1
|
Alam SR, Mureithi M, Ferrand R. Pitavastatin and Cardiovascular Disease in HIV. N Engl J Med 2023; 389:e46. [PMID: 37991865 DOI: 10.1056/nejmc2311117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Affiliation(s)
- Shirjel R Alam
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Rashida Ferrand
- Biomedical Research and Training Institute, Harare, Zimbabwe
| |
Collapse
|
2
|
Arsh H, Ali A, Khenhrani RR, Simran F, Dino U, Tamang S, Manoj F, Bai S, Bai M, Panjwani GR, Kumar D, Rani D, Partab F, Malik J. Efficacy and Safety of Pitavastatin in Patients with Impaired Glucose Tolerance: An Updated Review. Curr Probl Cardiol 2023; 48:101981. [PMID: 37473935 DOI: 10.1016/j.cpcardiol.2023.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
This review provides an updated overview of the efficacy and safety of pitavastatin in patients with impaired glucose tolerance (IGT). IGT is a prediabetic state characterized by elevated blood glucose levels that do not meet the criteria for diabetes. The review explores the potential benefits of pitavastatin in reducing cardiovascular risk and improving lipid profiles in individuals with IGT. It also examines the glycemic effects of pitavastatin, including its impact on fasting blood glucose levels, insulin sensitivity, and beta-cell function. The review highlights the need for individualized treatment approaches, taking into account the patient's overall cardiovascular risk profile and glycemic control needs. While pitavastatin has shown modest improvements in glycemic control, it is not a substitute for lifestyle modifications or standard antidiabetic medications. Future directions for research include long-term follow-up studies, mechanistic investigations, and comparative analyses to further understand the glycemic effects of pitavastatin in IGT. Overall, this narrative review provides valuable insights for healthcare professionals involved in the management of individuals with IGT, emphasizing the importance of a comprehensive approach to reduce cardiovascular risk and optimize glycemic control.
Collapse
Affiliation(s)
- Hina Arsh
- Department of Medicine, THQ Hospital, Pasrur, Pakistan
| | - Asif Ali
- Department of Medicine, Chandka Medical College, Larkana, Pakistan
| | - Raja Ram Khenhrani
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College, Lyari, Pakistan
| | - Fnu Simran
- Department of Medicine, Sheikh Khalifa Bin Zayed Al Nayhan Medical and Dental College, Lahore, Pakistan
| | - Umbish Dino
- Department of Medicine, Sheikh Khalifa Bin Zayed Al Nayhan Medical and Dental College, Lahore, Pakistan
| | - Sweta Tamang
- Nepal Medical College and Teaching Hospital, Nepal
| | - Fnu Manoj
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Shuaita Bai
- Department of Medicine, People's University of Medical and Health Sciences, Nawabshah, Pakistan
| | - Monika Bai
- Department of Medicine, People's University of Medical and Health Sciences, Nawabshah, Pakistan
| | | | - Deepak Kumar
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Deepa Rani
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College, Lyari, Pakistan
| | - Fnu Partab
- Department of Medicine, Chandka Medical College, Larkana, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan.
| |
Collapse
|
3
|
Singh S, Zahoor I, Sharma N, Behl T, Kanojia N, Sehgal A, Mohan S, Almoshari Y, Salawi A, Aleya L, Bungau S. Insights into the pivotal role of statins and its nanoformulations in hyperlipidemia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76514-76531. [PMID: 36161571 DOI: 10.1007/s11356-022-23043-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Hyperlipidemia is the primary cause of heart disorders and has been manifested as the condition with remarkable higher levels of very-low-density lipoproteins, low-density lipoproteins, intermediate-density lipoprotein, triglycerides, and cholesterol in blood circulation. Genetic causes or systemic metabolic illnesses like diabetes mellitus, increased alcohol consumption, hypothyroidism, and primary biliary cirrhosis are several reasons behind development of hyperlipidemia. Higher levels of lipids and lipoproteins in plasma are responsible for various health disorders in human body like occlusion of blood vessels, acute pancreatitis, and reduced artery lumen elasticity. Both primary and secondary prophylaxis of heart disease can be achieved through combination of pharmacologic therapy with therapeutic lifestyle adjustments. Statins which belongs to HMG-CoA reductase inhibitors are preferred for primary prevention of hyperlipidemia particularly for individuals at higher risk of development of heart disease. This review discusses the recent advancements and outcomes of nanoparticle drug carriers for statins in the therapy of hyperlipidemia.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi-248007, Dehradun, Uttarakhand, India
| | - Neha Kanojia
- School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
4
|
Ahmadi M, Amiri S, Pecic S, Machaj F, Rosik J, Łos MJ, Alizadeh J, Mahdian R, da Silva Rosa SC, Schaafsma D, Shojaei S, Madrakian T, Zeki AA, Ghavami S. Pleiotropic effects of statins: A focus on cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165968. [PMID: 32927022 DOI: 10.1016/j.bbadis.2020.165968] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
The statin drugs ('statins') potently inhibit hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase by competitively blocking the active site of the enzyme. Statins decrease de novo cholesterol biosynthesis and thereby reduce plasma cholesterol levels. Statins exhibit "pleiotropic" properties that are independent of their lipid-lowering effects. For example, preclinical evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell types. Furthermore, statins show chemo-sensitizing effects by impairing Ras family GTPase signaling. However, whether statins have clinically meaningful anti-cancer effects remains an area of active investigation. Both preclinical and clinical studies on the potential mechanisms of action of statins in several cancers have been reviewed in the literature. Considering the contradictory data on their efficacy, we present an up-to-date summary of the pleiotropic effects of statins in cancer therapy and review their impact on different malignancies. We also discuss the synergistic anti-cancer effects of statins when combined with other more conventional anti-cancer drugs to highlight areas of potential therapeutic development.
Collapse
Affiliation(s)
- Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Shayan Amiri
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, R4046 - 351 Taché Ave, Winnipeg, Manitoba R2H 2A6, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, CA, USA
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Pathology, Pomeranian Medical University in Szczecin, Poland
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Pathology, Pomeranian Medical University in Szczecin, Poland
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Reza Mahdian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Shahla Shojaei
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Amir A Zeki
- University of California, Davis School of Medicine. Division of Pulmonary, Critical Care, and Sleep Medicine. U.C. Davis Lung Center, Davis, California, USA; Veterans Affairs Medical Center, Mather, California, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
5
|
Zhang X, Li J, Zhou X, Guan Q, Zhao J, Gao L, Yu C, Wang Y, Zuo C. SIMVASTATIN DECREASES SEX HORMONE LEVELS IN MALE RATS. Endocr Pract 2016; 23:175-181. [PMID: 27849375 DOI: 10.4158/ep161274.or] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Statins can inhibit therate-limiting enzyme hydroxymethyl glutaric acid-coenzyme A reductase to reduce cholesterol biosynthesis, and they are used frequently in the clinic. Cholesterol is also a precursor for sex hormones. However, it is not clear whether statins can affect sex hormone levels. The aim of this study was to investigate the effect of long-term use of statins on sex hormone levels in vivo. METHODS Forty male Sprague-Dawley rats were randomly divided into four groups. Three simvastatin groups were administered different doses of simvastatin intragastrically daily (4, 8, or 16 mg/kg/day, n = 10). The control group was administered vehicle intragastrically daily (n = 10). The serum lipid spectrum and testosterone, estradiol, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels were measured before (0 weeks) and after 20 and 40 weeks of simvastatin administration. RESULTS In the control group, there were no statistically significant differences between lipid levels, liver function, or sex hormone levels before and after intragastric administration. Compared with the previous intragastric administration group, there was no obvious change in liver function with different doses of simvastatin. However, serum levels of total cholesterol, low-density-lipoprotein cholesterol, triglycerides, testosterone, estradiol, and progesterone were markedly decreased in a dose- and time-dependent manner. By contrast, the levels of FSH and LH were significantly higher, showing feedback regulation. CONCLUSION Long-term simvastatin intake reduces serum testosterone, estradiol, and progesterone levels in male rats. ABBREVIATIONS HMG-CoA = hydroxymethyl glutaric acid CoA LDL = low-density lipoprotein LDL-C = low-density-lipoprotein cholesterol FSH = follicle-stimulating hormone LH = luteinizing hormone.
Collapse
|
6
|
Opie LH. Present status of statin therapy. Trends Cardiovasc Med 2015; 25:216-25. [DOI: 10.1016/j.tcm.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 01/17/2023]
|
7
|
McFarland AJ, Anoopkumar-Dukie S, Arora DS, Grant GD, McDermott CM, Perkins AV, Davey AK. Molecular mechanisms underlying the effects of statins in the central nervous system. Int J Mol Sci 2014; 15:20607-37. [PMID: 25391045 PMCID: PMC4264186 DOI: 10.3390/ijms151120607] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023] Open
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins’ effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins’ effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins’ possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed.
Collapse
Affiliation(s)
| | | | - Devinder S Arora
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| | - Gary D Grant
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| | | | - Anthony V Perkins
- Griffith Health Institute, Griffith University, Queensland 4222, Australia.
| | - Andrew K Davey
- School of Pharmacy, Griffith University, Queensland 4222, Australia.
| |
Collapse
|
8
|
Abstract
Results from multiple clinical trials, primarily with the class of lipid-lowering agents known as statins, have shown that reductions in low-density lipoprotein (LDL) cholesterol are associated with reduced risk of coronary artery disease. Although LDL cholesterol is the primary target of cholesterol management strategies, increasing attention has focused on the role of inflammation, high-density lipoprotein cholesterol, and triglycerides in atherosclerosis and cardiovascular disease. We review major trials with lipid-modifying therapies published since the 2004 update of the Adult Treatment Panel (ATP) III guidelines. A pivotal trial was the Justification for the Use of Statins in Primary Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER), which demonstrated significant reductions in cardiovascular morbidity and mortality in healthy individuals without elevated LDL cholesterol but with high levels of the inflammatory marker high-sensitivity C-reactive protein. Additional trials demonstrated the efficacy of intensive statin therapy in secondary prevention, whereas other agents, including fibrates, omega-3 fatty acids, niacin, ezetimibe, and experimental cholesteryl ester transfer protein inhibitors, have been evaluated for their ability to reduce residual cardiovascular risk.
Collapse
|
9
|
Effects of statins on cardiorenal syndrome. Int J Vasc Med 2012; 2012:162545. [PMID: 22792467 PMCID: PMC3390040 DOI: 10.1155/2012/162545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/17/2012] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular disease and renal disease have a close relationship that forms a vicious cycle as a cardiorenal syndrome (CRS). Oxidative stress, endothelial dysfunction, and vascular inflammation could be therapeutic targets when the renin-angiotensin-aldosterone system is activated by accumulation of conventional cardiovascular risk factors; however, a strategy for management of CRS has not been established yet. Statins, HMG-CoA reductase inhibitors, have not only cholesterol-lowering effects but also pleiotropic effects on cardiovascular systems, including anti-inflammatory and antioxidant effects and improvement of nitric oxide bioavailability. Since recent studies have indicated that statins have beneficial effects on chronic kidney disease and heart failure as well as coronary artery disease in cholesterol-lowering-dependent/independent manners, treatment with statins might be a successful strategy for preventing deterioration of CRS.
Collapse
|
10
|
Díaz Rodríguez Á, Serrano Cumplido A, Fierro González D, Rodríguez Arroyo LA, García-Norro Herreros FJ, de Abajo Olea S, López Rodríguez I, Panisello Royo JM, Minguez Villar JC, Palomo del Arco J, Colás Chacartegui R, Pascual Fuster V, Verdes-Montenegro Atalaya JC. Pitavastatina: una nueva alternativa en el tratamiento de la dislipemia. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2012. [DOI: 10.1016/j.arteri.2011.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|