1
|
Shukla D, Suryavanshi A, Bharti SK, Asati V, Mahapatra DK. Recent Advances in the Treatment and Management of Alzheimer's Disease: A Precision Medicine Perspective. Curr Top Med Chem 2024; 24:1699-1737. [PMID: 38566385 DOI: 10.2174/0115680266299847240328045737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
About 60% to 70% of people with dementia have Alzheimer's Disease (AD), a neurodegenerative illness. One reason for this disorder is the misfolding of naturally occurring proteins in the human brain, specifically β-amyloid (Aβ) and tau. Certain diagnostic imaging techniques, such as amyloid PET imaging, tau PET imaging, Magnetic Resonance Imaging (MRI), Computerized Tomography (CT), and others, can detect biomarkers in blood, plasma, and cerebral spinal fluids, like an increased level of β-amyloid, plaques, and tangles. In order to create new pharmacotherapeutics for Alzheimer's disease, researchers must have a thorough and detailed knowledge of amyloid beta misfolding and other related aspects. Donepezil, rivastigmine, galantamine, and other acetylcholinesterase inhibitors are among the medications now used to treat Alzheimer's disease. Another medication that can temporarily alleviate dementia symptoms is memantine, which blocks the N-methyl-D-aspartate (NMDA) receptor. However, it is not able to halt or reverse the progression of the disease. Medication now on the market can only halt its advancement, not reverse it. Interventions to alleviate behavioral and psychological symptoms, exhibit anti- neuroinflammation and anti-tau effects, induce neurotransmitter alteration and cognitive enhancement, and provide other targets have recently been developed. For some Alzheimer's patients, the FDA-approved monoclonal antibody, aducanumab, is an option; for others, phase 3 clinical studies are underway for drugs, like lecanemab and donanemab, which have demonstrated potential in eliminating amyloid protein. However, additional study is required to identify and address these limitations in order to reduce the likelihood of side effects and maximize the therapeutic efficacy.
Collapse
Affiliation(s)
- Deepali Shukla
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Anjali Suryavanshi
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
2
|
Vuic B, Milos T, Tudor L, Nikolac Perkovic M, Konjevod M, Nedic Erjavec G, Farkas V, Uzun S, Mimica N, Svob Strac D. Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms. Genes (Basel) 2023; 14:2048. [PMID: 38002991 PMCID: PMC10671071 DOI: 10.3390/genes14112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Dementia is a syndrome of global and progressive deterioration of cognitive skills, especially memory, learning, abstract thinking, and orientation, usually affecting the elderly. The most common forms are Alzheimer's disease, vascular dementia, and other (frontotemporal, Lewy body disease) dementias. The etiology of these multifactorial disorders involves complex interactions of various environmental and (epi)genetic factors and requires multiple forms of pharmacological intervention, including anti-dementia drugs for cognitive impairment, antidepressants, antipsychotics, anxiolytics and sedatives for behavioral and psychological symptoms of dementia, and other drugs for comorbid disorders. The pharmacotherapy of dementia patients has been characterized by a significant interindividual variability in drug response and the development of adverse drug effects. The therapeutic response to currently available drugs is partially effective in only some individuals, with side effects, drug interactions, intolerance, and non-compliance occurring in the majority of dementia patients. Therefore, understanding the genetic basis of a patient's response to pharmacotherapy might help clinicians select the most effective treatment for dementia while minimizing the likelihood of adverse reactions and drug interactions. Recent advances in pharmacogenomics may contribute to the individualization and optimization of dementia pharmacotherapy by increasing its efficacy and safety via a prediction of clinical outcomes. Thus, it can significantly improve the quality of life in dementia patients.
Collapse
Affiliation(s)
- Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Vladimir Farkas
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| |
Collapse
|
3
|
Squillario M, Abate G, Tomasi F, Tozzo V, Barla A, Uberti D. A telescope GWAS analysis strategy, based on SNPs-genes-pathways ensamble and on multivariate algorithms, to characterize late onset Alzheimer's disease. Sci Rep 2020; 10:12063. [PMID: 32694537 PMCID: PMC7374579 DOI: 10.1038/s41598-020-67699-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Genome–wide association studies (GWAS) have revealed a plethora of putative susceptibility genes for Alzheimer’s disease (AD), with the sole exception of APOE gene unequivocally validated in independent study. Considering that the etiology of complex diseases like AD could depend on functional multiple genes interaction network, here we proposed an alternative GWAS analysis strategy based on (i) multivariate methods and on a (ii) telescope approach, in order to guarantee the identification of correlated variables, and reveal their connections at three biological connected levels. Specifically as multivariate methods, we employed two machine learning algorithms and a genetic association test and we considered SNPs, Genes and Pathways features in the analysis of two public GWAS dataset (ADNI-1 and ADNI-2). For each dataset and for each feature we addressed two binary classifications tasks: cases vs. controls and the low vs. high risk of developing AD considering the allelic status of APOEe4. This complex strategy allowed the identification of SNPs, genes and pathways lists statistically robust and meaningful from the biological viewpoint. Among the results, we confirm the involvement of TOMM40 gene in AD and we propose GRM7 as a novel gene significantly associated with AD.
Collapse
Affiliation(s)
| | - Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | | | | | | | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | | |
Collapse
|
4
|
Pharmacogenomics of Alzheimer’s and Parkinson’s diseases. Neurosci Lett 2020; 726:133807. [DOI: 10.1016/j.neulet.2018.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
|
5
|
Cacabelos R, Carril JC, Cacabelos N, Kazantsev AG, Vostrov AV, Corzo L, Cacabelos P, Goldgaber D. Sirtuins in Alzheimer's Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics. Int J Mol Sci 2019; 20:ijms20051249. [PMID: 30871086 PMCID: PMC6429449 DOI: 10.3390/ijms20051249] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
Sirtuins (SIRT1-7) are NAD+-dependent protein deacetylases/ADP ribosyltransferases with important roles in chromatin silencing, cell cycle regulation, cellular differentiation, cellular stress response, metabolism and aging. Sirtuins are components of the epigenetic machinery, which is disturbed in Alzheimer’s disease (AD), contributing to AD pathogenesis. There is an association between the SIRT2-C/T genotype (rs10410544) (50.92%) and AD susceptibility in the APOEε4-negative population (SIRT2-C/C, 34.72%; SIRT2-T/T 14.36%). The integration of SIRT2 and APOE variants in bigenic clusters yields 18 haplotypes. The 5 most frequent bigenic genotypes in AD are 33CT (27.81%), 33CC (21.36%), 34CT (15.29%), 34CC (9.76%) and 33TT (7.18%). There is an accumulation of APOE-3/4 and APOE-4/4 carriers in SIRT2-T/T > SIRT2-C/T > SIRT2-C/C carriers, and also of SIRT2-T/T and SIRT2-C/T carriers in patients who harbor the APOE-4/4 genotype. SIRT2 variants influence biochemical, hematological, metabolic and cardiovascular phenotypes, and modestly affect the pharmacoepigenetic outcome in AD. SIRT2-C/T carriers are the best responders, SIRT2-T/T carriers show an intermediate pattern, and SIRT2-C/C carriers are the worst responders to a multifactorial treatment. In APOE-SIRT2 bigenic clusters, 33CC carriers respond better than 33TT and 34CT carriers, whereas 24CC and 44CC carriers behave as the worst responders. CYP2D6 extensive metabolizers (EM) are the best responders, poor metabolizers (PM) are the worst responders, and ultra-rapid metabolizers (UM) tend to be better responders that intermediate metabolizers (IM). In association with CYP2D6 genophenotypes, SIRT2-C/T-EMs are the best responders. Some Sirtuin modulators might be potential candidates for AD treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Juan C Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Aleksey G Kazantsev
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Alex V Vostrov
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Lola Corzo
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Pablo Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Dmitry Goldgaber
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
6
|
Cacabelos R. Pleiotropy and promiscuity in pharmacogenomics for the treatment of Alzheimer's disease and related risk factors. FUTURE NEUROLOGY 2018. [DOI: 10.2217/fnl-2017-0038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with Alzheimer's disease are current consumers of polypharmacy with a high risk for drug–drug interactions. Antidementia drugs and other pharmacological treatments for vascular risk factors associated with dementia exert pleiotropic effects which are promiscuously regulated by different gene products. The aim of this review is to highlight the influence of genes involved in pharmacogenetics (i.e., pathogenic, mechanistic, metabolic, transporter and pleiotropic genes) as major determinants of response to treatment in Alzheimer's disease. Patients harboring poor or ultrarapid geno-phenotypes display more irregular profiles in drug efficacy and safety than extensive or intermediate metabolizers. Polymorphic variants of genes associated with lipid metabolism influence the therapeutic response to hypolipemic agents. Understanding these effects is very useful for optimizing polytherapy in dementia.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
- Chair of Genomic Medicine, Continental University Medical School, Huancayo, Peru
| |
Collapse
|
7
|
Cacabelos R, Meyyazhagan A, Carril JC, Cacabelos P, Teijido Ó. Pharmacogenetics of Vascular Risk Factors in Alzheimer's Disease. J Pers Med 2018; 8:jpm8010003. [PMID: 29301387 PMCID: PMC5872077 DOI: 10.3390/jpm8010003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a polygenic/complex disorder in which genomic, epigenomic, cerebrovascular, metabolic, and environmental factors converge to define a progressive neurodegenerative phenotype. Pharmacogenetics is a major determinant of therapeutic outcome in AD. Different categories of genes are potentially involved in the pharmacogenetic network responsible for drug efficacy and safety, including pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes. However, most drugs exert pleiotropic effects that are promiscuously regulated for different gene products. Only 20% of the Caucasian population are extensive metabolizers for tetragenic haplotypes integrating CYP2D6-CYP2C19-CYP2C9-CYP3A4/5 variants. Patients harboring CYP-related poor (PM) and/or ultra-rapid (UM) geno-phenotypes display more irregular profiles in drug metabolism than extensive (EM) or intermediate (IM) metabolizers. Among 111 pentagenic (APOE-APOB-APOC3-CETP-LPL) haplotypes associated with lipid metabolism, carriers of the H26 haplotype (23-TT-CG-AG-CC) exhibit the lowest cholesterol levels, and patients with the H104 haplotype (44-CC-CC-AA-CC) are severely hypercholesterolemic. Furthermore, APOE, NOS3, ACE, AGT, and CYP variants influence the therapeutic response to hypotensive drugs in AD patients with hypertension. Consequently, the implementation of pharmacogenetic procedures may optimize therapeutics in AD patients under polypharmacy regimes for the treatment of concomitant vascular disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, 15165 La Coruña, Spain.
| | - Arun Meyyazhagan
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, 15165 La Coruña, Spain.
- Chair of Genomic Medicine, Continental University Medical School, Huancayo 12000, Peru.
| | - Juan C Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, 15165 La Coruña, Spain.
- Chair of Genomic Medicine, Continental University Medical School, Huancayo 12000, Peru.
| | - Pablo Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, 15165 La Coruña, Spain.
- Chair of Genomic Medicine, Continental University Medical School, Huancayo 12000, Peru.
| | - Óscar Teijido
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, 15165 La Coruña, Spain.
- Chair of Genomic Medicine, Continental University Medical School, Huancayo 12000, Peru.
| |
Collapse
|
8
|
Carril JC, Cacabelos R. Genetic Risk Factors in Cerebrovascular Disorders and Cognitive Deterioration. Curr Genomics 2017; 18:416-429. [PMID: 29081697 PMCID: PMC5635647 DOI: 10.2174/1389202918666170426165226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/12/2016] [Accepted: 04/29/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The study of variations in genes involved in the different events that trigger the atherogenic process, such as lipid metabolism (modification of LDL-cholesterol), endothelial function and hypertension, immune response (recruitment of macrophages and foam cell formation) and stability of atherosclerotic plaques (thrombosis), established the risk for suffering a vascular disorder. A total of 2455 cases over 50 years of age were genotyped for a panel of 19 SNPs in 15 genes encoding for proteins involved in the atherogenic process. This study shows the relevance of polymorphisms in APOB (odds ratio (OR), 1.17; 95% confidence interval (95% CI), 0.74-1.85), APOC3 (OR, 1.33; 95% CI, 0.82-2.17) and APOE (OR, 1.75; 95% CI, 1.09-2.80), as genetic risk markers for hypercholesterolemia; polymorphisms in ACE (OR, 1.68; 95% CI, 0.32-8.77) and AGT (OR, 1.74; 95% CI, 0.97-3.14) for hypertension; and in APOE*3/*4 (OR, 2.06; 95% CI, 1.70-2.51) and APOE*4/*4 (OR, 3.08; 95% CI, 1.85-5.12) as unambiguous markers of dementia. RESULT Our results also showed the transversal importance of proinflammatory cytokines in different stages of atherogenesis, with special relevance of IL6 (OR, 1.39; 95% CI, 0.56-3.49) and TNF (OR, 1.40; 95% CI, 0.92-2.15) related to hypercholesterolemia and hypertension. The set of markers involved in this genetic risk panel makes it a powerful tool in the management of patients with different vascular disorders.
Collapse
Affiliation(s)
- Juan C. Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine. 15165-Bergondo, Corunna, Spain; Genomic Medicine. Camilo José Cela University 28692-Madrid, Spain
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine. 15165-Bergondo, Corunna, Spain; Genomic Medicine. Camilo José Cela University 28692-Madrid, Spain
| |
Collapse
|
9
|
Cacabelos R, Torrellas C, Teijido O, Carril JC. Pharmacogenetic considerations in the treatment of Alzheimer's disease. Pharmacogenomics 2016; 17:1041-74. [PMID: 27291247 DOI: 10.2217/pgs-2016-0031] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The practical pharmacogenetics of Alzheimer's disease (AD) is circumscribed to acetylcholinesterase inhibitors (AChEIs) and memantine. However, pharmacogenetic procedures should be applied to novel strategies in AD therapeutics including: novel AChEIs and neurotransmitter regulators, anti-Aβ treatments, anti-tau treatments, pleiotropic products, epigenetic drugs and combination therapies. Genes involved in the pharmacogenetic network are under the influence of the epigenetic machinery which regulates gene expression transcriptionally and post-transcriptionally, configuring the fundamentals of pharmacoepigenomics. Over 60% of AD patients present concomitant pathologies demanding additional treatments which increase the likelihood of drug-drug interactions. Lipid metabolism dysfunction is a pathogenic mechanism inherent to AD neurodegeneration. The therapeutic response to hypolipidemic compounds is influenced by the APOE and CYP genotypes. The development of novel compounds and the use of combination/multifactorial treatments require the implantation of pharmacogenomic procedures for the avoidance of ADRs and the optimization of therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, Camilo José Cela University, Madrid, Spain.,EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Clara Torrellas
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Oscar Teijido
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Juan Carlos Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| |
Collapse
|
10
|
Cacabelos R, Torrellas C, Carrera I. Opportunities in pharmacogenomics for the treatment of Alzheimer's disease. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT In Alzheimer's disease (AD), approximately 10–20% of direct costs are associated with pharmacological treatment. Pharmacogenomics account for 30–90% variability in pharmacokinetics and pharmacodynamics. Genes potentially involved in the pharmacogenomics outcome include pathogenic, mechanistic, metabolic, transporter and pleiotropic genes. Over 75% of the Caucasian population is defective for the CYP2D6+2C9+2C19 cluster. Polymorphic variants in the APOE-TOMM40 region influence AD pharmacogenomics. APOE-4 carriers are the worst responders and APOE-3 carriers are the best responders to conventional treatments. TOMM40 poly T-S/S carriers are the best responders, VL/VL and S/VL carriers are intermediate responders and L/L carriers are the worst responders. The haplotype 4/4-L/L is probably responsible for early onset of the disease, a faster cognitive decline and a poor response to different treatments.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
| | - Clara Torrellas
- Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
| | - Iván Carrera
- Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
| |
Collapse
|
11
|
A comparative evaluation of a novel vaccine in APP/PS1 mouse models of Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:807146. [PMID: 25759822 PMCID: PMC4339718 DOI: 10.1155/2015/807146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/14/2014] [Indexed: 12/13/2022]
Abstract
Immunization against amyloid-beta-peptide (Aβ) has been widely investigated as a potential immunotherapeutic approach for Alzheimer's disease (AD). With the aim of developing an active immunogenic vaccine without need of coadjuvant modification for human trials and therefore avoiding such side effects, we designed the Aβ1–42 vaccine (EB101), delivered in a liposomal matrix, that based on our previous studies significantly prevents and reverses the AD neuropathology, clearing Aβ plaques while markedly reducing neuronal degeneration, behavioral deficits, and minimizing neuroinflammation in APP/PS1 transgenic mice. Here, the efficacy of our immunogenic vaccine EB101 was compared with the original immunization vaccine cocktail Aβ42 + CFA/IFA (Freund's adjuvant), in order to characterize the effect of sphingosine-1-phosphate (S1P) in the immunotherapeutic response. Quantitative analysis of amyloid burden showed a notable decrease in the neuroinflammation reaction against Aβ plaques when S1P was compared with other treatments, suggesting that S1P plays a key role as a neuroprotective agent. Moreover, EB101 immunized mice presented a protective immunogenic reaction resulting in the increase of Aβ-specific antibody response and decrease of reactive glia in the affected brain areas, leading to a Th2 immunological reaction.
Collapse
|
12
|
Pharmacogenetics of Neurodegenerative Disorders. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-3-319-15344-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Liu M, Zhang Y, Huo YR, Liu S, Liu S, Wang J, Wang C, Wang J, Ji Y. Influence of the rs1080985 Single Nucleotide Polymorphism of the CYP2D6 Gene and APOE Polymorphism on the Response to Donepezil Treatment in Patients with Alzheimer's Disease in China. Dement Geriatr Cogn Dis Extra 2014; 4:450-6. [PMID: 25538729 PMCID: PMC4264516 DOI: 10.1159/000367596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background/Aim Recent data have indicated that the rs1080985 single nucleotide polymorphism (SNP) of the cytochrome P450 (CYP) 2D6 and the common apolipoprotein E (APOE) gene may affect the response to donepezil in patients with Alzheimer's disease (AD). We investigated this association in Chinese patients with mild-to-moderate AD. Methods In this prospective cohort study, analyses of CYP2D6 and APOE were conducted in 208 native Chinese patients with mild-to-moderate AD. All patients were treated with donepezil 5 mg/day for 6 months, and the response to treatment was assessed using the Mini-Mental State Examination. Results No significant differences between responders (68.9%) and nonresponders (31.1%) to donepezil treatment (6 months' duration) were observed in the distribution of the CYP2D6 rs1080985 SNP, common APOE polymorphism or a combination of the two. Conclusions Our results suggest that neither the CYP2D6 nor the APOE polymorphism influences the 6-month response to donepezil treatment in a Chinese population with AD.
Collapse
Affiliation(s)
- Mengyuan Liu
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China ; Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China ; Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Ying Zhang
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China ; Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Ya Ruth Huo
- School of Medicine, University of New South Wales, Kensington, N.S.W., Australia
| | - Shuling Liu
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China ; Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Shuai Liu
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China ; Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Junwei Wang
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China ; Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Change Wang
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China ; Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Jinhuan Wang
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China ; Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yong Ji
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China ; Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| |
Collapse
|
14
|
Abstract
INTRODUCTION It is assumed that epigenetic modifications are reversible and could potentially be targeted by pharmacological and dietary interventions. Epigenetic drugs are gaining particular interest as potential candidates for the treatment of Alzheimer's disease (AD). AREAS COVERED This article covers relevant information from over 50 different epigenetic drugs including: DNA methyltransferase inhibitors; histone deacetylase inhibitors; histone acetyltransferase modulators; histone methyltransferase inhibitors; histone demethylase inhibitors; non-coding RNAs (microRNAs) and dietary regimes. The authors also review the pharmacoepigenomics and the pharmacogenomics of epigenetic drugs. The readers will gain insight into i) the classification of epigenetic drugs; ii) the mechanisms by which these drugs might be useful in AD; iii) the pharmacological properties of selected epigenetic drugs; iv) pharmacoepigenomics and the influence of epigenetic drugs on genes encoding CYP enzymes, transporters and nuclear receptors; and v) the genes associated with the pharmacogenomics of anti-dementia drugs. EXPERT OPINION Epigenetic drugs reverse epigenetic changes in gene expression and might open future avenues in AD therapeutics. Unfortunately, clinical trials with this category of drugs are lacking in AD. The authors highlight the need for pharmacogenetic and pharmacoepigenetic studies to properly evaluate any efficacy and safety issues.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Professor,Camilo José Cela University, Chair of Genomic Medicine , Madrid , Spain
| | | |
Collapse
|
15
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|
16
|
Cacabelos R, Cacabelos P, Torrellas C. Personalized Medicine of Alzheimer’s Disease. HANDBOOK OF PHARMACOGENOMICS AND STRATIFIED MEDICINE 2014. [PMCID: PMC7149555 DOI: 10.1016/b978-0-12-386882-4.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) is a major problem of health and disability, with a relevant economic impact on society (e.g., €177 billion in Europe). Despite important advances in pathogenesis, diagnosis, and treatment, The primary causes of AD remain elusive, accurate biomarkers are not well characterized, and available pharmacological treatments are not cost-effective. As a complex disorder, AD is polygenic and multifactorial: hundreds of defective genes distributed across the human genome may contribute to its pathogenesis (with the participation of diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena) and lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death. Future perspectives for the global management of AD predict that structural and functional genomics and proteomics may help in the search for reliable biomarkers, and that pharmacogenomics may be an option in optimizing drug development and therapeutics.
Collapse
|
17
|
Cardelli M, Marchegiani F, Corsonello A, Lattanzio F, Provinciali M. A review of pharmacogenetics of adverse drug reactions in elderly people. Drug Saf 2013; 35 Suppl 1:3-20. [PMID: 23446782 DOI: 10.1007/bf03319099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Older adults are more susceptible to the prevalence of therapeutic failure and adverse drug reactions (ADRs). Recent advances in genomic research have shed light on the crucial role of genetic variants, mainly involving genes encoding drug-metabolizing enzymes, drug transporters and genes responsible for a compound's mechanism of action, in driving different treatment responses among individuals, in terms of therapeutic efficacy and safety. The interindividual variations of these genes may account for the differences observed in drug efficacy and the appearance of ADRs in elderly people. The advent of whole genome mapping techniques has allowed researchers to begin to characterize the genetic components underlying serious ADRs. The identification and validation of these genetic markers will enable the screening of patients at risk of serious ADRs and to establish personalized treatment regimens.The aim of this review was to provide an update on the recent developments in geriatric pharmacogenetics in clinical practice by reviewing the available evidence in the PubMed database to September 2012. A Pubmed search was performed (years 1999-2012) using the following two search strategies: ('pharmacogenomic' OR 'pharmacogenetic ') AND ('geriatric' or 'elderly ') AND 'adverse drug reactions'; [gene name] AND ('geriatric' or 'elderly ') AND 'adverse drug reactions', in which the gene names were those contained in the Table of Pharmacogenomic Biomarkers in Drug Labels published online by the US Food and Drug Administration ( http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm ). Reference lists of included original articles and relevant review articles were also screened. The search was limited to studies published in the English language.
Collapse
Affiliation(s)
- Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | | | | | | | | |
Collapse
|
18
|
Cacabelos R, Cacabelos P, Aliev G. Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpsych.2013.31008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Barber RC. The genetics of Alzheimer's disease. SCIENTIFICA 2012; 2012:246210. [PMID: 24278680 PMCID: PMC3820554 DOI: 10.6064/2012/246210] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/28/2012] [Indexed: 06/02/2023]
Abstract
Alzheimer's disease is a progressive, neurodegenerative disease that represents a growing global health crisis. Two major forms of the disease exist: early onset (familial) and late onset (sporadic). Early onset Alzheimer's is rare, accounting for less than 5% of disease burden. It is inherited in Mendelian dominant fashion and is caused by mutations in three genes (APP, PSEN1, and PSEN2). Late onset Alzheimer's is common among individuals over 65 years of age. Heritability of this form of the disease is high (79%), but the etiology is driven by a combination of genetic and environmental factors. A large number of genes have been implicated in the development of late onset Alzheimer's. Examples that have been confirmed by multiple studies include ABCA7, APOE, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A4A/MS4A4E/MS4A6E, PICALM, and SORL1. Despite tremendous progress over the past three decades, roughly half of the heritability for the late onset of the disease remains unidentified. Finding the remaining genetic factors that contribute to the development of late onset Alzheimer's disease holds the potential to provide novel targets for treatment and prevention, leading to the development of effective strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Robert C. Barber
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
20
|
Hampel H, Lista S, Khachaturian ZS. Development of biomarkers to chart all Alzheimer's disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement 2012; 8:312-36. [PMID: 22748938 DOI: 10.1016/j.jalz.2012.05.2116] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim of this perspective article is to stimulate radical shifts in thinking and foster further discussion on the effective discovery, development, validation, and qualification process of biological markers derived from all available technical modalities that meet the complex conceptual and pathophysiological challenges across all stages of the complex, nonlinear, dynamic, and chronically progressive sporadic Alzheimer's disease (AD). This perspective evaluates the current state of the science regarding a broad spectrum of hypothesis-driven and exploratory technologies and "markers" as candidates for all required biomarker functions, in particular, surrogate indicators of adaptive to maladaptive and compensatory to decompensatory, reversible to irreversible brain "systems failure." We stress the future importance of the systems biology (SB) paradigm (next to the neural network paradigm) for substantial progress in AD research. SB represents an integrated and deeper investigation of interacting biomolecules within cells and organisms. This approach has only recently become feasible as high-throughput technologies and mass spectrometric analyses of proteins and lipids, together with rigorous bioinformatics, have evolved. Existing high-content data derived from clinically and experimentally derived neural tissues point to convergent pathophysiological pathways during the course of AD, transcending traditional descriptive studies to reach a more integrated and comprehensive understanding of AD pathophysiology, derived systems biomarkers, and "druggable" system nodes. The discussion is continued on the premise that the lack of integration of advanced biomarker technologies and transfertilization from more mature translational research fields (e.g., oncology, immunology, cardiovascular), which satisfy regulatory requirements for an accurate, sensitive, and well-validated surrogate marker of specific pathophysiological processes and/or clinical outcomes, is a major rate-limiting factor for the successful development and approval of effective treatments for AD prevention. We consider the conceptual, scientific, and technical challenges for the discovery-development-validation-qualification process of biomarker tools and analytical algorithms for detection of the earliest pathophysiological processes in asymptomatic individuals at elevated risk during preclinical stages of AD. The most critical need for rapid translation of putative markers into validated (performance) and standardized (harmonized standard operating procedures) biomarker tools that fulfill regulatory requirements (qualify for use in treatment trials: e.g., safety, target engagement, mechanism of action, enrichment, stratification, secondary and primary outcome, surrogate outcome) is the availability of a large-scale worldwide comprehensive longitudinal database that includes the following cohorts: (a) healthy aging, (b) people at elevated risks (genetic/epigenetic/lifestyle/comorbid conditions), and (c) asymptomatic-preclinical/prodromal-mild cognitive impairment/syndromal mild, moderate, or severe AD. Our proposal, as initial strategic steps for integrating markers into future development of diagnostic and therapy trial technologies, is to work toward: (a) creating the essential research and development infrastructure as an international shared resource, (b) building the organizational structure for managing such a multinational shared resource, and (c) establishing an integrated transsectoral multidisciplinary global network of collaborating investigators to help build and use the shared research resource.
Collapse
Affiliation(s)
- Harald Hampel
- Department of Psychiatry, University of Frankfurt, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center; Institute for CNS Disorders and Genomic Medicine; EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University; Bergondo; Corunna; Spain
| |
Collapse
|
22
|
Vaccine Development to Treat Alzheimer's Disease Neuropathology in APP/PS1 Transgenic Mice. Int J Alzheimers Dis 2012; 2012:376138. [PMID: 23024882 PMCID: PMC3457670 DOI: 10.1155/2012/376138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/14/2012] [Accepted: 06/28/2012] [Indexed: 11/17/2022] Open
Abstract
A novel vaccine addressing the major hallmarks of Alzheimer's disease (AD), senile plaque-like deposits of amyloid beta-protein (Aβ), neurofibrillary tangle-like structures, and glial proinflammatory cytokines, has been developed. The present vaccine takes a new approach to circumvent failures of previous ones tested in mice and humans, including the Elan-Wyeth vaccine (AN1792), which caused massive T-cell activation, resulting in a meningoencephalitis-like reaction. The EB101 vaccine consists of Aβ1-42 delivered in a novel immunogen-adjuvant composed of liposomes-containing sphingosine-1-phosphate (S1P). EB101 was administered to APPswe/PS1dE9 transgenic mice before and after AD-like pathological symptoms were detectable. Treatment with EB101 results in a marked reduction of Aβ plaque burden, decrease of neurofibrillary tangle-like structure density, and attenuation of astrocytosis. In this transgenic mouse model, EB101 reduces the basal immunological interaction between the T cells and immune activation markers in the affected hippocampal/cortical areas, consistent with decreased amyloidosis-induced inflammation. Therefore, immunization with EB101 prevents and reverses AD-like neuropathology in a significant manner by halting disease progression without developing behavioral spatial deficits in transgenic mice.
Collapse
|
23
|
Cacabelos R, Martínez R, Fernández-Novoa L, Carril JC, Lombardi V, Carrera I, Corzo L, Tellado I, Leszek J, McKay A, Takeda M. Genomics of Dementia: APOE- and CYP2D6-Related Pharmacogenetics. Int J Alzheimers Dis 2012; 2012:518901. [PMID: 22482072 PMCID: PMC3312254 DOI: 10.1155/2012/518901] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/12/2011] [Indexed: 01/05/2023] Open
Abstract
Dementia is a major problem of health in developed societies. Alzheimer's disease (AD), vascular dementia, and mixed dementia account for over 90% of the most prevalent forms of dementia. Both genetic and environmental factors are determinant for the phenotypic expression of dementia. AD is a complex disorder in which many different gene clusters may be involved. Most genes screened to date belong to different proteomic and metabolomic pathways potentially affecting AD pathogenesis. The ε4 variant of the APOE gene seems to be a major risk factor for both degenerative and vascular dementia. Metabolic factors, cerebrovascular disorders, and epigenetic phenomena also contribute to neurodegeneration. Five categories of genes are mainly involved in pharmacogenomics: genes associated with disease pathogenesis, genes associated with the mechanism of action of a particular drug, genes associated with phase I and phase II metabolic reactions, genes associated with transporters, and pleiotropic genes and/or genes associated with concomitant pathologies. The APOE and CYP2D6 genes have been extensively studied in AD. The therapeutic response to conventional drugs in patients with AD is genotype specific, with CYP2D6-PMs, CYP2D6-UMs, and APOE-4/4 carriers acting as the worst responders. APOE and CYP2D6 may cooperate, as pleiotropic genes, in the metabolism of drugs and hepatic function. The introduction of pharmacogenetic procedures into AD pharmacological treatment may help to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Rocío Martínez
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Lucía Fernández-Novoa
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Juan C. Carril
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Valter Lombardi
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Iván Carrera
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Lola Corzo
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Iván Tellado
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Jerzy Leszek
- Department of Psychiatry, Medical University of Wroclaw, Pasteura 10, 50-229 Wroclaw, Poland
| | - Adam McKay
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Masatoshi Takeda
- Department of Psychiatry and Behavioral Sciences, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Abstract
Dementia is a major problem of health in developed countries, and a prototypical paradigm of chronic disability, high cost, and social-family burden. Approximately, 10-20% of direct costs in this kind of neuropathology are related to pharmacological treatment, with a moderate responder rate below 30% and questionable cost-effectiveness. Over 200 different genes have been associated with the pathogenesis of dementia. Studies on structural and functional genomics, transcriptomics, proteomics and metabolomics have revealed the paramount importance of these novel technologies for the understanding of pathogenic cascades and the prediction of therapeutic outcomes in dementia. About 10-30% of Western populations are defective in genes of the CYP superfamily. The most frequent CYP2D6 variants in the Iberian peninsula are the *1/*1 (57.84%), *1/*4 (22.78%), *1×N/*1 (6.10%), *4/*4 (2.56%), and *1/*3 (2.01%) genotypes, accounting for more than 80% of the population. The frequency of extensive (EMs), intermediate (IMs), poor (PMs), and ultra-rapid metabolizers (UMs) is about 59.51%, 29,78%, 4.46%, and 6.23%, respectively, in the general population, and 57.76, 31.05%, 5.27%, and 5.90%, respectively, in AD cases. The construction of a genetic map integrating the most prevalent CYP2D6+CYP2C19+CYP2C9 polymorphic variants in a trigenic cluster yields 82 different haplotype-like profiles, with *1*1-*1*1-*1*1 (25.70%), *1*1-*1*2-*1*2 (10.66%), *1*1-*1*1-*1*1 (10.45%), *1*4-*1*1-*1*1 (8.09%), *1*4-*1*2-*1*1 (4.91%), *1*4-*1*1-*1*2 (4.65%), and *1*1-*1*3-*1*3 (4.33%), as the most frequent genotypes. Only 26.51% of AD patients show a pure 3EM phenotype, 15.29% are 2EM1IM, 2.04% are pure 3IM, 0% are pure 3PM, and 0% are 1UM2PM. EMs and IMs are the best responders, and PMs and UMs are the worst responders to a combination therapy with cholinesterase inhibitors, neuroprotectants, and vasoactive substances. The pharmacogenetic response in AD appears to be dependent upon the networking activity of genes involved in drug metabolism and genes involved in AD pathogenesis (e.g., APOE). AD patients harboring the APOE-4/4 genotypes are the worst responders to conventional antidementia drugs. To achieve a mature discipline of pharmacogenomics in CNS disorders and dementia it would be convenient to accelerate the following processes: (i) to educate physicians and the public on the use of genetic/genomic screening in daily clinical practice; (ii) to standardize genetic testing for major categories of drugs; (iii) to validate pharmacogenomic information according to drug category and pathology; (iv) to regulate ethical, social, and economic issues; and (v) to incorporate pharmacogenomic procedures both to drugs in development and drugs on the market in order to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, Bergondo, Coruña, Spain.
| | | |
Collapse
|
25
|
Abstract
Schizophrenia (SCZ) is among the most disabling of mental disorders. Several neurobiological hypotheses have been postulated as responsible for SCZ pathogenesis: polygenic/multifactorial genomic defects, intrauterine and perinatal environment-genome interactions, neurodevelopmental defects, dopaminergic, cholinergic, serotonergic, gamma-aminobutiric acid (GABAergic), neuropeptidergic and glutamatergic/N-Methyl-D-Aspartate (NMDA) dysfunctions, seasonal infection, neuroimmune dysfunction, and epigenetic dysregulation. SCZ has a heritability estimated at 60-90%. Genetic studies in SCZ have revealed the presence of chromosome anomalies, copy number variants, multiple single-nucleotide polymorphisms of susceptibility distributed across the human genome, aberrant single nucleotide polymorphisms (SNPs) in microRNA genes, mitochondrial DNA mutations, and epigenetic phenomena. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variation in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are major substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are major substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are major substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. About 10-20% of Western populations are defective in genes of the CYP superfamily. Only 26% of Southern Europeans are pure extensive metabolizers for the trigenic cluster integrated by the CYP2D6+CYP2C19+CYP2C9 genes. The pharmacogenomic response of SCZ patients to conventional psychotropic drugs also depends on genetic variants associated with SCZ-related genes. Consequently, the incorporation of pharmacogenomic procedures both to drugs in development and drugs on the market would help to optimize therapeutics in SCZ and other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, 15165-Bergondo, Coruña, Spain.
| | | |
Collapse
|
26
|
Juhász G, Földi I, Penke B. Systems biology of Alzheimer's disease: How diverse molecular changes result in memory impairment in AD. Neurochem Int 2011; 58:739-50. [DOI: 10.1016/j.neuint.2011.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/19/2011] [Accepted: 02/10/2011] [Indexed: 01/13/2023]
|
27
|
Pisani L, Catto M, Giangreco I, Leonetti F, Nicolotti O, Stefanachi A, Cellamare S, Carotti A. Design, synthesis, and biological evaluation of coumarin derivatives tethered to an edrophonium-like fragment as highly potent and selective dual binding site acetylcholinesterase inhibitors. ChemMedChem 2011; 5:1616-30. [PMID: 20677317 DOI: 10.1002/cmdc.201000210] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A large series of substituted coumarins linked through an appropriate spacer to 3-hydroxy-N,N-dimethylanilino or 3-hydroxy-N,N,N-trialkylbenzaminium moieties were synthesized and evaluated as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. The highest AChE inhibitory potency in the 3-hydroxy-N,N-dimethylanilino series was observed with a 6,7-dimethoxy-3-substituted coumarin derivative, which, along with an outstanding affinity (IC(50)=0.236 nM) exhibits excellent AChE/BChE selectivity (SI>300 000). Most of the synthesized 3-hydroxy-N,N,N-trialkylbenzaminium salts display an AChE affinity in the sub-nanomolar to picomolar range along with excellent AChE/BChE selectivities (SI values up to 138 333). The combined use of docking and molecular dynamics simulations permitted us to shed light on the observed structure-affinity and structure-selectivity relationships, to detect two possible alternative binding modes, and to assess the critical role of pi-pi stacking interactions in the AChE peripheral binding site.
Collapse
Affiliation(s)
- Leonardo Pisani
- Dipartimento Farmaco-chimico, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Takeda M, Martínez R, Kudo T, Tanaka T, Okochi M, Tagami S, Morihara T, Hashimoto R, Cacabelos R. Apolipoprotein E and central nervous system disorders: reviews of clinical findings. Psychiatry Clin Neurosci 2010; 64:592-607. [PMID: 21105952 DOI: 10.1111/j.1440-1819.2010.02148.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dementia is a major health problem in developed countries with over 25 million people affected worldwide and probably over 75 million people at risk during the next 20 years. Alzheimer's disease (AD) is the most frequent cause of dementia (50-70%), followed by vascular dementia (30-40%), and mixed dementia (15-20%). AD pathogenesis is still to be elucidated but it is believed to be the complex interaction between genetic and environmental factors in later life. Three causative genes for familial AD have been identified: amyloid precursor protein, presenilin-1, and presenilin-2. There are 150 genes involved with increased neuronal vulnerability to premature death in the AD brain. Among these susceptibility genes, the apolipoprotein E (ApoE) gene is the most prevalent as a risk for AD pathogenic process in which complex interactions between genetic and environmental factors are involved, leading to a cascade of pathogenic events converging in final pathways to premature neuronal death. Some of these mechanisms are common to several neurodegenerative disorders that differ depending upon the genes affected and the involvement of environmental conditions. ApoE is a key lipoprotein in lipid and cholesterol metabolism and it is also the major risk gene for AD and many other central nervous system disorders. The pathogenic role of ApoE-4 is still to be clarified; however, diverse evidence suggests that ApoE may play pleiotropic functions in dementia and central nervous system disorders.
Collapse
Affiliation(s)
- Masatoshi Takeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Future Trends in the Pharmacogenomics of Brain Disorders and Dementia: Influence of APOE and CYP2D6 Variants. Pharmaceuticals (Basel) 2010. [PMCID: PMC4034082 DOI: 10.3390/ph3103040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
About 80% of functional genes in the human genome are expressed in the brain and over 1,200 different genes have been associated with the pathogenesis of CNS disorders and dementia. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variations in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. 10-20% of Western populations are defective in genes of the CYP superfamily; and the pharmacogenomic response of psychotropic drugs also depends on genetic variants associated with dementia. Prospective studies with anti-dementia drugs or with multifactorial strategies have revealed that the therapeutic response to conventional drugs in Alzheimer’s disease is genotype-specific. The disease-modifying effects (cognitive performance, biomarker modification) of therapeutic intervention are APOE-dependent, with APOE-4 carriers acting as the worst responders (APOE-3/3 > APOE-3/4 > APOE-4/4). APOE-CYP2D6 interactions also influence the therapeutic outcome in patients with dementia.
Collapse
|