1
|
Zhang Y, Zhu Y, Zhang M, Liu J, Wu G, Wang J, Sun X, Wang D, Jiang W, Xu L, Kang L, Song L. Implications of structural right ventricular involvement in patients with hypertrophic cardiomyopathy. EUROPEAN HEART JOURNAL. QUALITY OF CARE & CLINICAL OUTCOMES 2022; 9:34-41. [PMID: 35179204 DOI: 10.1093/ehjqcco/qcac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
AIMS In the clinical practice, the right ventricular (RV) manifestations have received less attention in hypertrophic cardiomyopathy (HCM). This paper aimed to evaluate the risk prediction value and genetic characteristics of RV involvement in HCM patients. METHODS AND RESULTS A total of 893 patients with HCM were recruited. RV hypertrophy, RV obstruction, and RV late gadolinium enhancement were evaluated by echocardiography and/or cardiac magnetic resonance. Patients with any of the above structural abnormalities were identified as having RV involvement. All patients were followed with a median follow-up time of 3.0 years. The primary endpoint was cardiovascular death; the secondary endpoints were all-cause death and heart failure (HF)-related death. Survival analyses were conducted to evaluate the associations between RV involvement and the endpoints. Genetic testing was performed on 669 patients. RV involvement was recognized in 114 of 893 patients (12.8%). Survival analyses demonstrated that RV involvement was an independent risk factor for cardiovascular death (P = 0.002), all-cause death (P = 0.011), and HF-related death (P = 0.004). These outcome results were then confirmed by a sensitivity analysis. Genetic testing revealed a higher frequency of genotype-positive in patients with RV involvement (57.0% vs. 31.0%, P < 0.001), and the P/LP variants of MYBPC3 were more frequently identified in patients with RV involvement (30.4% vs. 12.0%, P < 0.001). Logistic analyses indicated the independent correlation between RV involvement and these genetic factors. CONCLUSION RV involvement was an independent risk factor for cardiovascular death, all-cause death and HF-related death in HCM patients. Genetic factors might contribute to RV involvement in HCM.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongdan Santiao No. 9, 100006 Beijing, China
| | - Yuming Zhu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongdan Santiao No. 9, 100006 Beijing, China
| | - Mo Zhang
- Cardiomyopathy Ward, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, Beilishilu, Xicheng District, 100037 Beijing, China
| | - Jie Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongdan Santiao No. 9, 100006 Beijing, China
| | - Guixin Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongdan Santiao No. 9, 100006 Beijing, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongdan Santiao No. 9, 100006 Beijing, China
| | - Xiaolu Sun
- Cardiomyopathy Ward, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, Beilishilu, Xicheng District, 100037 Beijing, China
| | - Dong Wang
- Cardiomyopathy Ward, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, Beilishilu, Xicheng District, 100037 Beijing, China
| | - Wen Jiang
- Cardiomyopathy Ward, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, Beilishilu, Xicheng District, 100037 Beijing, China
| | - Lianjun Xu
- Cardiomyopathy Ward, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, Beilishilu, Xicheng District, 100037 Beijing, China
| | - Lianming Kang
- Cardiomyopathy Ward, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, Beilishilu, Xicheng District, 100037 Beijing, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongdan Santiao No. 9, 100006 Beijing, China.,Cardiomyopathy Ward, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, Beilishilu, Xicheng District, 100037 Beijing, China.,National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongdan Santiao No. 9, 100006 Beijing, China
| |
Collapse
|
2
|
Losing Regulation of the Extracellular Matrix is Strongly Predictive of Unfavorable Prognostic Outcome after Acute Myocardial Infarction. Int J Mol Sci 2020; 21:ijms21176219. [PMID: 32867392 PMCID: PMC7503422 DOI: 10.3390/ijms21176219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
This study tested the hypothesis that MMP-9-/-tPA-/- double knock out (i.e., MTDKO) plays a crucial role in the prognostic outcome after acute myocardial infarction (AMI by ligation of left-coronary-artery) in MTDKO mouse. Animals were categorized into sham-operated controls in MTDKO animals (group 1) and in wild type (B6: group 2), AMI-MTDKO (group 3) and AMI-B6 (group 4) animals. They were euthanized, and the ischemic myocardium was harvested, by day 60 post AMI. The mortality rate was significantly higher in group 3 than in other groups and significantly higher in group 4 than in groups 1/2, but it showed no difference in the latter two groups (all p < 0.01). By day 28, the left-ventricular (LV) ejection fraction displayed an opposite pattern, whereas by day 60, the gross anatomic infarct size displayed an identical pattern of mortality among the four groups (all p < 0.001). The ratio of heart weight to tibial length and the lung injury score exhibited an identical pattern of mortality (p < 0.01). The protein expressions of apoptosis (mitochondrial-Bax/cleaved-caspase3/cleaved-PARP), fibrosis (Smad3/T-GF-ß), oxidative stress (NOX-1/NOX-2/oxidized-protein), inflammation (MMPs2,9/TNF-α/p-NF-κB), heart failure/pressure overload (BNP/ß-MHC) and mitochondrial/DNA damage (cytosolic-cytochrome-C/γ-H2AX) biomarkers displayed identical patterns, whereas the angiogenesis markers (small vessel number/CD31+cells in LV myocardium) displayed opposite patterns of mortality among the groups (all p < 0.0001). The microscopic findings of fibrotic/collagen deposition/infarct areas and inflammatory cell infiltration of LV myocardium were similar to the mortality among the four groups (all p < 0.0001). MTDKO strongly predicted unfavorable prognostic outcome after AMI.
Collapse
|
3
|
Wang J, Liu X, Zhuang Q, Pan R, Zou L, Cen Z, Tang L. Long noncoding RNA homeobox A11 antisense promotes transforming growth factor β1‑induced fibrogenesis in cardiac fibroblasts. Mol Med Rep 2019; 19:2817-2824. [PMID: 30720066 DOI: 10.3892/mmr.2019.9891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/21/2018] [Indexed: 11/05/2022] Open
Abstract
Cardiac fibrosis is closely associated with various heart diseases and is an important pathological feature of cardiac remodeling. However, detailed mechanisms underlying cardiac fibrosis remain largely unknown. Long noncoding RNAs (lncRNAs) are reported to serve significant roles in the development of cardiac fibrosis. The present study aimed to identify the role of a novel lncRNA, homeobox A11 antisense (HOXA11‑AS), in cardiac fibrosis. Overexpression of HOXA11‑AS in mouse cardiac fibroblasts (CFs) increased the expression of transforming growth factor β1 (TGFβ1) and its downstream molecules, while knockdown of HOXA11‑AS inhibited the TGFβ1 signaling pathway. Furthermore, as determined by colony formation and MTT assays, HOXA11‑AS overexpression promoted colony formation and viability in mouse CFs, while HOXA11‑AS knockdown had the opposite effect. In addition, overexpression of HOXA11‑AS increased cell migration and invasion in the Transwell assays, whereas expression knockdown decreased the metastatic ability of cells. In order to explore the detailed mechanism, co‑transfection of HOXA11‑AS expression plasmid and siTGFβ1 into CFs resulted in increased cell proliferative rate and cell metastasis through the TGFβ1 signaling pathway. Taken together, the present study suggested that the lncRNA HOXA11‑AS may be a potential therapeutic target against cardiac fibrosis, and provided a novel insight into the diagnosis and treatment of clinical cardiac fibrosis.
Collapse
Affiliation(s)
- Jiangting Wang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Qin Zhuang
- Department of Cardiology, Cixi People's Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| | - Rongrong Pan
- Department of Cardiology, Cixi People's Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| | - Linlin Zou
- Department of Cardiology, Cixi People's Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| | - Zhenbo Cen
- Department of Cardiology, Cixi People's Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
4
|
Wilkie LJ, Smith K, Luis Fuentes V. Cardiac pathology findings in 252 cats presented for necropsy; a comparison of cats with unexpected death versus other deaths. J Vet Cardiol 2016; 17 Suppl 1:S329-40. [PMID: 26776590 DOI: 10.1016/j.jvc.2015.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 09/18/2015] [Accepted: 09/27/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To report necropsy and myocardial histopathology in cats with unexpected death and expected death/euthanasia, comparing findings in 4 groups of cats: unexpected death with noncardiac disease (UD-NC); unexpected death with cardiac disease (UD-C); expected death/euthanasia due to noncardiac disease with incidental cardiac disease (OD + HD); and expected death/euthanasia due to congestive heart failure (CHF). ANIMALS Two hundred fifty-two cats undergoing necropsy at a single centre. METHODS Signalment, history, body weight, heart weight and myocardial thickness were obtained from medical records. Cardiac histopathology slides were reviewed blindly by a single observer. Data were analysed using a Chi squared, Fisher's exact, Kruskal-Wallis tests or ANOVA as appropriate. RESULTS Death at a veterinary clinic and suspected poisoning were the most common reasons for necropsy in 158 cats with an unexpected death. No cause other than cardiac disease was found in 87/158 (55.1%), with hypertrophic cardiomyopathy identified in 68/87 (78%) of UD-C cats. Expected deaths or euthanasia occurred in 27 cats with CHF and 67 cats with concurrent heart disease (OD + HD). Myofiber disarray, interstitial fibrosis, subendocardial fibrosis and intramural arteriolosclerosis were more prevalent in UD-C cats than in UD-NC cats, and subendocardial fibrosis and arteriolosclerosis were more prevalent in UD-C cats than in CHF and OD + HD cats. CONCLUSIONS Cardiac disease, and hypertrophic cardiomyopathy in particular, was commonly present in cats that died unexpectedly in this study population. Subendocardial fibrosis and intramural arteriolosclerosis were more common in cats with unexpected death with cardiac disease than in other cats.
Collapse
Affiliation(s)
- L J Wilkie
- Department of Clinical Sciences and Services, The Royal Veterinary College, UK
| | - K Smith
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, UK
| | - V Luis Fuentes
- Department of Clinical Sciences and Services, The Royal Veterinary College, UK.
| |
Collapse
|
5
|
Zhao W, Zhao T, Chen Y, Zhao F, Gu Q, Williams RW, Bhattacharya SK, Lu L, Sun Y. A Murine Hypertrophic Cardiomyopathy Model: The DBA/2J Strain. PLoS One 2015; 10:e0133132. [PMID: 26241864 PMCID: PMC4524617 DOI: 10.1371/journal.pone.0133132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/07/2015] [Indexed: 12/12/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM) is attributed to mutations in genes that encode for the sarcomere proteins, especially Mybpc3 and Myh7. Genotype-phenotype correlation studies show significant variability in HCM phenotypes among affected individuals with identical causal mutations. Morphological changes and clinical expression of HCM are the result of interactions with modifier genes. With the exceptions of angiotensin converting enzyme, these modifiers have not been identified. Although mouse models have been used to investigate the genetics of many complex diseases, natural murine models for HCM are still lacking. In this study we show that the DBA/2J (D2) strain of mouse has sequence variants in Mybpc3 and Myh7, relative to widely used C57BL/6J (B6) reference strain and the key features of human HCM. Four-month-old of male D2 mice exhibit hallmarks of HCM including increased heart weight and cardiomyocyte size relative to B6 mice, as well as elevated markers for cardiac hypertrophy including β-myosin heavy chain (MHC), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and skeletal muscle alpha actin (α1-actin). Furthermore, cardiac interstitial fibrosis, another feature of HCM, is also evident in the D2 strain, and is accompanied by up-regulation of type I collagen and α-smooth muscle actin (SMA)-markers of fibrosis. Of great interest, blood pressure and cardiac function are within the normal range in the D2 strain, demonstrating that cardiac hypertrophy and fibrosis are not secondary to hypertension, myocardial infarction, or heart failure. Because D2 and B6 strains have been used to generate a large family of recombinant inbred strains, the BXD cohort, the D2 model can be effectively exploited for in-depth genetic analysis of HCM susceptibility and modifier screens.
Collapse
MESH Headings
- Actins/blood
- Animals
- Biomarkers
- Blood Pressure
- Cardiomyopathy, Hypertrophic, Familial/blood
- Cardiomyopathy, Hypertrophic, Familial/diagnostic imaging
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/pathology
- Carrier Proteins/genetics
- Disease Models, Animal
- Fibrosis
- Gene Expression Profiling
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA/genetics
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/pathology
- Myofibroblasts/pathology
- Myosin Heavy Chains/blood
- Myosin Heavy Chains/genetics
- Natriuretic Peptides/blood
- Phenotype
- RNA, Messenger/biosynthesis
- Ultrasonography
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Wenyuan Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee HealthScience Center, Memphis, Tennessee, United States of America
| | - Tieqiang Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee HealthScience Center, Memphis, Tennessee, United States of America
| | - Yuanjian Chen
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee HealthScience Center, Memphis, Tennessee, United States of America
| | - Fengbo Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee HealthScience Center, Memphis, Tennessee, United States of America
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Syamal K. Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee HealthScience Center, Memphis, Tennessee, United States of America
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Jiangsu Key Laboratory of Neuroregenertion, Nantong University, Nantong, Jiangsu, China
- * E-mail: (YS); (LL)
| | - Yao Sun
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee HealthScience Center, Memphis, Tennessee, United States of America
- * E-mail: (YS); (LL)
| |
Collapse
|
6
|
|
7
|
Faber L. Percutaneous Septal Ablation in Hypertrophic Obstructive Cardiomyopathy: From Experiment to Standard of Care. Adv Med 2014; 2014:464851. [PMID: 26556411 PMCID: PMC4590958 DOI: 10.1155/2014/464851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the more common hereditary cardiac conditions. According to presence or absence of outflow obstruction at rest or with provocation, a more common (about 60-70%) obstructive type of the disease (HOCM) has to be distinguished from the less common (30-40%) nonobstructive phenotype (HNCM). Symptoms include exercise limitation due to dyspnea, angina pectoris, palpitations, or dizziness; occasionally syncope or sudden cardiac death occurs. Correct diagnosis and risk stratification with respect to prophylactic ICD implantation are essential in HCM patient management. Drug therapy in symptomatic patients can be characterized as treatment of heart failure with preserved ejection fraction (HFpEF) in HNCM, while symptoms and the obstructive gradient in HOCM can be addressed with beta-blockers, disopyramide, or verapamil. After a short overview on etiology, natural history, and diagnostics in hypertrophic cardiomyopathy, this paper reviews the current treatment options for HOCM with a special focus on percutaneous septal ablation. Literature data and the own series of about 600 cases are discussed, suggesting a largely comparable outcome with respect to procedural mortality, clinical efficacy, and long-term outcome.
Collapse
Affiliation(s)
- Lothar Faber
- Department of Cardiology, Heart and Diabetes Center North Rhine-Westphalia, University Hospital of the Ruhr University Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
8
|
Effect of ion concentration changes in the limited extracellular spaces on sarcolemmal ion transport and Ca2+ turnover in a model of human ventricular cardiomyocyte. Int J Mol Sci 2013; 14:24271-92. [PMID: 24351816 PMCID: PMC3876110 DOI: 10.3390/ijms141224271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 11/24/2022] Open
Abstract
We have developed a computer model of human cardiac ventricular myocyte (CVM), including t-tubular and cleft spaces with the aim of evaluating the impact of accumulation-depletion of ions in restricted extracellular spaces on transmembrane ion transport and ionic homeostasis in human CVM. The model was based on available data from human CVMs. Under steady state, the effect of ion concentration changes in extracellular spaces on [Ca2+]i-transient was explored as a function of critical fractions of ion transporters in t-tubular membrane (not documented for human CVM). Depletion of Ca2+ and accumulation of K+ occurring in extracellular spaces slightly affected the transmembrane Ca2+ flux, but not the action potential duration (APD90). The [Ca2+]i-transient was reduced (by 2%–9%), depending on the stimulation frequency, the rate of ion exchange between t-tubules and clefts and fractions of ion-transfer proteins in the t-tubular membrane. Under non-steady state, the responses of the model to changes of stimulation frequency were analyzed. A sudden increase of frequency (1–2.5 Hz) caused a temporal decrease of [Ca2+] in both extracellular spaces, a reduction of [Ca2+]i-transient (by 15%) and APD90 (by 13 ms). The results reveal different effects of activity-related ion concentration changes in human cardiac t-tubules (steady-state effects) and intercellular clefts (transient effects) in the modulation of membrane ion transport and Ca2+ turnover.
Collapse
|