (12.5% (95% CI 2-47%, p = 0.001)) and 3 (43% (95% CI 16-75%, p = <0.001) patients, respectively, responded. 6 out of 7 patients had a Ki67 reduction (range = -19.3 to 76.4%), and median percentage difference in Ki67 was 52.3% (p = 0.028). In one patient with a low baseline STS expression, a 19.7% increase in Ki67 was recorded. STS decreases were seen in tumours with high basal STS expression, significant decreases were also noted in aromatase, and 17β-hydroxysteroid dehydrogenase type 1 and 2. Irosustat was generally well tolerated with all adverse event CTCAE Grade ≤2. CONCLUSIONS Irosustat resulted in a significant reduction in FLT uptake and Ki67, and is well tolerated. These data are the first demonstrating clinical activity of irosustat in early breast cancer. Baseline expression of STS may be a biomarker of sensitivity to irosustat.
Collapse
Affiliation(s)
- Carlo Palmieri
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L69 3BX, UK.
- Liverpool & Merseyside Breast Academic Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK.
- Academic Department of Medical Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, CH63 4JY, UK.
| | - Richard Szydlo
- Centre for Haematology, Imperial College London, London, W12 0NN, UK
| | - Marie Miller
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Laura Barker
- Department of Medical Oncology, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Neva H Patel
- Radiological Sciences Unit and Department of Nuclear Medicine, Imperial College Healthcare NHS Trust, London, W6 8RF, UK
- Department of Nuclear Medicine, Imperial College Healthcare NHS Trust, London, W6 8RF, UK
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Tara Barwick
- Department of Radiology, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Henry Tam
- Department of Radiology, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Dimitri Hadjiminas
- Department of Surgery, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Jasmin Lee
- Department of Pathology, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Abeer Shaaban
- Department of Histopathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Hanna Nicholas
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - R Charles Coombes
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
- Department of Medical Oncology, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Laura M Kenny
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
- Department of Medical Oncology, Imperial College Healthcare Trust, Fulham Palace Road, London, W6 8RF, UK
| |
Collapse
|
19
|
Dudenkov TM, Ingle JN, Buzdar AU, Robson ME, Kubo M, Ibrahim-Zada I, Batzler A, Jenkins GD, Pietrzak TL, Carlson EE, Barman P, Goetz MP, Northfelt DW, Moreno-Aspita A, Williard CV, Kalari KR, Nakamura Y, Wang L, Weinshilboum RM. SLCO1B1 polymorphisms and plasma estrone conjugates in postmenopausal women with ER+ breast cancer: genome-wide association studies of the estrone pathway. Breast Cancer Res Treat 2017; 164:189-199. [PMID: 28429243 DOI: 10.1007/s10549-017-4243-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Estrone (E1), the major circulating estrogen in postmenopausal women, promotes estrogen-receptor positive (ER+) breast tumor growth and proliferation. Two major reactions contribute to E1 plasma concentrations, aromatase (CYP19A1) catalyzed E1 synthesis from androstenedione and steroid sulfatase (STS) catalyzed hydrolysis of estrone conjugates (E1Cs). E1Cs have been associated with breast cancer risk and may contribute to tumor progression since STS is expressed in breast cancer where its activity exceeds that of aromatase. METHODS We performed genome-wide association studies (GWAS) to identify SNPs associated with variation in plasma concentrations of E1Cs, E1, and androstenedione in 774 postmenopausal women with resected early-stage ER+ breast cancer. Hormone concentrations were measured prior to aromatase inhibitor therapy. RESULTS Multiple SNPs in SLCO1B1, a gene encoding a hepatic influx transporter, displayed genome-wide significant associations with E1C plasma concentrations and with the E1C/E1 ratio. The top SNP for E1C concentrations, rs4149056 (p = 3.74E-11), was a missense variant that results in reduced transporter activity. Patients homozygous for the variant allele had significantly higher average E1C plasma concentrations than did other patients. Furthermore, three other SLCO1B1 SNPs, not in LD with rs4149056, were associated with both E1C concentrations and the E1C/E1 ratio and were cis-eQTLs for SLCO1B3. GWAS signals of suggestive significance were also observed for E1, androstenedione, and the E1/androstenedione ratio. CONCLUSION These results suggest a mechanism for genetic variation in E1C plasma concentrations as well as possible SNP biomarkers to identify ER+ breast cancer patients for whom STS inhibitors might be of clinical value.
Collapse
Affiliation(s)
- Tanda M Dudenkov
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - James N Ingle
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Aman U Buzdar
- Department of Breast Oncology, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Mark E Robson
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Japan
| | - Irada Ibrahim-Zada
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,University of Colorado, Denver, USA
| | - Anthony Batzler
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Gregory D Jenkins
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Erin E Carlson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Poulami Barman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Goetz
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Yusuke Nakamura
- Department of Medicine, School of Medicine, University of Chicago, Chicago, IL, USA
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
20
|
Lim E, Tarulli G, Portman N, Hickey TE, Tilley WD, Palmieri C. Pushing estrogen receptor around in breast cancer. Endocr Relat Cancer 2016; 23:T227-T241. [PMID: 27729416 DOI: 10.1530/erc-16-0427] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022]
Abstract
The estrogen receptor-α (herein called ER) is a nuclear sex steroid receptor (SSR) that is expressed in approximately 75% of breast cancers. Therapies that modulate ER action have substantially improved the survival of patients with ER-positive breast cancer, but resistance to treatment still remains a major clinical problem. Treating resistant breast cancer requires co-targeting of ER and alternate signalling pathways that contribute to resistance to improve the efficacy and benefit of currently available treatments. Emerging data have shown that other SSRs may regulate the sites at which ER binds to DNA in ways that can powerfully suppress the oncogenic activity of ER in breast cancer. This includes the progesterone receptor (PR) that was recently shown to reprogram the ER DNA binding landscape towards genes associated with a favourable outcome. Another attractive candidate is the androgen receptor (AR), which is expressed in the majority of breast cancers and inhibits growth of the normal breast and ER-positive tumours when activated by ligand. These findings have led to the initiation of breast cancer clinical trials evaluating therapies that selectively harness the ability of SSRs to 'push' ER towards anti-tumorigenic activity. Our review will focus on the established and emerging clinical evidence for activating PR or AR in ER-positive breast cancer to inhibit the tumour growth-promoting functions of ER.
Collapse
Affiliation(s)
- Elgene Lim
- Garvan Institute of Medical Research and St Vincent's HospitalUniversity of New South Wales, Sydney, New South Wales, Australia
| | - Gerard Tarulli
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research CentreUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Neil Portman
- Garvan Institute of Medical Research and St Vincent's HospitalUniversity of New South Wales, Sydney, New South Wales, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research CentreUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research CentreUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Carlo Palmieri
- Institute of Translational MedicineUniversity of Liverpool, Clatterbridge Cancer Centre, NHS Foundation Trust, and Royal Liverpool University Hospital, Liverpool, Merseyside, UK
| |
Collapse
|
21
|
Harrelson JP, Lee MW. Expanding the view of breast cancer metabolism: Promising molecular targets and therapeutic opportunities. Pharmacol Ther 2016; 167:60-73. [DOI: 10.1016/j.pharmthera.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022]
|
22
|
Thomas MP, Potter BVL. Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women's Health. J Med Chem 2015; 58:7634-58. [PMID: 25992880 PMCID: PMC5159624 DOI: 10.1021/acs.jmedchem.5b00386] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1994, following work from this laboratory, it was reported that estrone-3-O-sulfamate irreversibly inhibits a new potential hormone-dependent cancer target steroid sulfatase (STS). Subsequent drug discovery projects were initiated to develop the core aryl O-sulfamate pharmacophore that, over some 20 years, have led to steroidal and nonsteroidal drugs in numerous preclinical and clinical trials, with promising results in oncology and women's health, including endometriosis. Drugs have been designed to inhibit STS, e.g., Irosustat, as innovative dual-targeting aromatase-steroid sulfatase inhibitors (DASIs) and as multitargeting agents for hormone-independent tumors, such as the steroidal STX140 and nonsteroidal counterparts, acting inter alia through microtubule disruption. The aryl sulfamate pharmacophore is highly versatile, operating via three distinct mechanisms of action, and imbues attractive pharmaceutical properties. This Perspective gives a personal view of the work leading both to the therapeutic concepts and these drugs, their current status, and how they might develop in the future.
Collapse
Affiliation(s)
- Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Barry V. L. Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
23
|
Thomas MP, Potter BVL. Estrogen O-sulfamates and their analogues: Clinical steroid sulfatase inhibitors with broad potential. J Steroid Biochem Mol Biol 2015; 153:160-9. [PMID: 25843211 DOI: 10.1016/j.jsbmb.2015.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 01/20/2023]
Abstract
Estrogen sulfamate derivatives were the first irreversible active-site-directed inhibitors of steroid sulfatase (STS), an emerging drug target for endocrine therapy of hormone dependent diseases that catalyzes inter alia the hydrolysis of estrone sulfate to estrone. In recent years this has stimulated clinical investigation of the estradiol derivative both as an oral prodrug and its currently ongoing exploration in endometriosis. 2-Substituted steroid sulfamate derivatives show considerable potential as multi-targeting agents for hormone-independent disease, but are also potent STS inhibitors. The steroidal template has spawned nonsteroidal STS inhibitors one of which, Irosustat, has been evaluated clinically in breast cancer, endometrial cancer and prostate cancer and there is potential for innovative dual-targeting approaches. This review surveys the role of estrogen sulfamates, their analogues and current status.
Collapse
Affiliation(s)
- Mark P Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom.
| |
Collapse
|
24
|
Mostafa YA, Taylor SD. Steroid derivatives as inhibitors of steroid sulfatase. J Steroid Biochem Mol Biol 2013; 137:183-98. [PMID: 23391659 DOI: 10.1016/j.jsbmb.2013.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
Sulfated steroids function as a storage reservoir of biologically active steroid hormones. The sulfated steroids themselves are biologically inactive and only become active in vivo when they are converted into their desulfated (unconjugated) form by the enzyme steroid sulfatase (STS). Inhibitors of STS are considered to be potential therapeutics for the treatment of steroid-dependent cancers such as breast, prostate and endometrial cancer. The present review summarizes steroid derivatives as inhibitors of STS covering the literature from the early years of STS inhibitor development to October of 2012. A brief discussion of the function, structure and mechanism of STS and its role in estrogen receptor-positive (ER+) hormone-dependent breast cancer is also presented. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Yaser A Mostafa
- Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada
| | | |
Collapse
|
25
|
Thomas MP, Potter BVL. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol 2013; 137:27-49. [PMID: 23291110 PMCID: PMC3866684 DOI: 10.1016/j.jsbmb.2012.12.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023]
Abstract
Many enzymes catalyse reactions that have an oestrogen as a substrate and/or a product. The reactions catalysed include aromatisation, oxidation, reduction, sulfonation, desulfonation, hydroxylation and methoxylation. The enzymes that catalyse these reactions must all recognise and bind oestrogen but, despite this, they have diverse structures. This review looks at each of these enzymes in turn, describing the structure and discussing the mechanism of the catalysed reaction. Since oestrogen has a role in many disease states inhibition of the enzymes of oestrogen metabolism may have an impact on the state or progression of the disease and inhibitors of these enzymes are briefly discussed. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Key Words
- 17β-HSD
- 17β-Hydroxysteroid dehydrogenase
- 17β-hydroxysteroid dehydrogenase
- 3,5-dinitrocatechol
- 3-(((8R,9S,13S,14S,16R,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-16-yl)methyl)benzamide
- 3′-phosphoadenosine-5′-phosphate
- 3′-phosphoadenosine-5′-phosphosulfate
- Aromatase
- COMT
- DHEA(S)
- DHETNA
- DNC
- E1(S)
- E2(S)
- E2B
- E3
- E4
- ER
- FAD/FMN
- FG
- HFG(S)
- NADP(+)
- NADPH
- O5′-[9-(3,17β-dihydroxy-1,3,5(10)-estratrien-16β-yl)-nonanoyl]adenosine
- Oestrogen
- PAP
- PAPS
- Protein structure
- Reaction mechanism
- S-adenosyl methionine
- SAM
- SDR
- Sulfatase
- Sulfotransferase
- catechol-O-methyl transferase
- dehydroepiandrosterone (sulfate)
- estetrol
- estradiol (sulfate)
- estriol
- estrogen receptor
- estrone (sulfate)
- flavin adenine dinucleotide/flavin mononucleotide
- formylglycine
- hydroxyformylglycine (sulfate)
- mb-COMT
- membrane-bound COMT
- nicotinamide adenine dinucleotide phosphate (oxidised)
- nicotinamide adenine dinucleotide phosphate (reduced)
- s-COMT
- short-chain dehydrogenase/reductase
- soluble COMT
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | |
Collapse
|
26
|
Cardoso F, Bischoff J, Brain E, Zotano ÁG, Lück HJ, Tjan-Heijnen VC, Tanner M, Aapro M. A review of the treatment of endocrine responsive metastatic breast cancer in postmenopausal women. Cancer Treat Rev 2013; 39:457-65. [DOI: 10.1016/j.ctrv.2012.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/14/2012] [Accepted: 06/24/2012] [Indexed: 01/15/2023]
|
27
|
Trent S, Davies W. Cognitive, behavioural and psychiatric phenotypes associated with steroid sulfatase deficiency. World J Transl Med 2013; 2:1-12. [DOI: 10.5528/wjtm.v2.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 02/05/2023] Open
Abstract
The enzyme steroid sulfatase (STS) desulfates a variety of steroid compounds thereby altering their activity. STS is expressed in the skin, and its deficiency in this tissue has been linked to the dermatological condition X-linked ichthyosis. STS is also highly expressed in the developing and adult human brain, and in a variety of steroidogenic organs (including the placenta and gonads); therefore it has the potential to influence brain development and function directly and/or indirectly (through influencing the hormonal milieu). In this review, we first discuss evidence from human and animal model studies suggesting that STS deficiency might predispose to neurobehavioural abnormalities and certain psychiatric disorders. We subsequently discuss potential mechanisms that may underlie these vulnerabilities. The data described herein have potential implications for understanding the complete spectrum of clinical phenotypes associated with X-linked ichthyosis, and may indicate novel pathogenic mechanisms underlying psychological dysfunction in developmental disorders such as attention deficit hyperactivity disorder and Turner syndrome.
Collapse
|
28
|
Abstract
INTRODUCTION Steroid sulfatase (STS) converts sulfated hormones to free hormones of importance in hormone-dependent diseases such as breast cancer and endometriosis. Carbohydrate sulfatases degrade complex carbohydrates as part of normal cellular turnover; certain lysosomal storage disorders (LSDs) involve defective processing of sulfated glycosaminoglycans by mutant sulfatases. AREAS COVERED Aryl sulfamates have been developed as STS inhibitors, and STX64 and PGL2001 are under evaluation in Phase I and II clinical trials for treatment of endometrial and metastatic breast and prostate cancers and endometriosis. Dual-acting compounds have emerged that are aromatase inhibitors (AIs), selective estrogen receptor antagonists, or inhibitors of microtubule polymerization. Sulfamidase inhibitors as pharmacological chaperones to assist maturation of folding-defective mutants for the treatment of Sanfilippo type A disease are under investigation. Coverage: The patent literature after the mid-1990s. EXPERT OPINION The failure of STX64 in a Phase II monotherapy clinical trial should not dissuade further investigations in multidrug regimens, particularly in combination with AIs. The recent development of dual-acting compounds may enhance the potential for success in the clinic. Further investigations into aryl sulfamates are required to clarify the molecular mechanism of action; additionally, new reversible sulfatase inhibition concepts are needed for the development of pharmacological chaperones for sulfatase LSDs.
Collapse
Affiliation(s)
- Spencer J Williams
- University of Melbourne, School of Chemistry and Bio21 Molecular Science, Parkville, Victoria, Australia.
| |
Collapse
|
29
|
Krell J, Januszewski A, Yan K, Palmieri C. Role of fulvestrant in the management of postmenopausal breast cancer. Expert Rev Anticancer Ther 2012; 11:1641-52. [PMID: 22050013 DOI: 10.1586/era.11.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fulvestrant is a form of endocrine therapy used in the treatment of postmenopausal breast cancer. It has a unique mechanism of action in that it causes the degradation of estrogen receptor and therefore has been labeled a selective estrogen receptor downregulator. Unlike the selective estrogen receptor modulator tamoxifen, it has no agonistic properties and is therefore a pure anti-estrogen. Given its low level of bioavailability and presystemic metabolism, it has been formulated as an intramuscular injection. A number of dosing regimens have been utilized - these include a dose of 250 mg monthly ('approved dose'), an initial 500 mg followed by 250 mg on days 14 and 28, and thereafter 250 mg every 28 days ('loading dose'), or 500 mg on days 0, 14 and 28, and thereafter every 28 days ('high dose'). This article will review its unique mode of action and preclinical data, as well as clinical data for different dosing regimens and data for its combination with aromatase inhibitors. Fulvestrant is a well-tolerated drug and its toxicities will also be reviewed. The optimal position of fulvestrant in sequential endocrine therapy has yet to be defined.
Collapse
Affiliation(s)
- Jonathan Krell
- Department of Surgery and Cancer, MRC Cyclotron Building, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 ONN, UK
| | | | | | | |
Collapse
|
30
|
Abstract
Estrogens and androgens are instrumental in the maturation of many hormone-dependent cancers. Consequently, the enzymes involved in their synthesis are cancer therapy targets. One such enzyme, steroid sulfatase (STS), hydrolyses estrone sulfate, and dehydroepiandrosterone sulfate to estrone and dehydroepiandrosterone respectively. These are the precursors to the formation of biologically active estradiol and androstenediol. This review focuses on three aspects of STS inhibitors: 1) chemical development, 2) biological activity, and 3) clinical trials. The aim is to discuss the importance of estrogens and androgens in many cancers, the developmental history of STS inhibitor synthesis, the potency of these compounds in vitro and in vivo and where we currently stand in regards to clinical trials for these drugs. STS inhibitors are likely to play an important future role in the treatment of hormone-dependent cancers. Novel in vivo models have been developed that allow pre-clinical testing of inhibitors and the identification of lead clinical candidates. Phase I/II clinical trials in postmenopausal women with breast cancer have been completed and other trials in patients with hormone-dependent prostate and endometrial cancer are currently active. Potent STS inhibitors should become therapeutically valuable in hormone-dependent cancers and other non-oncological conditions.
Collapse
Affiliation(s)
- Atul Purohit
- Oncology Drug Discovery Group, Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | | |
Collapse
|
31
|
Ventura V, Solà J, Celma C, Peraire C, Obach R. In Vitro Metabolism of Irosustat, a Novel Steroid Sulfatase Inhibitor: Interspecies Comparison, Metabolite Identification, and Metabolic Enzyme Identification. Drug Metab Dispos 2011; 39:1235-46. [DOI: 10.1124/dmd.111.038315] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|