1
|
Zhou D, Xiong S, Xiong J, Deng X, Long Q, Li Y. Integrated analysis of the microbiome and transcriptome in stomach adenocarcinoma. Open Life Sci 2023; 18:20220528. [PMID: 37465100 PMCID: PMC10350897 DOI: 10.1515/biol-2022-0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/15/2022] [Accepted: 11/02/2022] [Indexed: 07/20/2023] Open
Abstract
We aimed to characterize the stomach adenocarcinoma (STAD) microbiota and its clinical value using an integrated analysis of the microbiome and transcriptome. Microbiome and transcriptome data were downloaded from the Cancer Microbiome Atlas and the Cancer Genome Atlas databases. We identified nine differentially abundant microbial genera, including Helicobacter, Mycobacterium, and Streptococcus, which clustered patients into three subtypes with different survival rates. In total, 74 prognostic genes were screened from 925 feature genes of the subtypes, among which five genes were identified for prognostic model construction, including NTN5, MPV17L, MPLKIP, SIGLEC5, and SPAG16. The prognostic model could stratify patients into different risk groups. The high-risk group was associated with poor overall survival. A nomogram established using the prognostic risk score could accurately predict the 1, 3, and 5 year overall survival probabilities. The high-risk group had a higher proportion of histological grade 3 and recurrence samples. Immune infiltration analysis showed that samples in the high-risk group had a higher abundance of infiltrating neutrophils. The Notch signaling pathway activity showed a significant difference between the high- and low-risk groups. In conclusion, a prognostic model based on five feature genes of microbial subtypes could predict the overall survival for patients with STAD.
Collapse
Affiliation(s)
- Daxiang Zhou
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing404120, China
| | - Shu Xiong
- Department of Basic Medicine, Chongqing Three Gorges Medical College, No. 666 Tianxing Road, Baianba, Wanzhou District, Chongqing404120, China
| | - Juan Xiong
- Department of Neonatology, Jiulongpo People’s Hospital of Chongqing, Chongqing, 400050, China
| | - Xuesong Deng
- Department of Basic Medicine, Chongqing Three Gorges Medical College, No. 666 Tianxing Road, Baianba, Wanzhou District, Chongqing404120, China
| | - Quanzhou Long
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing404120, China
| | - Yanjie Li
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing404120, China
| |
Collapse
|
2
|
Sumida K, Lau WL, Kovesdy CP, Kalantar-Zadeh K, Kalantar-Zadeh K. Microbiome modulation as a novel therapeutic approach in chronic kidney disease. Curr Opin Nephrol Hypertens 2021; 30:75-84. [PMID: 33148949 DOI: 10.1097/mnh.0000000000000661] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Gut dysbiosis has been implicated in the pathogenesis of chronic kidney disease (CKD). Interventions aimed at restoring gut microbiota have emerged as a potential therapeutic option in CKD. This review summarizes the current evidence on gut microbiota-targeted strategies in patients with CKD. RECENT FINDINGS A growing number of studies have shown that plant-based diets, low-protein diets, prebiotic, probiotic, and synbiotic supplementation, and constipation treatment may lead to favorable alterations in the gut microbiota. Current evidence suggests that the implementation of both plant-based and low-protein diets has potential benefits for the primary prevention of CKD, and for slowing CKD progression, with minimal risk of hyperkalemia and/or cachexia. The use of prebiotics, probiotics, and synbiotics and laxatives may have beneficial effects on uremic toxin generation, but their evidence is limited for the prevention and treatment of CKD. Recent advances in diagnostic technologies (e.g., high-throughput sequencing and nanotechnology) could enhance rapid diagnosis, monitoring, and design of effective therapeutic strategies for mitigating gut dysbiosis in CKD. SUMMARY Plant-based and low-protein diets, prebiotic, probiotic, and synbiotic supplementation, and constipation treatment represent novel gut microbiota-targeted strategies in the conservative management of CKD, which could improve clinical outcomes in CKD.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wei Ling Lau
- Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, Orange, California
| | - Csaba P Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Nephrology Section, Memphis VA Medical Center, Memphis, Tennessee, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, Orange, California
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
3
|
Elvers KT, Wilson VJ, Hammond A, Duncan L, Huntley AL, Hay AD, van der Werf ET. Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review. BMJ Open 2020; 10:e035677. [PMID: 32958481 PMCID: PMC7507860 DOI: 10.1136/bmjopen-2019-035677] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The gut microbiota influences many aspects of human health. We investigated the magnitude and duration of changes in gut microbiota in response to antibiotics commonly prescribed in UK primary care. METHODS We searched MEDLINE, EMBASE and AMED, all years up to May 2020 including all study designs, collecting and analysing data on the effect of antibiotics prescribed for respiratory and urinary tract infections. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Cochrane standard methods. Risk of bias was evaluated using the Critical Appraisal Skills Programme. Narrative synthesis was used to report the themes emerging from the data. MAIN OUTCOME MEASURES Primary outcomes were antibiotic-induced changes in the composition and/or diversity of the gut microbiota. Secondary outcome was the time for the microbiota to return to baseline. RESULTS Thirty-one articles with low or unclear risk of bias showed that antibiotics impact the gut microbiota by causing rapid and diminished levels of bacterial diversity and changes in relative abundances. After cessation of treatment, gut bacteria recover, in most individuals, to their baseline state within a few weeks. Some studies suggested longer term effects from 2 to 6 months. Considerable heterogeneity in methodology makes the studies prone to biases and other confounding factors. Doxycycline was associated with a marked short-term decrease in Bifidobacterium diversity. Clarithromycin decreased the populations of Enterobacteria, and the anaerobic bacteria Bifidobacterium sp and Lactobacillus sp in numbers and diversity for up to 5 weeks. Phenoxymethylpenicillin, nitrofurantoin and amoxicillin had very little effect on the gut microbiome. CONCLUSIONS Despite substantial heterogeneity of the studies and small sample sizes, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota. Larger population-based studies are needed to fully understand how antibiotics modulate the microbiota, and to determine if these are associated with (longer term) health consequences. PROSPERO REGISTRATION NUMBER CRD42017073750.
Collapse
Affiliation(s)
- Karen T Elvers
- Centre for Academic Primare Care & NIHR Health Protection Research Unit in Behavioural Science and Evaluation, Bristol Medical School, University of Bristol, Bristol, UK
| | - Victoria J Wilson
- Centre of Academic Primary Care, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashley Hammond
- Centre of Academic Primary Care, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lorna Duncan
- Centre of Academic Primary Care, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alyson L Huntley
- Centre of Academic Primary Care, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alastair D Hay
- Centre of Academic Primary Care, Bristol Medical School, University of Bristol, Bristol, UK
| | - Esther T van der Werf
- Centre of Academic Primary Care, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Integrative Medicine, Louis Bolk Institute, Bunnik, The Netherlands
| |
Collapse
|
4
|
Song R, Yao J, Shi Q, Wei R. Nanocomposite of Half-Fin Anchovy Hydrolysates/Zinc Oxide Nanoparticles Exhibits Actual Non-Toxicity and Regulates Intestinal Microbiota, Short-Chain Fatty Acids Production and Oxidative Status in Mice. Mar Drugs 2018; 16:E23. [PMID: 29324644 PMCID: PMC5793071 DOI: 10.3390/md16010023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023] Open
Abstract
The nanocomposite of half-fin anchovy hydrolysates (HAHp) and zinc oxide nanoparticles (ZnO NPs) (named as HAHp(3.0)/ZnO NPs) demonstrated increased antibacterial activity compared to either HAHp(3.0) or ZnO NPs as per our previous studies. Also, reactive oxygen species (ROS) formation was detected in Escherichia coli cells after treatment with HAHp(3.0)/ZnO NPs. The aim of the present study was to evaluate the acute toxicity of this nanocomposite and to investigate its effect on intestinal microbiota composition, short-chain fatty acids (SCFAs) production, and oxidative status in healthy mice. The limit test studies show that this nanoparticle is non-toxic at the doses tested. The administration of HAHp(3.0)/ZnO NPs, daily dose of 1.0 g/kg body weight for 14 days, increased the number of goblet cells in jejunum. High-throughput 16S ribosomal RNA gene sequencing of fecal samples revealed that HAHp(3.0)/ZnO NPs increased Firmicutes and reduced Bacteriodetes abundances in female mice. Furthermore, the microbiota for probiotic-type bacteria, including Lactobacillus and Bifidobacterium, and SCFAs-producing bacteria in the Clostridia class, e.g., Lachnospiraceae_unclassified and Lachnospiraceae_UCG-001, were enriched in the feces of female mice. Increases of SCFAs, especially statistically increased propionic and butyric acids, indicated the up-regulated anti-inflammatory activity of HAHp(3.0)/ZnO NPs. Additionally, some positive responses in liver, like markedly increased glutathione and decreased malonaldehyde contents, indicated the improved oxidative status. Therefore, our results suggest that HAHp(3.0)/ZnO NPs could have potential applications as a safe regulator of intestinal microbiota or also can be used as an antioxidant used in food products.
Collapse
Affiliation(s)
- Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Jianbin Yao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Qingqing Shi
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Rongbian Wei
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
5
|
Aguirre M, Venema K. Challenges in simulating the human gut for understanding the role of the microbiota in obesity. Benef Microbes 2016; 8:31-53. [PMID: 27903093 DOI: 10.3920/bm2016.0113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is an elevated incidence of cases of obesity worldwide. Therefore, the development of strategies to tackle this condition is of vital importance. This review focuses on the necessity of optimising in vitro systems to model human colonic fermentation in obese subjects. This may allow to increase the resolution and the physiological relevance of the information obtained from this type of studies when evaluating the potential role that the human gut microbiota plays in obesity. In light of the parameters that are currently used for the in vitro simulation of the human gut (which are mostly based on information derived from healthy subjects) and the possible difference with an obese condition, we propose to revise and improve specific standard operating procedures.
Collapse
Affiliation(s)
- M Aguirre
- 1 Top Institute of Food and Nutrition, P.O. Box 557, 6700 AA Wageningen, the Netherlands.,2 Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.,3 The Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 360, 3700 AJ Zeist, the Netherlands
| | - K Venema
- 1 Top Institute of Food and Nutrition, P.O. Box 557, 6700 AA Wageningen, the Netherlands.,2 Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.,4 Beneficial Microbes Consultancy, Johan Karschstraat 3, 6709 TN Wageningen, the Netherlands
| |
Collapse
|
6
|
Czaja AJ. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis. World J Gastroenterol 2016; 22:9257-9278. [PMID: 27895415 PMCID: PMC5107691 DOI: 10.3748/wjg.v22.i42.9257] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/07/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.
Collapse
|
7
|
Molecular methods for studying methanogens of the human gastrointestinal tract: current status and future directions. Appl Microbiol Biotechnol 2015; 99:5801-15. [DOI: 10.1007/s00253-015-6739-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/23/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022]
|
8
|
Yip LY, Chan ECY. Investigation of Host-Gut Microbiota Modulation of Therapeutic Outcome. Drug Metab Dispos 2015; 43:1619-31. [PMID: 25979259 DOI: 10.1124/dmd.115.063750] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/15/2015] [Indexed: 02/06/2023] Open
Abstract
A broader understanding of factors underlying interindividual variation in pharmacotherapy is important for our pursuit of "personalized medicine." Based on knowledge gleaned from the investigation of human genetics, drug-metabolizing enzymes, and transporters, clinicians and pharmacists are able to tailor pharmacotherapies according to the genotype of patients. However, human host factors only form part of the equation that accounts for heterogeneity in therapeutic outcome. Notably, the gut microbiota possesses wide-ranging metabolic activities that expand the metabolic functions of the human host beyond that encoded by the human genome. In this review, we first illustrate the mechanisms in which gut microbes modulate pharmacokinetics and therapeutic outcome. Second, we discuss the application of metabonomics in deciphering the complex host-gut microbiota interaction in pharmacotherapy. Third, we highlight an integrative approach with particular mention of the investigation of gut microbiota using culture-based and culture-independent techniques to complement the investigation of the host-gut microbiota axes in pharmaceutical research.
Collapse
Affiliation(s)
- Lian Yee Yip
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.Y.Y., E.C.Y.C.); and Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore (L.Y.Y.)
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.Y.Y., E.C.Y.C.); and Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore (L.Y.Y.)
| |
Collapse
|
9
|
Firkins JL, Yu Z. RUMINANT NUTRITION SYMPOSIUM: How to use data on the rumen microbiome to improve our understanding of ruminant nutrition1,2. J Anim Sci 2015; 93:1450-70. [DOI: 10.2527/jas.2014-8754] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- J. L. Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - Z. Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| |
Collapse
|
10
|
Gaci N, Borrel G, Tottey W, O’Toole PW, Brugère JF. Archaea and the human gut: New beginning of an old story. World J Gastroenterol 2014; 20:16062-16078. [PMID: 25473158 PMCID: PMC4239492 DOI: 10.3748/wjg.v20.i43.16062] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/14/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
Methanogenic archaea are known as human gut inhabitants since more than 30 years ago through the detection of methane in the breath and isolation of two methanogenic species belonging to the order Methanobacteriales, Methanobrevibacter smithii and Methanosphaera stadtmanae. During the last decade, diversity of archaea encountered in the human gastrointestinal tract (GIT) has been extended by sequence identification and culturing of new strains. Here we provide an updated census of the archaeal diversity associated with the human GIT and their possible role in the gut physiology and health. We particularly focus on the still poorly characterized 7th order of methanogens, the Methanomassiliicoccales, associated to aged population. While also largely distributed in non-GIT environments, our actual knowledge on this novel order of methanogens has been mainly revealed through GIT inhabitants. They enlarge the number of final electron acceptors of the gut metabolites to mono- di- and trimethylamine. Trimethylamine is exclusively a microbiota-derived product of nutrients (lecithin, choline, TMAO, L-carnitine) from normal diet, from which seems originate two diseases, trimethylaminuria (or Fish-Odor Syndrome) and cardiovascular disease through the proatherogenic property of its oxidized liver-derived form. This therefore supports interest on these methanogenic species and its use as archaebiotics, a term coined from the notion of archaea-derived probiotics.
Collapse
|
11
|
Kim M, Wang L, Morrison M, Yu Z. Development of a phylogenetic microarray for comprehensive analysis of ruminal bacterial communities. J Appl Microbiol 2014; 117:949-60. [DOI: 10.1111/jam.12598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/22/2014] [Accepted: 07/12/2014] [Indexed: 12/14/2022]
Affiliation(s)
- M. Kim
- Department of Animal Sciences; The Ohio State University; Columbus OH USA
| | - L. Wang
- Department of Animal Sciences; The Ohio State University; Columbus OH USA
| | - M. Morrison
- Department of Animal Sciences; The Ohio State University; Columbus OH USA
- University of Queensland Diamantina Institute; Woolloongabba Qld Australia
| | - Z. Yu
- Department of Animal Sciences; The Ohio State University; Columbus OH USA
| |
Collapse
|
12
|
Abstract
Gastroenteritis persists as a worldwide problem, responsible for approximately 2 million deaths annually. Traditional diagnostic methods used in the clinical microbiology laboratory include a myriad of tests, such as culture, microscopy, and immunodiagnostics, which can be labor intensive and suffer from long turnaround times and, in some cases, poor sensitivity. [corrected]. This article reviews recent advances in genomic and proteomic technologies that have been applied to the detection and identification of gastrointestinal pathogens. These methods simplify and speed up the detection of pathogenic microorganisms, and their implementation in the clinical microbiology laboratory has potential to revolutionize the diagnosis of gastroenteritis.
Collapse
|
13
|
Feria-Gervasio D, Tottey W, Gaci N, Alric M, Cardot JM, Peyret P, Martin JF, Pujos E, Sébédio JL, Brugère JF. Three-stage continuous culture system with a self-generated anaerobia to study the regionalized metabolism of the human gut microbiota. J Microbiol Methods 2013; 96:111-8. [PMID: 24333608 DOI: 10.1016/j.mimet.2013.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/25/2013] [Accepted: 11/30/2013] [Indexed: 02/07/2023]
Abstract
The technical and ethical difficulties in studying the gut microbiota in vivo warrant the development and improvement of in vitro systems able to simulate and control the physicochemical factors of the gut biology. Moreover, the functional regionalization of this organ implies a model simulating these differences. Here we propose an improved and alternative three-stage continuous bioreactor called 3S-ECSIM (three-stage Environmental Control System for Intestinal Microbiota) to study the human large intestine. Its main feature compared with other in vitro systems is the anaerobic atmosphere originating directly from the microbiota metabolism, leading to different gas ratios of CO2 and H2 in each compartment. Analyses of the metabolic and microbiological profiles (LC-MS and a phylogenetic microarray) show different profiles together with a maintenance of this differentiation between the three compartments, simulating respectively a proximal, a transversal and a distal colon. Moreover, the last reactor presents a high similarity with the initial fecal sample, at the microbiological diversity level. Based on our results, this in-vitro process improvement is a valuable alternative tool to dynamically study the structure and metabolism of gut microbiota, and its response to nutrients, prebiotics, probiotics, drugs or xenobiotics.
Collapse
Affiliation(s)
- David Feria-Gervasio
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - William Tottey
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - Nadia Gaci
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - Monique Alric
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Cardot
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - Pierre Peyret
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
| | - Jean-François Martin
- INRA, UMR 1019, Plateforme d'Exploration du Métabolisme, Nutrition Humaine, F-63122 Saint Genès Champanelle, France
| | - Estelle Pujos
- INRA, UMR 1019, Plateforme d'Exploration du Métabolisme, Nutrition Humaine, F-63122 Saint Genès Champanelle, France
| | - Jean-Louis Sébédio
- INRA, UMR 1019, Plateforme d'Exploration du Métabolisme, Nutrition Humaine, F-63122 Saint Genès Champanelle, France
| | - Jean-François Brugère
- EA 4678 CIDAM, Clermont-Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
14
|
Ntougias S, Bourtzis K, Tsiamis G. The microbiology of olive mill wastes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:784591. [PMID: 24199199 PMCID: PMC3809369 DOI: 10.1155/2013/784591] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 01/18/2023]
Abstract
Olive mill wastes (OMWs) are high-strength organic effluents, which upon disposal can degrade soil and water quality, negatively affecting aquatic and terrestrial ecosystems. The main purpose of this review paper is to provide an up-to-date knowledge concerning the microbial communities identified over the past 20 years in olive mill wastes using both culture-dependent and independent approaches. A database survey of 16S rRNA gene sequences (585 records in total) obtained from olive mill waste environments revealed the dominance of members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria. Independent studies confirmed that OMW microbial communities' structure is cultivar dependent. On the other hand, the detection of fecal bacteria and other potential human pathogens in OMWs is of major concern and deserves further examination. Despite the fact that the degradation and detoxification of the olive mill wastes have been mostly investigated through the application of known bacterial and fungal species originated from other environmental sources, the biotechnological potential of indigenous microbiota should be further exploited in respect to olive mill waste bioremediation and inactivation of plant and human pathogens. The implementation of omic and metagenomic approaches will further elucidate disposal issues of olive mill wastes.
Collapse
Affiliation(s)
- Spyridon Ntougias
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Street, 30100 Agrinio, Greece
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Street, 30100 Agrinio, Greece
| |
Collapse
|
15
|
Frémont M, Coomans D, Massart S, De Meirleir K. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe 2013; 22:50-6. [PMID: 23791918 DOI: 10.1016/j.anaerobe.2013.06.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 03/05/2013] [Accepted: 06/10/2013] [Indexed: 02/06/2023]
Abstract
Human intestinal microbiota plays an important role in the maintenance of host health by providing energy, nutrients, and immunological protection. Intestinal dysfunction is a frequent complaint in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients, and previous reports suggest that dysbiosis, i.e. the overgrowth of abnormal populations of bacteria in the gut, is linked to the pathogenesis of the disease. We used high-throughput 16S rRNA gene sequencing to investigate the presence of specific alterations in the gut microbiota of ME/CFS patients from Belgium and Norway. 43 ME/CFS patients and 36 healthy controls were included in the study. Bacterial DNA was extracted from stool samples, PCR amplification was performed on 16S rRNA gene regions, and PCR amplicons were sequenced using Roche FLX 454 sequencer. The composition of the gut microbiota was found to differ between Belgian controls and Norwegian controls: Norwegians showed higher percentages of specific Firmicutes populations (Roseburia, Holdemania) and lower proportions of most Bacteroidetes genera. A highly significant separation could be achieved between Norwegian controls and Norwegian patients: patients presented increased proportions of Lactonifactor and Alistipes, as well as a decrease in several Firmicutes populations. In Belgian subjects the patient/control separation was less pronounced, however some abnormalities observed in Norwegian patients were also found in Belgian patients. These results show that intestinal microbiota is altered in ME/CFS. High-throughput sequencing is a useful tool to diagnose dysbiosis in patients and could help designing treatments based on gut microbiota modulation (antibiotics, pre and probiotics supplementation).
Collapse
Affiliation(s)
- Marc Frémont
- R.E.D Laboratories NV, Z-1 Researchpark 100, 1731 Zellik, Belgium.
| | | | | | | |
Collapse
|
16
|
Tottey W, Denonfoux J, Jaziri F, Parisot N, Missaoui M, Hill D, Borrel G, Peyretaillade E, Alric M, Harris HMB, Jeffery IB, Claesson MJ, O'Toole PW, Peyret P, Brugère JF. The human gut chip "HuGChip", an explorative phylogenetic microarray for determining gut microbiome diversity at family level. PLoS One 2013; 8:e62544. [PMID: 23690942 PMCID: PMC3656878 DOI: 10.1371/journal.pone.0062544] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/22/2013] [Indexed: 02/07/2023] Open
Abstract
Evaluating the composition of the human gut microbiota greatly facilitates studies on its role in human pathophysiology, and is heavily reliant on culture-independent molecular methods. A microarray designated the Human Gut Chip (HuGChip) was developed to analyze and compare human gut microbiota samples. The PhylArray software was used to design specific and sensitive probes. The DNA chip was composed of 4,441 probes (2,442 specific and 1,919 explorative probes) targeting 66 bacterial families. A mock community composed of 16S rRNA gene sequences from intestinal species was used to define the threshold criteria to be used to analyze complex samples. This was then experimentally verified with three human faecal samples and results were compared (i) with pyrosequencing of the V4 hypervariable region of the 16S rRNA gene, (ii) metagenomic data, and (iii) qPCR analysis of three phyla. When compared at both the phylum and the family level, high Pearson's correlation coefficients were obtained between data from all methods. The HuGChip development and validation showed that it is not only able to assess the known human gut microbiota but could also detect unknown species with the explorative probes to reveal the large number of bacterial sequences not yet described in the human gut microbiota, overcoming the main inconvenience encountered when developing microarrays.
Collapse
Affiliation(s)
- William Tottey
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Jeremie Denonfoux
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Faouzi Jaziri
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
- CNRS, UMR 6158, ISIMA/LIMOS, Aubière/Clermont-Ferrand, France
| | - Nicolas Parisot
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Mohiedine Missaoui
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
- CNRS, UMR 6158, ISIMA/LIMOS, Aubière/Clermont-Ferrand, France
| | - David Hill
- CNRS, UMR 6158, ISIMA/LIMOS, Aubière/Clermont-Ferrand, France
| | - Guillaume Borrel
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Eric Peyretaillade
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Monique Alric
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Hugh M. B. Harris
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Ian B. Jeffery
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Marcus J. Claesson
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul W. O'Toole
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Pierre Peyret
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Jean-François Brugère
- EA CIDAM 4678, Clermont-Université, Université d'Auvergne, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
17
|
Rudi K, Storrø O, Oien T, Johnsen R. Modelling bacterial transmission in human allergen-specific IgE sensitization. Lett Appl Microbiol 2012; 54:447-54. [PMID: 22385401 DOI: 10.1111/j.1472-765x.2012.03229.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The impact of bacterial transmission from mother to child on human allergy development is poorly understood. The aim of the present work was therefore to use a temporal collected dataset of 117 mothers and their children to model the potential effect of mother-to-child bacterial transmission on allergy (IgE) sensitization. METHODS AND RESULTS We have recently shown a negative IgE correlation to high Escherichia coli levels until the age of 1 year, with a shift to positive correlation to high Bacteroides fragilis levels at the age of 2. In the present work, we used the previous published data to model the persistence and interaction effects of E. coli and B. fragilis with respect to IgE sensitization. Temporal modelling was made by first defining a stochastic model for sensitization state based on Markov chains and regression tree analyses. Subsequent simulations were used to determine the impact of mother-to-infant bacterial transmission. The regression tree analyses showed that E. coli colonization within 4 days was negatively correlated to sensitization, while lack of E. coli colonization at day 4 combined with B. fragilis colonization after 4 months was positively correlated. With Markov chain analyses, we found that E. coli was highly persistent in infants until the age of 4 months, while the persistence of B. fragilis increased with age. CONCLUSIONS Simulations showed that the mother's bacterial composition correlated significantly to the child's IgE sensitization state at the age of 2 years. High E. coli and low B. fragilis levels in the mother were negatively correlated, while low E. coli and high B. fragilis were positively correlated to IgE. SIGNIFICANCE AND IMPACT OF THE STUDY Our results support that allergy could partly be communicable, being transferred from mother to infant through the gut microbiota.
Collapse
Affiliation(s)
- K Rudi
- Hedmark University College, Hamar, Norway.
| | | | | | | |
Collapse
|
18
|
In vitro maintenance of a human proximal colon microbiota using the continuous fermentation system P-ECSIM. Appl Microbiol Biotechnol 2011; 91:1425-33. [DOI: 10.1007/s00253-011-3462-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/06/2023]
|
19
|
Sherman MP. New concepts of microbial translocation in the neonatal intestine: mechanisms and prevention. Clin Perinatol 2010; 37:565-79. [PMID: 20813271 PMCID: PMC2933426 DOI: 10.1016/j.clp.2010.05.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial translocation from the gastrointestinal tract is an important pathway initiating late-onset sepsis and necrotizing enterocolitis in very low-birth-weight infants. The emerging intestinal microbiota, nascent intestinal epithelia, naive immunity, and suboptimal nutrition (lack of breast milk) have roles in facilitating bacterial translocation. Feeding lactoferrin, probiotics, or prebiotics has presented exciting possibilities to prevent bacterial translocation in preterm infants, and clinical trials will identify the most safe and efficacious prevention and treatment strategies.
Collapse
|
20
|
Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. MICROBIOLOGY-SGM 2010; 156:3216-3223. [PMID: 20705661 DOI: 10.1099/mic.0.040618-0] [Citation(s) in RCA: 687] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although it is known that antibiotics have short-term impacts on the human microbiome, recent evidence demonstrates that the impacts of some antibiotics remain for extended periods of time. In addition, antibiotic-resistant strains can persist in the human host environment in the absence of selective pressure. Both molecular- and cultivation-based approaches have revealed ecological disturbances in the microbiota after antibiotic administration, in particular for specific members of the bacterial community that are susceptible or alternatively resistant to the antibiotic in question. A disturbing consequence of antibiotic treatment has been the long-term persistence of antibiotic resistance genes, for example in the human gut. These data warrant use of prudence in the administration of antibiotics that could aggravate the growing battle with emerging antibiotic-resistant pathogenic strains.
Collapse
Affiliation(s)
- Cecilia Jernberg
- Department of Bacteriology, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | - Sonja Löfmark
- Department of Genetics, Microbiology and Toxicology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Charlotta Edlund
- Department of Laboratory Medicine, Karolinska Institute, SE-141 86 Stockholm, Sweden.,Medical Products Agency, SE-751 03 Uppsala, Sweden
| | - Janet K Jansson
- Lawrence Berkeley National Laboratory, Division of Earth Sciences, 1 Cyclotron Rd, Berkeley, CA 94720, USA.,Department of Microbiology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
21
|
Mihajlovski A, Doré J, Levenez F, Alric M, Brugère JF. Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:272-280. [PMID: 23766078 DOI: 10.1111/j.1758-2229.2009.00116.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The methanogenic diversity of the human intestinal microbiota has long been viewed as composed of two Methanobacteriales: Methanobrevibacter smithii and Methanosphaera stadtmanae. Recently, Mx-01, a new phylotype hypothesized to belong to a putative sixth methanogenic order, was recovered from human faeces. Here we examined the diversity and the distribution of methanogens among healthy people of three age groups by analysing mcrA and 16S rDNA clones. The mcrA analysis of ∼1200 clones revealed that the usual Methanobacteriales were present without any significant difference among adults and elderly (respectively 60% and 80% of carriers, n = 40, P = 0.3). In addition, four new phylotypes that grouped with Mx-01 in the same monophyletic clade were recovered. These phylotypes were significantly more frequently detected in elderly people (40%, n = 20) than in adults (10%, n = 20, P = 0.065). In parallel, new 16S rDNA phylotypes affiliated near or within Thermoplasmatales were recovered. Altogether, these results indicate an age-related apparition of Mx-phylotypes, putatively methanogenic, which are formed of several species carrying a mcrA gene and that are not related to any of the five methanogenic orders. These species may be related to Thermoplasmatales or may cohabit with archaeal species related to Thermoplasmatales.
Collapse
Affiliation(s)
- Agnès Mihajlovski
- Université d'Auvergne, Clermont-Université, Centre de Recherche en Nutrition Humaine (CRNH) d'Auvergne, Equipe de Recherche Technologique « Conception, Ingénierie et Développement de l'Aliment et du Médicament » (ERT-18 CIDAM), Clermont-Ferrand, F-63001, France. Unité d'Écologie et de Physiologie du Système Digestif, INRA Jouy-en-Josas F-78352, France
| | | | | | | | | |
Collapse
|