1
|
Schultz A, McLeod C, Berry S, Marsh J, McKenzie A, Messer M, Wood J, Saville B, Jaffe A, Ranganathan S, Stick S, Wark P, Webb S, Snelling T. BEAT CF pulmonary exacerbations core protocol for evaluating the management of pulmonary exacerbations in people with cystic fibrosis. Trials 2023; 24:211. [PMID: 36949472 PMCID: PMC10031862 DOI: 10.1186/s13063-023-07076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is a rare, inherited, life-limiting condition predominantly affecting the lungs, for which there is no cure. The disease is characterized by recurrent pulmonary exacerbations (PEx), which are thought to drive progressive lung damage. Management of these episodes is complex and generally involves multiple interventions targeting different aspects of disease. The emergence of innovative trials and use of Bayesian statistical methods has created renewed opportunities for studying heterogeneous populations in rare diseases. Here, we present the protocol for the BEAT CF PEx cohort, a prospective, multi-site, perpetual, platform enrolling adults and children with CF. The BEAT CF PEx cohort will be used to evaluate the comparative effectiveness of interventions for the treatment of PEx requiring intensive therapy (PERITs), with a primary focus on short-term improvements in lung function. This will be achieved through the conduct of cohort-nested studies, including adaptive clinical trials, within the BEAT CF PEx cohort. This protocol will outline key features of the BEAT CF PEx cohort, including the design, implementation, data collection and management, governance and analysis, and dissemination of results. METHODS This platform will be conducted across multiple sites, commencing with CF treatment centers in Australia. People of all ages with a clinical diagnosis of CF will be eligible to participate, except those who have previously received a lung transplant. Data including demographic and clinical information, treatment details, and outcomes (including safety, microbiology, and patient-reported outcome measures including quality of life scores) will be systematically collected and securely stored via a digital centralized trial management system (CTMS). The primary endpoint is the absolute change in the percentage predicted forced expiratory volume in 1 s (ppFEV1) from the commencement of intensive therapy to 7 to 10 days afterwards. DISCUSSION The BEAT CF PEx cohort will report clinical, treatment, and outcome data for PEx among people with CF and is intended to serve as a core (master) protocol for future nested, interventional trials evaluating treatment(s) for these episodes. The protocols for nested sub-studies are beyond the scope of this document and will be reported separately. TRIAL REGISTRATION ANZCTR BEAT CF Platform - ACTRN12621000638831. Registration date: Sept. 26, 2022.
Collapse
Affiliation(s)
- Andre Schultz
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Australia
| | - Charlie McLeod
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Australia.
- Department of Infectious Diseases, Perth Children's Hospital, Nedlands, Australia.
| | | | - Julie Marsh
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Australia
| | - Anne McKenzie
- School of Population and Global Health, University of Western Australia, Nedlands, Australia
| | - Mitch Messer
- Telethon Kids CONNECT, Telethon Kids Institute, Nedlands, Australia
| | - Jamie Wood
- Department of Rehabilitation and Human Performance, Abilities Research Centre, Icahn School of Medicine, Mount Sinai, New York, USA
| | | | - Adam Jaffe
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Kensington, Australia
- Sydney Children's Hospital, Randwick, Australia
| | - Sarath Ranganathan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
- Respiratory Diseases Research Group, Infection and Immunity, Murdoch Children's Research Institute, Parkville, Australia
| | - Steve Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Australia
- School of Population and Global Health, University of Western Australia, Nedlands, Australia
| | - Peter Wark
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
- Sleep Medicine Division, John Hunter Hospital, New Lambton Heights, Australia
| | - Steve Webb
- Australian and New Zealand Intensive Care Research Centre, Monash University, Clayton, Australia
- St John of God Hospital, Subiaco, Australia
| | - Tom Snelling
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
DeBoer EM, Kimbell JS, Pickett K, Hatch JE, Akers K, Brinton J, Hall GL, King L, Ramanauskas F, Rosenow T, Stick SM, Tiddens HA, Ferkol TW, Ranganathan SC, Davis SD. Lung inflammation and simulated airway resistance in infants with cystic fibrosis. Respir Physiol Neurobiol 2021; 293:103722. [PMID: 34157384 PMCID: PMC8330801 DOI: 10.1016/j.resp.2021.103722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis (CF) is characterized by small airway disease; but central airways may also be affected. We hypothesized that airway resistance estimated from computational fluid dynamic (CFD) methodology in infants with CF was higher than controls and that early airway inflammation in infants with CF is associated with airway resistance. Central airway models with a median of 51 bronchial outlets per model (interquartile range 46,56) were created from chest computed tomography scans of 18 infants with CF and 7 controls. Steady state airflow into the trachea was simulated to estimate central airway resistance in each model. Airway resistance was increased in the full airway models of infants with CF versus controls and in models trimmed to 33 bronchi. Airway resistance was associated with markers of inflammation in bronchoalveolar lavage fluid obtained approximately 8 months earlier but not with markers obtained at the same time. In conclusion, airway resistance estimated by CFD modeling is increased in infants with CF compared to controls and may be related to early airway inflammation.
Collapse
Affiliation(s)
- Emily M DeBoer
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Breathing Institute at Children's Hospital Colorado, Aurora, CO, United States.
| | - Julia S Kimbell
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Kaci Pickett
- Colorado School of Public Health, Aurora, CO, United States
| | - Joseph E Hatch
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Kathryn Akers
- Washington University School of Medicine, St. Louis, MO, United States
| | - John Brinton
- Breathing Institute at Children's Hospital Colorado, Aurora, CO, United States; Colorado School of Public Health, Aurora, CO, United States
| | - Graham L Hall
- Telethon Kids Institute and Perth Children's Hospital, U. of Western Australia, Perth, WA, Australia; School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia
| | - Louise King
- Royal Children's Hospital and Murdoch Children's Research Institute, U. of Melbourne, Parkville, VIC, Australia
| | - Fiona Ramanauskas
- Royal Children's Hospital and Murdoch Children's Research Institute, U. of Melbourne, Parkville, VIC, Australia
| | - Tim Rosenow
- Telethon Kids Institute and Perth Children's Hospital, U. of Western Australia, Perth, WA, Australia
| | - Stephen M Stick
- Telethon Kids Institute and Perth Children's Hospital, U. of Western Australia, Perth, WA, Australia
| | - Harm A Tiddens
- Erasmus MC and Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Thomas W Ferkol
- Washington University School of Medicine, St. Louis, MO, United States
| | - Sarath C Ranganathan
- Royal Children's Hospital and Murdoch Children's Research Institute, U. of Melbourne, Parkville, VIC, Australia
| | - Stephanie D Davis
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
3
|
McLeod C, Wood J, Schultz A, Norman R, Smith S, Blyth CC, Webb S, Smyth AR, Snelling TL. Outcomes and endpoints reported in studies of pulmonary exacerbations in people with cystic fibrosis: A systematic review. J Cyst Fibros 2020; 19:858-867. [PMID: 33191129 DOI: 10.1016/j.jcf.2020.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND There is no consensus about which outcomes should be evaluated in studies of pulmonary exacerbations in people with cystic fibrosis (CF). Outcomes used for evaluation should be meaningful; that is, they should capture how people feel, function or survive and be acknowledged as important to people with CF, or should be reliable surrogates of those outcomes. We aimed to summarise the outcomes and corresponding endpoints which have been reported in studies of pulmonary exacerbations, and to identify those which are most likely to be meaningful. METHODS A PROSPERO registered systematic review (CRD42020151785) was conducted in Medline, Embase and Cochrane from inception until July 2020. Registered trials were also included. RESULTS 144 studies met the inclusion criteria. A wide range of outcomes and corresponding endpoints were reported. Death, QoL and many patient-reported outcomes are likely to be meaningful as they directly capture how people feel, function or survive. Forced expiratory volume in 1-second [FEV1] is a validated surrogate of risk of death and reduced QoL. The extent of structural lung disease has also been correlated with lung function, pulmonary exacerbations and risk of death. Since no evidence of a correlation between airway microbiology or biomarkers with clinically meaningful outcomes was found, the value of these as surrogates was unclear. CONCLUSIONS Death, QoL, patient-reported outcomes, FEV1, and structural lung changes were identified as outcomes that are most likely to be meaningful. Development of a core outcome set in collaboration with stakeholders including people with CF is recommended.
Collapse
Affiliation(s)
- Charlie McLeod
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, 15 Hospital Ave, Nedlands WA 6009, Australia; Infectious Diseases Department, Perth Children's Hospital, 15 Hospital Ave, Nedlands 6009, Australia; Division of Paediatrics, Faculty of Medicine, University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia.
| | - Jamie Wood
- Physiotherapy Department, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands 6009, Australia; Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, United States of America.
| | - André Schultz
- Centre for Respiratory Health, Telethon Kids Institute, University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia; Respiratory Department, Perth Children's Hospital, 15 Hospital Ave, Nedlands 6009, Australia.
| | - Richard Norman
- School of Public health, 400 Curtin University, Kent St, Bentley 6102, Australia.
| | - Sherie Smith
- Evidence Based Child Health Group, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | - Christopher C Blyth
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, 15 Hospital Ave, Nedlands WA 6009, Australia; Infectious Diseases Department, Perth Children's Hospital, 15 Hospital Ave, Nedlands 6009, Australia; Pathwest Laboratory Medicine WA, QEII Medical Centre, Nedlands 6009, Australia.
| | - Steve Webb
- St John of God Hospital, 12 Salvado Road, Subiaco 6008, Australia; School of Population Health and Preventive Medicine, 553 St Kilda Rd, Monash University, Melbourne 3004, Australia.
| | - Alan R Smyth
- Evidence Based Child Health Group, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | - Thomas L Snelling
- Menzies School of Health Research, PO Box 41096 Casuarina NT 0811, Australia; Sydney School of Public Health, Faculty of Medicine and Health, Edward Ford Building, University of Sydney NSW 2006, Australia.
| |
Collapse
|
4
|
Bene Z, Fejes Z, Macek M, Amaral MD, Balogh I, Nagy B. Laboratory biomarkers for lung disease severity and progression in cystic fibrosis. Clin Chim Acta 2020; 508:277-286. [PMID: 32428503 DOI: 10.1016/j.cca.2020.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022]
Abstract
Although the clinical outcomes of cystic fibrosis (CF) have been markedly improved through the recent implementation of novel CF transmembrane conductance regulator (CFTR) modulator drugs, robust and reliable biomarkers are still demanded for the early detection of CF lung disease progression, monitoring treatment efficacy and predicting life-threatening clinical complications. Thus, there is an unmet need to identify and validate novel, ideally blood based biomarkers with strong correlations to the severity of CF lung disease, which represents a major contribution to overall CF morbidity and mortality. In this review, we aim to summarize the utility of thus far studied blood-, sputum- and bronchoalveolar lavage (BAL)-based biomarkers to evaluate inflammatory conditions in the lung and to follow treatment efficacy in CF. Measurements of sweat chloride concentrations and the spirometric parameter FEV1 are currently utilized to monitor CFTR function and the effect of various CF therapies. Nonetheless, both have inherent pitfalls and limitations, thus routinely analyzed biomarkers in blood, sputum or BAL samples are required as surrogates for lung disorders. Recent discovery of new protein (e.g. HE4) and RNA-based biomarkers, such as microRNAs may offer a higher efficacy, which in aggregate may be valuable to evaluate disease prognosis and to substantiate CF drug efficacy.
Collapse
Affiliation(s)
- Zsolt Bene
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Milan Macek
- Department of Biology and Medical Genetics, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - István Balogh
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
5
|
Early Cystic Fibrosis Lung Disease. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Giddings O, Esther CR. Mapping targetable inflammation and outcomes with cystic fibrosis biomarkers. Pediatr Pulmonol 2017; 52:S21-S28. [PMID: 28714611 PMCID: PMC5664212 DOI: 10.1002/ppul.23768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 01/01/2023]
Abstract
Cystic fibrosis is characterized by an overly exuberant neutrophilic inflammatory response to pathogens and other stimuli that starts very early in disease. The overwhelming nature of this response is a primary cause of remodeling and destruction of the airways, suggesting that anti-inflammatory therapies could be beneficial in CF. However, finding therapies that can effectively reduce the inflammatory response without compromising host defenses remains elusive. New approaches towards mapping inflammatory targets promise to aid in developing novel therapeutic strategies and improve outcomes in individuals with CF.
Collapse
Affiliation(s)
- Olivia Giddings
- Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Charles R Esther
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Stahl M, Wielpütz MO, Graeber SY, Joachim C, Sommerburg O, Kauczor HU, Puderbach M, Eichinger M, Mall MA. Comparison of Lung Clearance Index and Magnetic Resonance Imaging for Assessment of Lung Disease in Children with Cystic Fibrosis. Am J Respir Crit Care Med 2017; 195:349-359. [PMID: 27575911 DOI: 10.1164/rccm.201604-0893oc] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Early onset and progression of lung disease in children with cystic fibrosis (CF) indicates that sensitive noninvasive outcome measures are needed for diagnostic monitoring and early intervention clinical trials. The lung clearance index (LCI) and chest magnetic resonance imaging (MRI) were shown to detect early lung disease in CF; however, the relationship between the two measures remains unknown. OBJECTIVES To correlate the LCI with abnormalities detected by MRI and compare the sensitivity of the two techniques to detect responses to therapy for pulmonary exacerbations in children with CF. METHODS LCI determined by age-adapted multiple breath washout techniques and MRI studies were performed in 97 clinically stable children with CF across the pediatric age range (0.2-21.1 yr). Furthermore, LCI (n = 26) or MRI (n = 10) were performed at the time of pulmonary exacerbation and after antibiotic therapy. MRI was evaluated using a dedicated morphofunctional score. MEASUREMENTS AND MAIN RESULTS The LCI correlated with the global MRI score as well as MRI-defined airway wall abnormalities, mucus plugging, and abnormal lung perfusion in infants and toddlers (P < 0.05 to P < 0.001) and in older children (P < 0.001) with CF. LCI and MRI were sensitive to detect response to antibiotic therapy for pulmonary exacerbations. CONCLUSIONS Our results indicate that LCI and MRI may be useful complementary tools for noninvasive monitoring and as quantitative endpoints in early intervention trials in children with CF. In this context, MRI enables detection of disease heterogeneity, including regional mucus plugging associated with abnormal lung perfusion in early CF lung disease. Clinical trial registered with www.clinicaltrials.gov (NCT 02270476).
Collapse
Affiliation(s)
- Mirjam Stahl
- 1 Department of Translational Pulmonology.,2 Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, and.,3 Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Mark O Wielpütz
- 4 Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,3 Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany.,5 Department of Radiology, German Cancer Research Center, Heidelberg, Germany; and
| | - Simon Y Graeber
- 1 Department of Translational Pulmonology.,2 Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, and.,3 Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Cornelia Joachim
- 1 Department of Translational Pulmonology.,2 Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, and.,3 Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Olaf Sommerburg
- 1 Department of Translational Pulmonology.,2 Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, and.,3 Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- 4 Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,3 Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Michael Puderbach
- 5 Department of Radiology, German Cancer Research Center, Heidelberg, Germany; and.,6 Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Monika Eichinger
- 3 Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany.,5 Department of Radiology, German Cancer Research Center, Heidelberg, Germany; and.,6 Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- 1 Department of Translational Pulmonology.,2 Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, and.,3 Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
8
|
Ranganathan SC, Hall GL, Sly PD, Stick SM. Early Lung Disease in Infants and Preschool Children with Cystic Fibrosis. What Have We Learned and What Should We Do about It? Am J Respir Crit Care Med 2017; 195:1567-1575. [PMID: 27911585 PMCID: PMC6850725 DOI: 10.1164/rccm.201606-1107ci] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/01/2016] [Indexed: 12/27/2022] Open
Abstract
The past decade has seen significant advances in understanding of the pathogenesis and progression of lung disease in cystic fibrosis (CF). Pulmonary inflammation, infection, and structural lung damage manifest very early in life and are prevalent among preschool children and infants, often in the absence of symptoms or signs. Early childhood represents a pivotal period amenable to intervention strategies that could delay or prevent the onset of lung damage and alter the longer-term clinical trajectory for individuals with CF. This review summarizes what we have learned about early lung disease in children with CF and discusses the implications for future clinical practice and research.
Collapse
Affiliation(s)
- Sarath C. Ranganathan
- Department of Respiratory Medicine, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Infection and Immunity, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Graham L. Hall
- Telethon Kids Institute, Perth, Western Australia, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Peter D. Sly
- Department of Respiratory and Sleep Medicine, Children’s Health Queensland, South Brisbane, Queensland, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia; and
| | - Stephen M. Stick
- Telethon Kids Institute, Perth, Western Australia, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - on behalf of the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST-CF)
- Department of Respiratory Medicine, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Infection and Immunity, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Telethon Kids Institute, Perth, Western Australia, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Children’s Health Queensland, South Brisbane, Queensland, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia; and
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Zemanick ET, Hoffman L, Rosenfeld M. Narrowing in on Early Cystic Fibrosis Lung Disease. Am J Respir Crit Care Med 2014; 190:1082-4. [DOI: 10.1164/rccm.201410-1929ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|