1
|
Gomaa MM, Nabil El Achy S, Hezema NN. Could metformin modulate the outcome of chronic murine toxoplasmosis? Acta Trop 2024; 258:107339. [PMID: 39084481 DOI: 10.1016/j.actatropica.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Toxoplasmosis is a pervasive parasitic infection possessing a chief impact on both public health and veterinary medicine. Unfortunately, the commercially-available anti-Toxoplasma agents have either serious side effects or diminished efficiency, specifically on the Toxoplasma tissue cysts. In the present study, metformin (The first-line treatment for type 2 diabetes mellitus) was investigated for the first time against chronic cerebral toxoplasmosis in mice model experimentally-infected with ME49 strain versus spiramycin. Two metformin regimens were applied; starting one week before the infection and four weeks PI. Parasitological, ultrastructural, histopathological, immunohistochemical, immunological, and biochemical assessments were performed. The anti-parasitic effect of metformin was granted by the statistically-significant reduction in tissue-cyst burden in both treatment regimens. This was accompanied by markedly-mutilated ultrastructure and profound amelioration of the cerebral histopathology with remarkable decline in the brain CD4+ and CD8+ T cell count. Besides, diminution of anti-Toxoplasma IgG and brain GSH levels was evident. Ultimately, the present findings highlighted the powerful promising therapeutic role of metformin in the management of chronic toxoplasmosis on a basis of anti-parasitic, anti-inflammatory, and anti-oxidant possessions.
Collapse
Affiliation(s)
- Maha Mohamed Gomaa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar Nabil El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nehal Nassef Hezema
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
2
|
Karimipour-Saryazdi A, Ghaffarifar F, Dalimi A, Foroutan M, Horton J, Sadraei J. In Silico Analysis of the ROP29 Protein as a Vaccine Candidate Against Toxoplasma gondii. J Parasitol Res 2024; 2024:1918202. [PMID: 39105194 PMCID: PMC11300083 DOI: 10.1155/2024/1918202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
The progression of Toxoplasma gondii (T. gondii) invasion is aided by rhoptry proteins (ROPs), which are also crucial for the parasite's survival in host cells. In this study, in silico analysis was performed to examine the various aspects of the ROP29 protein, such as physicochemical properties, potential T- and B-cell epitopes, and other significant features. The research revealed that there were 55 possible sites for posttranslational modification in the ROP29 protein. The secondary structure of the ROP29 protein consists of a random coil, an alpha-helix, and an extended strand, which account for 49.69%, 36.81%, and 13.50%, respectively. Moreover, a number of putative T- and B-cell epitopes for ROP29 were found. The Ramachandran plot showed that 88.91% (crude model) and 97.54% (refine model) of the amino acid residues were located in the favored regions. Also, the testing of this protein's antigenicity and allergenicity showed that it was nonallergenic and immunogenic. Our results suggested that employing in silico tools to apply structural and functional predictions to the ROP29 protein can lower the likelihood that laboratory investigations will fail. This research served as a crucial foundation for further research. More research is required in the future in suitable animal model employing ROP29 alone or in combination with other antigens.
Collapse
Affiliation(s)
| | - Fatemeh Ghaffarifar
- Department of ParasitologyFaculty of Medical SciencesTarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of ParasitologyFaculty of Medical SciencesTarbiat Modares University, Tehran, Iran
| | - Masoud Foroutan
- Department of Basic Medical SciencesFaculty of MedicineAbadan University of Medical Sciences, Abadan, Iran
| | | | - Javid Sadraei
- Department of ParasitologyFaculty of Medical SciencesTarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Li D, Han M, Cao Y, Du J, An R. Protective effect against toxoplasmosis in BALB/C mice vaccinated with recombinant Toxoplasma gondii CDPK3, GRA35, and ROP46 protein cocktail vaccine. Vaccine 2024; 42:1342-1351. [PMID: 38310017 DOI: 10.1016/j.vaccine.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Toxoplasma gondii (T. gondii) is one of the most common pathogenic protozoa in the world, and causes toxoplasmosis, which in varying degrees causes significant economic losses and poses a serious public health challenge globally. To date, the development of an effective vaccine for human toxoplasmosis remains a challenge. Given that T.gondii calcium-dependent protein kinase 3 (CDPK3), dense granule protein 35 (GRA35) and rhoptry organelle protein 46 (ROP46) play key roles during Toxoplasma gondii invasion of host cells, we developed a protein vaccine cocktail including these proteins and validated its protective efficacy. The specific protective effects of vaccine on mice were analyzed by measuring serum antibodies, cytokines, splenocyte proliferation, the percentage of CD4+ and CD8+ T-lymphocytes, survival rate, and parasite cyst burden. The results showed that mice vaccinated with a three-protein cocktail produced the highest levels of immune protein antibodies to IgG, and high levels of IFN-γ, IL-2, IL-4, and IL-10 compared to other mice vaccinated with two proteins. In addition, CD4+ and CD8+ T cell percentages were significantly elevated. Compared to the control groups, mice vaccinated with the three-protein cocktail survived significantly longer after acute infection with T. gondii and had significantly fewer cysts after chronic infection. These results demonstrated that a cocktail vaccine of TgCDPK3, TgGRA35, and TgROP46 can effectively induce cellular and humoral immune responses with good protective effects in mice, indicating its potential as vaccine candidates for toxoplasmosis.
Collapse
Affiliation(s)
- Dan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei 230032, China
| | - Meng Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei 230032, China
| | - Yuhua Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei 230032, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei 230032, China.
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Xing Y, Yang J, Yao P, Xie L, Liu M, Cai Y. Comparison of the immune response and protection against the experimental Toxoplasma gondii infection elicited by immunization with the recombinant proteins BAG1, ROP8, and BAG1-ROP8. Parasite Immunol 2024; 46:e13023. [PMID: 38372452 DOI: 10.1111/pim.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/20/2024]
Abstract
Toxoplasmosis is one of the most dangerous zoonotic diseases, causing serious economic losses worldwide due to abortion and reproductive problems. Vaccination is the best way to prevent disease; thus, it is imperative to develop a candidate vaccine for toxoplasmosis. BAG1 and ROP8 have the potential to become vaccine candidates. In this study, rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 were used to evaluate the immune effect of vaccines in each group by detecting the humoral and cellular immune response levels of BABL/c mice after immunization and the ability to resist acute and chronic infection with Toxoplasma gondii (T. gondii). We divided the mice into vaccine groups with different proteins, and the mice were immunized on days 0, 14, and 28. The protective effects of different proteins against T. gondii were analysed by measuring the cytokines, serum antibodies, splenocyte proliferation assay results, survival time, and number and diameter of brain cysts of mice after infection. The vaccine groups exhibited substantially higher IgG, IgG1, and IgG2a levels and effectively stimulated lymphocyte proliferation. The levels of IFN-γ and IL-2 in the vaccine group were significantly increased. The survival time of the mice in each vaccine group was prolonged and the diameter of the cysts in the vaccine group was smaller; rTgBAG1-rTgROP8 had a better protection. Our study showed that the rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 recombinant protein vaccines are partial but effective approaches against acute or chronic T. gondii infection. They are potential candidates for a toxoplasmosis vaccine.
Collapse
Affiliation(s)
- Yien Xing
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Jun Yang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Pengjing Yao
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Linding Xie
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Min Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| | - Yihong Cai
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Khorshidvand Z, Shirian S, Amiri H, Zamani A, Maghsood AH. Immunomodulatory chitosan nanoparticles for Toxoplasma gondii infection: Novel application of chitosan in complex propranolol-hydrochloride as an adjuvant in vaccine delivery. Int J Biol Macromol 2023; 253:127228. [PMID: 37839605 DOI: 10.1016/j.ijbiomac.2023.127228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
The study aimed to investigate the immunomodulatory effects of propranolol hydrochloride (PRO) in combination with chitosan nanoparticles (CS NPs) as an adjuvant to develop an effective vaccine against T. gondii. A total of 105 BALB/c mice were randomly divided into seven equal groups including PBS alone, CS NPs, SAG1 (Surface antigen 1), CS-SAG1 NPs, CS-PRO NPs, SAG1-PRO, and CS-SAG1-PRO NPs. The immunostimulatory effect of each adjuvant used for vaccine delivery was evaluated in a mice immunization model. The results showed that the mice immunized with CS-SAG1-PRO NPs exhibited the highest lymphocyte proliferation rate, along with increased secretion of IFN-γ, TNF-α, IL-6, IL-12, IL-17, and IL-23, as well as elevated levels of protective cytokines such as TGF-β, IL-27, and IL-10. Although, the CS-SAG1-PRO NPs immunized mice showed the highest level of T. gondii specific IgG compared to the other groups, a significant production of IgG2a and IgG1 was observed in the sera of mice immunized with the CS-SAG1-PRO NPs compared to the other group (p <0.001). The higher IgG2a/IgG1 ratio observed in the CS-SAG1-PRO NPs group indicates a bias towards Th1 cell polarization, suggesting the promotion of Th1 cell-mediated immune responses. Considering the combination of the highest lymphocyte proliferation and survival rates, IgG2a/IgG1 ratio, and cytokine levels in the mice immunized with CS-SAG1-PRO NPs, this approach holds promise for immunostimulation and vaccine delivery against T. gondii infection.
Collapse
Affiliation(s)
- Zohreh Khorshidvand
- Department of Parasitology and Mycology, School of Medicine Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Shiraz Molecular Pathology Research Center, Dr Daneshbod Lab, Shiraz, Iran
| | - Hanieh Amiri
- Shiraz Molecular Pathology Research Center, Dr Daneshbod Lab, Shiraz, Iran; Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Hossein Maghsood
- Department of Parasitology and Mycology, School of Medicine Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
6
|
Al-Janabi A, Bowlby B. Toxoplasma gondii: the kitty litter parasite. Biotechniques 2022; 73:257-260. [PMID: 36523231 DOI: 10.2144/btn-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii is considered the most successful parasite by some, and yet, it is likely that you haven't even heard of it.
Collapse
|
7
|
Liu F, Wu M, Wang J, Wen H, An R, Cai H, Yu L, Shen J, Chen L, Du J. Protective Effect Against Toxoplasmosis in BALB/c Mice Vaccinated With Recombinant Toxoplasma gondii MIF, CDPK3, and 14-3-3 Protein Cocktail Vaccine. Front Immunol 2021; 12:755792. [PMID: 35003067 PMCID: PMC8727341 DOI: 10.3389/fimmu.2021.755792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma gondii can infect almost all endotherm organisms including humans and cause life-threatening toxoplasmosis in immunocompromised individuals, which leads to serious public health problems. Developing an excellent vaccine against this disease is impending. In present study, we formulated a cocktail protein vaccine including the TgMIF, TgCDPK3, and Tg14-3-3 proteins, which play critical roles in T. gondii infection. The recombinant protein vaccines were constructed and assessed by vaccination in BALB/c mice. We organized the mice in various protein combination groups of vaccines, and all mice were immunized with corresponding proteins at 0, 2, and 4 weeks. The specific protective effects of the vaccines on mice against T. gondii were analyzed by the mensuration of cytokines, serum antibodies, splenocyte proliferation assay, survival time, and parasite cyst burden of mice after the challenge. The study indicated that mice immunized with all three multicomponent proteins vaccine triggered a strong immune response with highest levels of IFN-γ production and IgG antibody compared with the other two protein combinations and controls. Moreover, there was an increase in IL-4 production and antigen-specific lymphocyte proliferation. The parasite cysts were significantly reduced (resulting in an 82.7% reduction), and survival time was longer in immunized mice with three multicomponent proteins compared with the other groups of mice. The enhanced humoral and cell-mediated immunity indicated that the protein cocktail vaccine containing three antigens provided effective protection for mice. These results indicated that recombinant TgMIF, TgCDPK3, and Tg14-3-3 multicomponent proteins were potential candidates for vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Fang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Hongyang Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Li Yu
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Jilong Shen
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Lijian Chen, ; Jian Du, ;
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
- *Correspondence: Lijian Chen, ; Jian Du, ;
| |
Collapse
|
8
|
Shang FF, Wang MY, Ai JP, Shen QK, Guo HY, Jin CM, Chen FE, Quan ZS, Jin L, Zhang C. Synthesis and evaluation of mycophenolic acid derivatives as potential anti-Toxoplasma gondii agents. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02803-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Repurposing auranofin for treatment of Experimental Cerebral Toxoplasmosis. Acta Parasitol 2021; 66:827-836. [PMID: 33555553 DOI: 10.1007/s11686-021-00337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
PURPOSES Evaluate the effect of auranofin on the early and late stages of chronic infection with Toxoplasma gondii avirulent ME49 strain. METHODS Swiss albino mice were orally inoculated with 10 cysts of Toxoplasma gondii, and orally treated with auranofin or septazole in daily doses of 20 mg/kg or 100 mg /kg, respectively, for 30 days. Treatment began either on the same day of infection and mice were sacrificed at the 60th day postinfection or the treatment started after 60 days of infection and mice were sacrificed at the 90th day postinfection. RESULTS Auranofin significantly reduced the brain cyst burden and inflammatory reaction at both stages of infection compared to the infected non-treated control. More remarkably, auranofin significant reduced the brain cyst burden in the late stage, while septazole failed. Hydrogen peroxide level was significantly increased in the brain homogenate of mice treated with auranofin only at the early stage of infection. Ultrastructral studies revealed that the anti-Toxoplasma effect of auranofin is achieved by changing the membrane permeability and inducing apoptosis. CONCLUSIONS Thus, auranofin could be an alternative for the standard treatment regimen of toxoplasmosis and these results are considered another achievement for the drug against parasitic infection. Being a FDA-approved drug, it can be rapidly evaluated in clinical trials.
Collapse
|
10
|
Insights into the biochemical features and immunogenic epitopes of common bradyzoite markers of the ubiquitous Toxoplasma gondii. INFECTION GENETICS AND EVOLUTION 2021; 95:105037. [PMID: 34390868 DOI: 10.1016/j.meegid.2021.105037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
The widespread distribution of Toxoplasma gondii (T. gondii) infection and its harsh outcomes in pregnant women and immunocompromised patients lead researchers towards vaccination strategies. The present in silico investigation was done to reveal biophysical properties and immunogenic epitopes of six bradyzoite markers for rational vaccine design in future. For this purpose, different web servers were used to predict antigenicity, allergenicity, solubility, physicochemical properties, post-translational modification sites (PTMs), the presence of signal peptide and transmembrane domains. Moreover, the secondary and tertiary structures of the proteins were revealed followed by refinement and validation. Finally, NetCTL server was used to predict cytotoxic T-lymphocyte (CTL) epitopes, with subsequent immunogenicity analysis. Also, IEDB server was utilized to predict helper T-lymphocyte (HTL) epitopes, followed by IFN-γ and IL-4 induction, antigenicity and population coverage analysis. As well, several linear antigenic B-cell epitopes were found, with good water solubility and without allergenicity. Totally, these proteins showed appropriate antigenicity, abundant PTMs as well as many CTL, HTL and B-cell epitopes, which could be directed for future vaccination studies in the context of multi-epitope vaccine design.
Collapse
|
11
|
Ghaffari AD, Dalimi A, Ghaffarifar F, Pirestani M, Majidiani H. Immunoinformatic analysis of immunogenic B- and T-cell epitopes of MIC4 protein to designing a vaccine candidate against Toxoplasma gondii through an in-silico approach. Clin Exp Vaccine Res 2021; 10:59-77. [PMID: 33628756 PMCID: PMC7892946 DOI: 10.7774/cevr.2021.10.1.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose Toxoplasmosis, transmitted by Toxoplasma gondii, is a worldwide parasitic disease that affects approximately one-third of the world's inhabitants. Today, there are no appropriate drugs to deter tissue cysts from developing in infected hosts. So, developing an effective vaccine would be valuable to avoid from toxoplasmosis. Considering the role of microneme antigens such as microneme protein 4 (MIC4) in T. gondii pathogenesis, it can be used as potential candidates for vaccine against T. gondii. Materials and Methods In this study several bioinformatics methods were used to assess the different aspects of MIC4 protein such as secondary and tertiary structure, physicochemical characteristics, the transmembrane domains, subcellular localization, B-cell, helper-T lymphocyte, cytotoxic-T lymphocyte epitopes, and other notable characteristic of this protein design a suitable vaccine against T. gondii. Results The studies revealed that MIC4 protein includes 59 potential post-translational modification sites without any transmembrane domains. Moreover, several probable epitopes of B- and T-cells were detected for MIC4. The secondary structure comprised 55.69% random coil, 5.86% beta-turn, 19.31% extended strand, and 19.14% alpha helix. According to the Ramachandran plot results, 87.42% of the amino acid residues were located in the favored, 9.44% in allowed, and 3.14% in outlier regions. The protein allergenicity and antigenicity revealed that it was non-allergenic and antigenic. Conclusion This study gives vital basic on MIC4 protein for further research and also established an effective vaccine with different techniques against acute and chronic toxoplasmosis.
Collapse
Affiliation(s)
- Ali Dalir Ghaffari
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Majidiani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Chaudhry SN, Hazafa A, Mumtaz M, Kalsoom U, Abbas S, Kainaat A, Bilal S, Zafar N, Siddique A, Zafar A. New insights on possible vaccine development against SARS-CoV-2. Life Sci 2020; 260:118421. [PMID: 32926920 PMCID: PMC7484811 DOI: 10.1016/j.lfs.2020.118421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
In December 2019, a novel virus, namely COVID-19 caused by SARS-CoV-2, developed from Wuhan, (Hubei territory of China) used its viral spike glycoprotein receptor-binding domain (RBD) for the entrance into a host cell by binding with ACE-2 receptor and cause acute respiratory distress syndrome (ARDS). Data revealed that the newly emerged SARS-CoV-2 affected more than 24,854,140 people with 838,924 deaths worldwide. Until now, no licensed immunization or drugs are present for the medication of SARS-CoV-2. The present review aims to investigate the latest developments and discuss the candidate antibodies in different vaccine categories to develop a reliable and efficient vaccine against SARS-CoV-2 in a short time duration. Besides, the review focus on the present challenges and future directions, structure, and mechanism of SARS-CoV-2 for a better understanding. Based on data, we revealed that most of the vaccines are focus on targeting the spike protein (S) of COVID-19 to neutralized viral infection and develop long-lasting immunity. Up to phase-1 clinical trials, some vaccines showed the specific antigen-receptor T-cell response, elicit the humoral and immune response, displayed tight binding with human-leukocytes-antigen (HLA), and recognized specific antibodies to provoke long-lasting immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Sundas Nasir Chaudhry
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhummad Mumtaz
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ume Kalsoom
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54000, Pakistan
| | - Saima Abbas
- Department of Biochemistry, Kinnaird College for Women Lahore, 54000, Pakistan
| | - Amna Kainaat
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Shahid Bilal
- Department of Agronomy, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Nauman Zafar
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Aleena Siddique
- MBBS, Rashid Latif Medical and Dental College, Lahore 54000, Pakistan
| | - Ayesha Zafar
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
13
|
Rauwolf KK, Floeth M, Kerl K, Schaumburg F, Groll AH. Toxoplasmosis after allogeneic haematopoietic cell transplantation-disease burden and approaches to diagnosis, prevention and management in adults and children. Clin Microbiol Infect 2020; 27:378-388. [PMID: 33065238 DOI: 10.1016/j.cmi.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Toxoplasmosis is a rare but highly lethal opportunistic infection after allogeneic haematopoietic cell transplantation (HCT). Successful management depends on screening, early recognition and effective treatment. OBJECTIVES To review the current epidemiology and approaches to diagnosis, prevention and treatment of toxoplasmosis in adult and paediatric allogeneic HCT recipients. SOURCE Search of the English literature published in MEDLINE up to 30 June 2020 using combinations of broad search terms including toxoplasmosis, transplantation, diagnosis, epidemiology, prevention and treatment. Selection of articles for review and synthesis on the basis of perceived quality and relevance of content. CONTENT Toxoplasmosis continues to be a major challenge in the management of allogeneic HCT recipients. Here we provide a summary of published case series of toxoplasmosis in adult and paediatric patients post allogeneic HCT. We review and discuss the pathogenesis, epidemiology, clinical presentation, diagnosis and current recommendations for prevention and treatment. We also discuss impacts of toxoplasmosis in this setting and factors affecting outcome, emphasizing attention to neurological, neuropsychological and neurocognitive late effects in survivors. IMPLICATIONS Apart from careful adherence to established strategies of disease prevention through avoidance of primary infection, identification of seropositive patients and implementation of molecular monitoring, future perspectives to improve the control of toxoplasmosis in allogeneic HCT recipients may include the systematic investigation of pre-emptive treatment, development of immunomodulatory approaches, antimicrobial agents with activity against the cyst form and vaccines to prevent chronic infection.
Collapse
Affiliation(s)
- Kerstin K Rauwolf
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Münster, Germany; Centre for Bone Marrow Transplantation, University Hospital Münster, Münster, Germany
| | - Matthias Floeth
- Centre for Bone Marrow Transplantation, University Hospital Münster, Münster, Germany; Department of Medicine A, Haematology and Oncology, University Hospital Münster, Münster, Germany
| | - Kornelius Kerl
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Münster, Germany; Centre for Bone Marrow Transplantation, University Hospital Münster, Münster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Andreas H Groll
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, Münster, Germany; Centre for Bone Marrow Transplantation, University Hospital Münster, Münster, Germany.
| |
Collapse
|
14
|
Identification of Toxoplasma Gondii Tyrosine Hydroxylase (TH) Activity and Molecular Immunoprotection against Toxoplasmosis. Vaccines (Basel) 2020; 8:vaccines8020158. [PMID: 32244791 PMCID: PMC7349186 DOI: 10.3390/vaccines8020158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
The neurotropic parasite Toxoplasma gondii (T. gondii) infection can change the behavior of rodents and cause neuropsychological symptoms in humans, which may be related to the change in neurotransmitter dopamine in the host brain caused by T. gondii infection. T. gondii tyrosine hydroxylase (TgTH) is an important factor in increasing the neurotransmitter dopamine in the host brain. In this study, the enzyme activity of TgTH catalytic substrate for dopamine production and the molecular characteristics of TgTH were identified. In order to amplify the open reading frame (ORF), the designing of the specific primers for polymerase chain reaction (PCR) was on the basis of the TgTH sequence (GenBank Accession No. EU481510.1), which was inserted into pET-32a (+) for the expression of recombined TgTH (rTgTH). The sequence analysis indicated that the gene of TgTH directed the encoding of a 62.4-kDa protein consisting of 565 amino acid residues, which was predicted to have a high antigen index. The enzyme activity test showed that rTgTH and the soluble proteins extracted separately from T. gondii RH strain and PRU strain could catalyze the substrate to produce dopamine in a dose-dependent manner, and the optimum catalytic temperature was 37 °C. The result of the Western Blotting assay revealed that the rTgTH and the native TgTH extracted from somatic of T. gondii RH tachyzoite were successfully detected by the sera of mice infected with T. gondii and the rat serum after rTgTH immune, respectively. Immunofluorescence analysis using antibody against rTgTH demonstrated that the protein was expressed and located on the surface of T. gondii RH tachyzoite. Freund’s adjuvant was used to emulsify the rTgTH, which was subsequently applied to BALB/c mouse immune thrice on week 0, week 2, and week 4, respectively. The result of the animal challenge experiments showed an integral increase in IgG, IgG2a, IgG1, and IFN-γ, IL-4, and IL17 were as well significantly increased, and that the rTgTH vaccinated animals apparently had a prolonged survival time (14.30 ± 2.41) after infection with the RH strain of T. gondii compared with that of the non-vaccinated control animals, which died within 11 days. Additionally, in the rTgTH vaccination group, the number of brain cysts (1275 ± 224) significantly decreased (p < 0.05) compared to the blank control group (2375 ± 883), and the size of the brain cysts in the animals immunized with rTgTH vaccination was remarkably smaller than that of the control mice. All the findings prove that TgTH played an important role in increasing the neurotransmitter dopamine in the host brain and could be used as a vaccine candidate antigen to mediate cell-mediated and humoral immunity.
Collapse
|
15
|
Ghaffari AD, Dalimi A, Ghaffarifar F, Pirestani M. Structural predication and antigenic analysis of ROP16 protein utilizing immunoinformatics methods in order to identification of a vaccine against Toxoplasma gondii: An in silico approach. Microb Pathog 2020; 142:104079. [PMID: 32084578 DOI: 10.1016/j.micpath.2020.104079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/25/2020] [Accepted: 02/18/2020] [Indexed: 01/20/2023]
Abstract
Toxoplasmosis, caused by Toxoplasma gondii, is a common parasitic disease, affecting almost one-third of the world's population. Currently, there are no effective treatments for inhibiting the formation of chronic tissue cysts in infected hosts. Thus, the production of appropriate vaccines against this pathogen is an important goal to avoid toxoplasmosis. considering the role of rhoptry antigens like ROP16 in virulence and satisfactory immunogenicity, they can be used as promising vaccine candidates against T. gondii. In the present study, an in silico approach was used to analyze various aspects of the ROP16 protein, including physicochemical characteristics, the potential epitopes of B and T-cells, the secondary and tertiary structure, the subcellular localization, the transmembrane domain, and other important features of this protein using several bioinformatics tools to design a proper vaccine against T. gondii. The results showed that ROP16 protein includes 93 potential post-translational modification sites. The secondary structure of the ROP16 protein comprises 34.23% alpha-helix, 54.46% random coil, and 11.32% extended strand. Moreover, several potential B- and T-cell epitopes were identified for ROP16. Based on the results of Ramachandran plot, 84.64% of the amino acid residues were located in the favored, 10.34% in allowed, and 5.02% in outlier regions. Furthermore, the results of the antigenicity and allergenicity assessment noted that this protein was immunogenic and non-allergenic. Our findings suggested that structural and functional predictions applied to ROP16 protein using in silico tools can reduce the failure risk of the laboratory studies. This research provided an important basis for further studies and also developed an effective vaccine against acute and chronic toxoplasmosis by various strategies. Further studies are needed on the development of vaccines in vivo using ROP16 alone or in combination with other antigens in the future.
Collapse
Affiliation(s)
- Ali Dalir Ghaffari
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Pagheh AS, Sarvi S, Sharif M, Rezaei F, Ahmadpour E, Dodangeh S, Omidian Z, Hassannia H, Mehrzadi S, Daryani A. Toxoplasma gondii surface antigen 1 (SAG1) as a potential candidate to develop vaccine against toxoplasmosis: A systematic review. Comp Immunol Microbiol Infect Dis 2020; 69:101414. [PMID: 31958746 DOI: 10.1016/j.cimid.2020.101414] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an intracellular parasite that infects a broad range of animal species and humans. As the main surface antigen of the tachyzoite, SAG1 is involved in the process of recognition, adhesion and invasion of host cells. The aim of the current systematic review study is to clarify the latest status of studies in the literature regarding SAG1-associated recombinant proteins or SAG1-associated recombinant DNAs as potential vaccines against toxoplasmosis. Data were systematically collected from six databases including PubMed, Science Direct, Web of Science, Google Scholar, EBSCO and Scopus, up to 1st of January 2019. A total of 87 articles were eligible for inclusion criteria in the current systematic review. The most common antigens used for experimental cocktail vaccines together with SAG1 were ROP2 and SAG2. In addition, the most parasite strains used were RH and ME49. Freund's adjuvant and cholera toxin have been predominantly utilized. Furthermore, regarding the animal models, route and dose of vaccination, challenge methods, measurement of immune responses and cyst burden have been discussed in the text. Most of these experimental vaccines induce immune responses and have a high degree of protection against parasite infections, increase survival rates and duration and reduce cyst burdens. The data demonstrated that SAG1 antigen has a high potential for use as a vaccine and provided a promising approach for protecting humans and animals against toxoplasmosis.
Collapse
Affiliation(s)
- Abdol Sattar Pagheh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Sharif
- Department of Parasitology, School of Medicine, Sari Branch, Islamic AZAD University, Sari, Iran
| | - Fatemeh Rezaei
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Dodangeh
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Hadi Hassannia
- Immunonogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran..
| |
Collapse
|
17
|
Luan T, Jin C, Jin CM, Gong GH, Quan ZS. Synthesis and biological evaluation of ursolic acid derivatives bearing triazole moieties as potential anti-Toxoplasma gondii agents. J Enzyme Inhib Med Chem 2019; 34:761-772. [PMID: 30836795 PMCID: PMC6407578 DOI: 10.1080/14756366.2019.1584622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Ursolic acid (UA), a plant-derived compound, has many properties beneficial to health. In the present study, we synthesised three series of novel UA derivatives and evaluated their anti-Toxoplasma gondii activity both in vitro and in vivo. Most derivatives exhibited an improved anti-T. gondii activity in vitro when compared with UA (parent compound), whereas compound 3d exhibited the most potent anti-T. gondii activity in vivo. Spiramycin served as the positive control. Additionally, determination of biochemical parameters, including the liver and spleen indexes, indicated compound 3d to effectively reduce hepatotoxicity and significantly enhance anti-oxidative effects, as compared with UA. Furthermore, our molecular docking study indicated compound 3d to possess a strong binding affinity for T. gondii calcium-dependent protein kinase 1 (TgCDPK1). Based on these findings, we conclude that compound 3d, a derivative of UA, could act as a potential inhibitor of TgCDPK1.
Collapse
Affiliation(s)
- Tian Luan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Chunmei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Chun-Mei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Guo-Hua Gong
- First Clinical Medical College of Inner Mongolia University for Nationalities, Tongliao, China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia University for Nationalities, Tongliao, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
18
|
Guo HY, Jin C, Zhang HM, Jin CM, Shen QK, Quan ZS. Synthesis and Biological Evaluation of (+)-Usnic Acid Derivatives as Potential Anti- Toxoplasma gondii Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9630-9642. [PMID: 31365255 DOI: 10.1021/acs.jafc.9b02173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Six series of (+)-usnic acid derivatives were synthesized. The IC50 values of these compounds were determined in T. gondii infected HeLa cells (μM) and in HeLa cells (μM), and their selectivity indexes (SI) were calculated. In vitro, most of the derivatives tested in this study exhibited more anti activity than that of the parent compound (+)-usnic acid and the positive control drugs. Among these derivatives, methyl (E)-(1-(6-acetyl-7,9-dihydroxy-8,9b-dimethyl-1,3-dioxo-3,9b-dihydrodibenzo[b,d]furan-2(1H)-ylidene)ethyl)phenylalaninate (D3) showed the most effective anti-T. gondii activity (selectivity >2.77). In comparison with the clinically used positive control drugs sulfadiazine (selectivity 1.15), pyrimethamine (selectivity 0.89), spiramycin (selectivity 0.72), and the lead compound (+)-usnic acid (selectivity 0.96), D3 showed better results in vitro. Furthermore, D3 and (E)-6-acetyl-7,9-dihydroxy-8,9b-dimethyl-2-(1-(quinolin-6-ylamino)ethylidene)dibenzo[b,d]furan-1,3(2H,9bH)-dione (F3) had greater inhibitory effects on T. gondii (inhibition rates 76.0% and 64.6%) in vivo in comparison to spiramycin (inhibition rate 55.2%); in the peritoneal cavity of mice, the number of tachyzoites was significantly reduced (p < 0.001) in vivo. Additionally, some biochemical parameters were measured and spleen indexes were comprehensively evaluated, and the results indicated that mice treated with both compound D3 and compound F3 showed reduced hepatotoxicity and significantly enhanced antioxidative effects in comparison to the normal group. Granuloma and cyst formation were effected by the inhibition of compound D3 and compound F3 in liver sections. Overall, these results indicated that D3 and F3 for use as anti-T. gondii agents are promising lead compounds.
Collapse
Affiliation(s)
- Hong-Yan Guo
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - ChunMei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Hai-Ming Zhang
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Chun-Mei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Qing-Kun Shen
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| |
Collapse
|
19
|
Liu K, Wen H, Cai H, Wu M, An R, Chu D, Yu L, Shen J, Chen L, Du J. Protective Effect Against Toxoplasmosis in BALB/c Mice Vaccinated With Toxoplasma gondii Macrophage Migration Inhibitory Factor. Front Microbiol 2019; 10:813. [PMID: 31105655 PMCID: PMC6491892 DOI: 10.3389/fmicb.2019.00813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite responsible for toxoplasmosis, which can cause severe disease in the fetus and immunocompromised individuals. Developing an effective vaccine is crucial to control this disease. Macrophage migration inhibitory factor (MIF) has gained substantial attention as a pivotal upstream cytokine to mediate innate and adaptive immune responses. Homologs of MIF have been discovered in many parasitic species, and one homolog of MIF has been isolated from the parasite Toxoplasma gondii. In this study, the recombinant Toxoplasma gondii MIF (rTgMIF) as a protein vaccine was expressed and evaluated by intramuscular injection in BALB/c mice. We divided the mice into different dose groups of vaccines, and all immunizations with purified rTgMIF protein were performed at 0, 2, and 4 weeks. The protective efficacy of vaccination was analyzed by antibody assays, cytokine measurements and lymphoproliferative assays, respectively. The results obtained indicated that the rTgMIF vaccine elicited strong humoral and cellular immune responses with high levels of IgG antibody and IFN-γ production compared to those of the controls, in addition to slight higher levels of IL-4 production. After vaccination, a stronger lymphoproliferative response was also noted. Additionally, the survival time of mice immunized with rTgMIF was longer than that of the mice in control groups after challenge infection with virulent T. gondii RH tachyzoites. Moreover, the number of brain tissue cysts in vaccinated mice was reduced by 62.26% compared with the control group. These findings demonstrated that recombinant TgMIF protein is a potential candidate for vaccine development against toxoplasmosis.
Collapse
Affiliation(s)
- Kang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Hongyang Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Deyong Chu
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Li Yu
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Guo J, Zhou A, Sun X, Sha W, Ai K, Pan G, Zhou C, Zhou H, Cong H, He S. Immunogenicity of a Virus-Like-Particle Vaccine Containing Multiple Antigenic Epitopes of Toxoplasma gondii Against Acute and Chronic Toxoplasmosis in Mice. Front Immunol 2019; 10:592. [PMID: 30984177 PMCID: PMC6449433 DOI: 10.3389/fimmu.2019.00592] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
There is no effective protective vaccine against human toxoplasmosis, which is a potential threat to nearly a third of the world population. Vaccines based on virus-like particles (VLPs) have been highly successful in humans for many years, but have rarely been applied against Toxoplasma gondii infection. In this study, we inserted a B cell epitope (SAG182−102 or SAG1301−320), a CD8+ cell epitope (HF10 or ROP7), and a CD4+ cell epitope (AS15) of T. gondii into a truncated HBcΔ(amino acids1–149) particle to construct four chimeric VLP vaccine formulations, i.e., HBcΔH82, HBcΔH301, HBcΔ R82, and HBcΔ R301. When these chimeric HBc particles were expressed in Escherichia coli, they showed icosahedral morphology similar to that of the original VLPs and were evaluated as vaccine formulations against acute and chronic toxoplasmosis in a mouse model (BALB/c mice (H-2d). All these chimeric HBc VLPs induced strong humoral and cellular immune responses with high IgG antibody titers and interferon(IFN)-γ production. Only the mice immunized with HBcΔH82 showed prolonged survival time (15.6 ± 3.8 vs. 5.6 ± 0.8 days) against acute infection with RH tachyzoites and decrease in brain parasite load (1,454 ± 239 vs. 2,091 ± 263) against chronic infection with Prugniuad cysts, as compared to the findings for the control group. These findings suggest that HBc VLPs would act as an effective carrier for delivering effective multiple antigenic epitopes and would be beneficial for developing a safe and long-acting vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Aihua Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, School of Medicine, Shandong University, Jinan, China
| | - Xiahui Sun
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wenchao Sha
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Kang Ai
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ge Pan
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chunxue Zhou
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Huaiyu Zhou
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hua Cong
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shenyi He
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
21
|
A systematic review on efficiency of microneme proteins to induce protective immunity against Toxoplasma gondii. Eur J Clin Microbiol Infect Dis 2019; 38:617-629. [DOI: 10.1007/s10096-018-03442-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
22
|
A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization. Microb Pathog 2018; 126:172-184. [PMID: 30399440 DOI: 10.1016/j.micpath.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/24/2022]
Abstract
At present, there is not any available accepted vaccine for prevention of Toxoplasma gondii (T. gondii) in human and animals. We conducted literature search through English (Google Scholar, PubMed, Science Direct, Scopus, EBSCO, ISI Web of Science) scientific paper databases to find the best vaccine candidates against toxoplasmosis among T. gondii antigens. Articles with information on infective stage, pathogenicity, immunogenicity and characterization of antigens were selected. We considered that the ideal and significant vaccines should include different antigens and been expressed in all infective stages of the parasite with a high pathogenicity and immunogenicity. Evaluation within this systematic review indicates that MIC 3, 4, 13, ROP 2, RON 5, GRA 1, 6, 8, 14 are expressed in all three infective stages and have pathogenicity and immunogenicity. MIC 5, ROM 4, GRA 2, 4, 15, ROP 5, 16, 17, 38, RON 4, MIC 1, GRA 10, 12, 16, SAG 3 are expressed in only tachyzoites and bradyzoites stages of T. gondii with pathogenicity/immunogenicity. Some antigens appeared to be expressed in a single stage (tachyzoites) but have high pathogenicity and induce immune response. They include enolase2 (ENO2), SAG 1, SAG5D, HSP 70, ROM 1, ROM 5, AMA 1, ROP 18, RON2 and GRA 24. In conclusion, current vaccination against T. gondii infection is not satisfactory, and with the increasing number of high-risk individuals, the development of an effective and safe specific vaccine is greatly valuable for toxoplasmosis prevention. This systematic review reveals prepare candidates for immunization studies.
Collapse
|
23
|
El-Tantawy NL, Soliman AF, Abdel-Magied A, Ghorab D, Khalil AT, Naeem ZM, Shimizu K, El-Sharkawy SH. Could Araucaria heterophylla resin extract be used as a new treatment for toxoplasmosis? Exp Parasitol 2018; 195:44-53. [PMID: 30339984 DOI: 10.1016/j.exppara.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 11/18/2022]
Abstract
Toxoplasmosis is a worldwide parasitic disease responsible for serious health problems to human. The currently available drugs used for toxoplasmosis treatment showed a limited efficacy and cause serious host toxicity. The in vitro screening for toxoplasmicidal activity of Araucaria heterophylla resin (AHR) extract and its major component 13-epi-cupressic acid (CUP) showed that both AHR (EC50 = 3.90) and CUP (EC50 = 3.69) have high toxoplasmicidal activity in comparison with standard cotrimoxazole (EC50 = 4.28). The antiprotozoal effects of AHR and CUP were investigated against acute and chronic toxoplasmosis using mice models. Two groups of Swiss albino mice were infected by RH Toxoplasma strain intraperitoneally and by Me49 strain orally. Both groups were treated with AHR and CUP in different doses. Their effects were evaluated by survival rate, peritoneal, spleen and liver parasite burdens, brain cyst burden, NO serum level and histopathological lesions. The ultrastructural changes of tachyzoites of acutely infected mice were studied using scanning electron microscopy (SEM). There is an evidence of toxoplasmicidal activity of AHR and CUP in acute and chronic experimental toxoplasmosis. In the acute model, mice treated with AHR and CUP showed prolonged survival rates, a significant decrease in the parasite density in peritoneal lavage and pathological insult in both liver and spleen compared with that of untreated ones. SEM results denote evident morphological alterations of treated tachyzoites. In chronic experimental toxoplasmosis, AHR and CUP treated groups could significantly reduce brain cyst burden by 96.05% and 98.02% respectively. This study indicates that AHR and CUP showed potent toxoplasmicidal activities experimentally and could be used as a potential natural nontoxic agent for treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Nora L El-Tantawy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Amal F Soliman
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Aida Abdel-Magied
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Ghorab
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf T Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Zein M Naeem
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kuniyoshi Shimizu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, 812-8581, Japan
| | - Saleh H El-Sharkawy
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Zhang HB, Shen QK, Wang H, Jin C, Jin CM, Quan ZS. Synthesis and evaluation of novel arctigenin derivatives as potential anti-Toxoplasma gondii agents. Eur J Med Chem 2018; 158:414-427. [PMID: 30237124 DOI: 10.1016/j.ejmech.2018.08.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/15/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Four new series of arctigenin derivatives were designed, synthesised, and evaluated for their anti-Toxoplasma gondii activity in vitro and in vivo. Among the synthesised compounds, 4-(3,4-dimethoxybenzyl)-3-(4-((1-(2-fluorobenzyl)-1H- 1,2,3-triazol-4-yl)methoxy)-3-methoxybenzyl)dihydrofuran-2(3H)-one (D4) exhibited the most potent anti-T. gondii activity and low cytotoxicity (IC50 in T. gondii: 17.1 μM; IC50 in HeLa cells: ≥ 600.0 μM; Selectivity: 35.09), demonstrating better results than the lead compound arctigenin (IC50 in T. gondii: 586.4 μM; IC50 in HeLa cells: 572.7 μM; Selectivity: 0.98) and the clinically applied positive-control drug spiramycin (IC50 in T. gondi: 262.2 μM; IC50 in HeLa cells: 189.0 μM; Selectivity: 0.72) in vitro. Furthermore, 2-(4-((4-(3,4-dimethoxybenzyl)-2-oxotetrahydrofuran-3-yl)methyl)-2- methoxyphenoxy)N-phenylacetamide (E5) had better inhibitory effects on T. gondii in vivo than spiramycin did. Compound D4 and E5 not only significantly reduced the number of tachyzoites in the peritoneal cavity of mice, but also resulted in their partial malformation (P < 0.05) in vivo. The determination of liver and spleen index and biochemical parameters, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutathione (GSH) and malondialdehyde (MDA), were comprehensively evaluated for compound D4 and E5's anti-T. gondii activity and some damage to the liver. In addition, the results of a docking study of D4 into the T. gondii calcium-dependent protein kinase 1 (TgCDPK1) receptor protein-binding site revealed that its mode of action was possibly as a TgCDPK1 inhibitor. Overall, the results revealed that D4 and E5 are promising lead compounds for the further development and identification of arctigenin derivatives as anti-T. gondii agents.
Collapse
Affiliation(s)
- Hai-Bin Zhang
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hui Wang
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Chunmei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Chun-Mei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
25
|
Zhang Z, Li Y, Liang Y, Wang S, Xie Q, Nan X, Li P, Hong G, Liu Q, Li X. Molecular characterization and protective immunity of rhoptry protein 35 (ROP35) of Toxoplasma gondii as a DNA vaccine. Vet Parasitol 2018; 260:12-21. [DOI: 10.1016/j.vetpar.2018.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/15/2018] [Accepted: 06/23/2018] [Indexed: 02/07/2023]
|
26
|
Zhang Z, Li Y, Xie Q, Li P, Nan X, Kong L, Zeng D, Ding Z, Wang S. The Molecular Characterization and Immunity Identification of Rhoptry Protein 22 of Toxoplasma gondii
as a DNA Vaccine Candidate Against Toxoplasmosis. J Eukaryot Microbiol 2018; 66:147-157. [PMID: 29858559 DOI: 10.1111/jeu.12639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Zhenchao Zhang
- School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Yuhua Li
- The First Affiliated Hospital of Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Qing Xie
- School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Pengju Li
- School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Xiaoxu Nan
- School of Stomatology; Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Lingmin Kong
- School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Dapeng Zeng
- The First Affiliated Hospital of Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Zhifang Ding
- School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Shuai Wang
- School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan 453003 China
| |
Collapse
|
27
|
Guo J, Sun X, Yin H, Wang T, Li Y, Zhou C, Zhou H, He S, Cong H. Chitosan Microsphere Used as an Effective System to Deliver a Linked Antigenic Peptides Vaccine Protect Mice Against Acute and Chronic Toxoplasmosis. Front Cell Infect Microbiol 2018; 8:163. [PMID: 29876322 PMCID: PMC5974094 DOI: 10.3389/fcimb.2018.00163] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Multiple antigenic peptide (MAP) vaccines have advantages over traditional Toxoplasma gondii vaccines, but are more susceptible to enzymatic degradation. As an effective delivery system, chitosan microspheres (CS) can overcome this obstacle and act as a natural adjuvant to promote T helper 1 (Th1) cellular immune responses. In this study, we use chitosan microparticles to deliver multiple antigenic epitopes from GRA10 (G10E), containing three dominant epitopes. When G10E was entrapped within chitosan microparticles (G10E-CS), adequate peptides for eliciting immune response were loaded in the microsphere core and this complex released G10E peptides stably. The efficiency of G10E-CS was detected both in vitro, via cell culture, and through in vivo mouse immunization. In vitro, G10E-CS activated Dendritic Cells (DC) and T lymphocytes by upregulating the secretion of costimulatory molecules (CD40 and CD86). In vivo, Th1 biased cellular and humoral immune responses were activated in mice vaccinated with G10E-CS, accompanied by significantly increased production of IFN-γ, IL-2, and IgG, and decreases in IL-4, IL-10, and IgG1. Immunization with G10E-CS conferred significant protection with prolonged survival in mice model of acute toxoplasmosis and statistically significant decreases in cyst burden in murine chronic toxoplasmosis. The results from this study indicate that chitosan microspheres used as an effective system to deliver a linked antigenic peptides is a promising strategy for the development of efficient vaccine against T. gondii.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Xiahui Sun
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Huiquan Yin
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Ting Wang
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Yan Li
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Chunxue Zhou
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Huaiyu Zhou
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Shenyi He
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| | - Hua Cong
- Department of Human Parasitology, Shandong University, School of Medicine, Jinan, China
| |
Collapse
|
28
|
Zhang Z, Li Y, Wang M, Xie Q, Li P, Zuo S, Kong L, Wang C, Wang S. Immune Protection of Rhoptry Protein 21 (ROP21) of Toxoplasma gondii as a DNA Vaccine Against Toxoplasmosis. Front Microbiol 2018; 9:909. [PMID: 29867820 PMCID: PMC5951983 DOI: 10.3389/fmicb.2018.00909] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii rhoptry proteins (TgROPs) are the major targets as key molecules for immunodiagnosis as well as immunoprophylaxis because of their initial presentation to the host immune system. In this work, it was aimed at evaluating the protection effect of TgROP21 DNA vaccine on experimental mice subjected to T. gondii challenge. The gene sequence encoding TgROP21 was inserted into the eukaryotic expression vector pVAX I, and western blotting indicates that the lysate of BHK cells transfected with pVAX-TgROP21 was specifically recognized as a band of about 82.6 kDa by serum obtained from a T. gondii infected chicken. The efficacy of intramuscular vaccination of BALB/c mice three times at weeks 0, 2, and 4 with pVAX-ROP21 was analyzed. The levels of IgG, IgG1, and IgG2a among pVAX-ROP21 vaccinated animals were integrally increased. It was uncovered by cytokine profile analyses that IFN-γ was significantly increased, while no significant changes were detected in interleukin-2 (IL-2), interleukin-4 (IL-4), and interleukin-10 (IL-10). Additionally, we found that immunization with pVAX-ROP21 significantly prolonged survival time (13.50 ± 1.65 days) after challenge infection with the virulent T. gondii RH strain, in comparison to those of control animals (died within 10 days). Moreover, the number of brain cysts (1475 ± 163) in the animals subjected to pVAX-TgROP21 vaccination decreased remarkably (P < 0.05) compared to the blank control mice (2333 ± 473), and the size of brain cysts in pVAX-TgROP21 group was significantly smaller than the groups of blank, PBS and pVAXI. It was indicated that intense cell-mediated and humoral immunity was triggered and defense against T. gondii was partially induced after vaccination by TgROP21.
Collapse
Affiliation(s)
- Zhenchao Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuhua Li
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Mingyong Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Qing Xie
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Pengju Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Suqiong Zuo
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lingmin Kong
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chenxing Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shuai Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
29
|
Chen Y, Yu M, Hemandez JA, Li J, Yuan ZG, Yan H. Immuno-efficacy of DNA vaccines encoding PLP1 and ROP18 against experimental Toxoplasma gondii infection in mice. Exp Parasitol 2018; 188:73-78. [PMID: 29626423 DOI: 10.1016/j.exppara.2018.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/09/2018] [Accepted: 04/02/2018] [Indexed: 11/29/2022]
Abstract
We constructed a new plasmid pIRESneo/ROP18/PLP1 that was injected intramuscularly into Kunming mice to evaluate its immune efficacy. The immunized mice exhibited significantly increased serum IgG2a levels, lymphocyte counts and Th1-type cytokine (IL-2, IL-12 and IFN-γ) levels. Moreover, the immunized mice exhibited longer survival times (44.7 ± 2.1 days for ROP18/PLP1 and 47.2 ± 2.9 days for ROP18/PLP1 + IL-18) and lower brain cyst burden (68.9% for ROP18/PLP1 and 72.4% for ROP18/PLP1 + IL-18) than control mice after T. gondii challenge. Our results demonstrate that the multiple-gene DNA vaccine including both ROP18 and PLP1 elicits greater protection against T. gondii challenge and stronger immunogenicity than single-gene vaccines.
Collapse
Affiliation(s)
- Yajun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, PR China; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, South China Agricultural University, 510642, PR China
| | - Miao Yu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, PR China
| | - J A Hemandez
- College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610-0136, USA
| | - Jiexi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, PR China; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, South China Agricultural University, 510642, PR China
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, PR China; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, South China Agricultural University, 510642, PR China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, 510642, PR China.
| | - Haikuo Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, PR China; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, South China Agricultural University, 510642, PR China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, 510642, PR China.
| |
Collapse
|
30
|
Zhuo XH, Sun HC, Huang B, Yu HJ, Shan Y, Du AF. Evaluation of potential anti-toxoplasmosis efficiency of combined traditional herbs in a mouse model. J Zhejiang Univ Sci B 2018; 18:453-461. [PMID: 28585421 PMCID: PMC5482040 DOI: 10.1631/jzus.b1600316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Toxoplasma gondii is a worldwide spread protozoan and is able to infect almost all warm-blood animals. No effective drugs are available clinically on toxoplasmosis. Chinese traditional herbal medicines have provided remedies for many health problems. There exists a possibility that Chinese herbs may provide protection against T. gondii. This work aims to assess the protective efficacy of combined Chinese herbs against T. gondii. We screened five herbal medicines that have different pharmacological effects and combined them into a prescription according to the traditional Chinese medicine compatibility principle. The drug potential and protective efficacy were evaluated through a mouse model by determining the survival time, the parasite load in blood and tissues, the change of cell proportions in blood and histological detection. The results showed that the survival time of mice in the 500 mg Chinese herbs group and sulfadiazine group was significantly longer than that of the PBS control group. Also the parasite load in blood and tissues of 500 mg Chinese herbs and sulfadiazine groups was significantly lower than that of PBS group at 7 days post infection (dpi), which was in accordance with the result of histological detection. Monocyte and neutrophil of infected mice were remarkably increased while lymphocyte was dramatically decreased compared to that of blank group at 7 dpi. The results demonstrated that the 500 mg dosage of our Chinese herbs could slow down the replication of T. gondii and prolong the survival time of mice and could be considered as possible candidate drug against toxoplasmosis.
Collapse
Affiliation(s)
- Xun-Hui Zhuo
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Hong-Chao Sun
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bin Huang
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hai-Jie Yu
- Jiaxing Vocational & Technical College, Jiaxing 314000, China
| | - Ying Shan
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ai-Fang Du
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Foroutan M, Ghaffarifar F. Calcium-dependent protein kinases are potential targets for Toxoplasma gondii vaccine. Clin Exp Vaccine Res 2018; 7:24-36. [PMID: 29399577 PMCID: PMC5795042 DOI: 10.7774/cevr.2018.7.1.24] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 01/30/2023] Open
Abstract
Toxoplasma gondii belongs to the Apicomplexa phylum that caused a widespread zoonotic infection in wide range of intermediate hosts. Over one-third of the world's population are latently infected with T. gondii and carry it. The complex life cycle of T. gondii indicates the presence of a plurality of antigenic epitopes. During the recent years, continuous efforts of scientists have made precious advances to elucidate the different aspects of the cell and molecular biology of T. gondii. Despite of great progresses, the development of vaccine candidates for preventing of T. gondii infection in men and animals is still remains a challenge. The calcium-dependent protein kinases (CDPKs) belongs to the superfamily of kinases, which restricted to the apicomplexans, ciliates, and plants. It has been documented that they contribute several functions in the life cycle of T. gondii such as gliding motility, cell invasion, and egress as well as some other critical developmental processes. In current paper, we reviewed the recent progress concerning the development of CDPK-based vaccines against acute and chronic T. gondii.
Collapse
Affiliation(s)
- Masoud Foroutan
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
32
|
Lin Y, Wang X, Huang X, Zhang J, Xia N, Zhao Q. Calcium phosphate nanoparticles as a new generation vaccine adjuvant. Expert Rev Vaccines 2017; 16:895-906. [DOI: 10.1080/14760584.2017.1355733] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yahua Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
- School of Life Science, Xiamen University, Xiamen, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
- School of Life Science, Xiamen University, Xiamen, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| |
Collapse
|
33
|
Lee SH, Kim AR, Lee DH, Rubino I, Choi HJ, Quan FS. Protection induced by virus-like particles containing Toxoplasma gondii microneme protein 8 against highly virulent RH strain of Toxoplasma gondii infection. PLoS One 2017; 12:e0175644. [PMID: 28406951 PMCID: PMC5391012 DOI: 10.1371/journal.pone.0175644] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii (T. gondii) microneme protein 8 (MIC8) represents a novel, functional distinct invasion factor. In this study, we generated virus-like particles (VLPs) targeting Toxoplasma gondii MIC8 for the first time, and investigated the protection against highly virulent RH strain of T. gondii in a mouse model. We found that VLP vaccination induced Toxoplasma gondii-specific IgG and IgG1 antibody responses in the sera. Upon challenge infection with RH strain of T. gondii tachyzoites, vaccinated mice showed a significant increase of both IgG antibodies in sera and IgA antibodies in feces compared to those before challenge, and a rapid expansion of both germinal center B cell (B220+, GL7+) and T cell (CD4+, CD8+) populations. Importantly, intranasally immunized mice showed higher neutralizing antibodies and displayed no proinflammatory cytokine IFN-γ in the spleen. Mice were completely protected from a lethal challenge infection with the highly virulent T. gondii (RH) showing no body weight loss (100% survival). Our study shows the effective protection against T. gondii infection provided by VLPs containing microneme protein 8 of T. gondii, thus indicating a potential T. gondii vaccine candidate.
Collapse
Affiliation(s)
- Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ah-Ra Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Dong-Hun Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ilaria Rubino
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
34
|
Montazeri M, Sharif M, Sarvi S, Mehrzadi S, Ahmadpour E, Daryani A. A Systematic Review of In vitro and In vivo Activities of Anti -Toxoplasma Drugs and Compounds (2006-2016). Front Microbiol 2017; 8:25. [PMID: 28163699 PMCID: PMC5247447 DOI: 10.3389/fmicb.2017.00025] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/05/2017] [Indexed: 11/23/2022] Open
Abstract
The currently available anti-Toxoplasma agents have serious limitations. This systematic review was performed to evaluate drugs and new compounds used for the treatment of toxoplasmosis. Data was systematically collected from published papers on the efficacy of drugs/compounds used against Toxoplasma gondii (T. gondii) globally during 2006-2016. The searched databases were PubMed, Google Scholar, Science Direct, ISI Web of Science, EBSCO, and Scopus. One hundred and eighteen papers were eligible for inclusion in this systematic review, which were both in vitro and in vivo studies. Within this review, 80 clinically available drugs and a large number of new compounds with more than 39 mechanisms of action were evaluated. Interestingly, many of the drugs/compounds evaluated against T. gondii act on the apicoplast. Therefore, the apicoplast represents as a potential drug target for new chemotherapy. Based on the current findings, 49 drugs/compounds demonstrated in vitro half-maximal inhibitory concentration (IC50) values of below 1 μM, but most of them were not evaluated further for in vivo effectiveness. However, the derivatives of the ciprofloxacin, endochin-like quinolones and 1-[4-(4-nitrophenoxy) phenyl] propane-1-one (NPPP) were significantly active against T. gondii tachyzoites both in vitro and in vivo. Thus, these compounds are promising candidates for future studies. Also, compound 32 (T. gondii calcium-dependent protein kinase 1 inhibitor), endochin-like quinolones, miltefosine, rolipram abolish, and guanabenz can be repurposed into an effective anti-parasitic with a unique ability to reduce brain tissue cysts (88.7, 88, 78, 74, and 69%, respectively). Additionally, no promising drugs are available for congenital toxoplasmosis. In conclusion, as current chemotherapy against toxoplasmosis is still not satisfactory, development of well-tolerated and safe specific immunoprophylaxis in relaxing the need of dependence on chemotherapeutics is a highly valuable goal for global disease control. However, with the increasing number of high-risk individuals, and absence of a proper vaccine, continued efforts are necessary for the development of novel treatment options against T. gondii. Some of the novel compounds reviewed here may represent good starting points for the discovery of effective new drugs. In further, bioinformatic and in silico studies are needed in order to identify new potential toxoplasmicidal drugs.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Student Research Committee, Mazandaran University of Medical SciencesSari, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences TehranIran
| | - Ehsan Ahmadpour
- Drug Applied Research Center, Tabriz University of Medical SciencesTabriz, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| |
Collapse
|
35
|
Immunological evaluation of a DNA cocktail vaccine with co-delivery of calcium phosphate nanoparticles (CaPNs) against the Toxoplasma gondii RH strain in BALB/c mice. Parasitol Res 2016; 116:609-616. [PMID: 27909791 DOI: 10.1007/s00436-016-5325-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
Many recent studies have been conducted to evaluate protective immunity mediated by DNA vaccines against toxoplasmosis. Cocktail DNA vaccines showed better immune responses compared to single vaccines. The objective of the current study was to evaluate the protective efficacy of rhomboid 4 (ROM4) and cocktail DNA vaccines (ROM4 + GRA14) of the Toxoplasma gondii RH strain with or without coated calcium phosphate nanoparticles (CaPNs) as the adjuvant to improve the immunogenicity against the T. gondii RH strain in BALB/c mice. Cocktail DNA vaccines of pcROM4 + pcGRA14 of the T. gondii RH strain were constructed. CaPNs were synthesized and the cocktail DNA vaccine was coated with the adjuvant of CaPNs. Immunogenicity and the protective effects of cocktail DNA vaccines with or without CaPNs against lethal challenge were evaluated in BALB/c mice. pcROM4 and cocktail DNA vaccine coated with CaPNs significantly enhanced cellular and humoral immune responses against Toxoplasma compared to pcROM4 and cocktail DNA vaccine without CaPNs (p < 0.05). These findings indicate that the survival time of immunized mice after challenge with the RH strain of T. gondii was increased compared to that of controls and the DNA vaccine provided significant protection in mice (p < 0.05). The CaPN-based cocktail DNA vaccine of pcROM4 + pcGRA14 showed the longest survival time compared to the other groups. Co-immunization with CaPN-based cocktail DNA vaccine (pcROM4 + pcGRA14) boosted immune responses and increased the protective efficacy against acute toxoplasmosis in BALB/c mice compared to both single gene and bivalent DNA vaccine without nano-adjuvants.
Collapse
|
36
|
Rashid I, Moiré N, Héraut B, Dimier-Poisson I, Mévélec MN. Enhancement of the protective efficacy of a ROP18 vaccine against chronic toxoplasmosis by nasal route. Med Microbiol Immunol 2016; 206:53-62. [PMID: 27757545 DOI: 10.1007/s00430-016-0483-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
Infection with the parasite Toxoplasma gondii causes serious public health problems and is of great economic importance worldwide. No vaccine is currently available, so the design of efficient vaccine strategies is still a topical question. In this study, we evaluated the immunoprophylactic potential of a T. gondii virulence factor, the rhoptry kinase ROP18, in a mouse model of chronic toxoplasmosis: first using a recombinant protein produced in Schneider insect cells adjuvanted with poly I:C emulsified in Montanide SV71 by a parenteral route or adjuvanted with cholera toxin by the nasal route and second using a DNA plasmid encoding ROP18 adjuvanted with GM-CSF ± IL-12 DNA. If both intranasal and subcutaneous recombinant ROP18 immunizations induced predominantly anti-ROP18 IgG1 antibodies and generated a mixed systemic Th1-/Th2-type cellular immune response characterized by the production of IFN-γ, IL-2, Il-10 and IL-5, only intranasal vaccination induced a mucosal (IgA) humoral response in intestinal washes associated with a significant brain cyst reduction (50 %) after oral challenge with T. gondii cysts. DNA immunization induced antibodies and redirected the cellular immune response toward a Th1-type response (production of IFN-γ and IL-2) but did not confer protection. These results suggest that ROP18 could be a component of a subunit vaccine against toxoplasmosis and that strategies designed to enhance mucosal protective immune responses could lead to more encouraging results.
Collapse
Affiliation(s)
- Imran Rashid
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | - Nathalie Moiré
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | - Bruno Héraut
- ISP, INRA, Université de Tours, UMR 1282, 37380, Nouzilly, France
| | | | | |
Collapse
|
37
|
Ching XT, Fong MY, Lau YL. Evaluation of Immunoprotection Conferred by the Subunit Vaccines of GRA2 and GRA5 against Acute Toxoplasmosis in BALB/c Mice. Front Microbiol 2016; 7:609. [PMID: 27199938 PMCID: PMC4847622 DOI: 10.3389/fmicb.2016.00609] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/12/2016] [Indexed: 12/24/2022] Open
Abstract
Toxoplasmosis is a foodborne disease caused by Toxoplasma gondii, an obligate intracellular parasite. Severe symptoms occur in the immunocompromised patients and pregnant women leading to fatality and abortions respectively. Vaccination development is essential to control the disease. The T. gondii dense granule antigen 2 and 5 (GRA2 and GRA5) have been targeted in this study because these proteins are essential to the development of parasitophorous vacuole (PV), a specialized compartment formed within the infected host cell. PV is resistance to host cell endosomes and lysosomes thereby protecting the invaded parasite. Recombinant dense granular proteins, GRA2 (rGRA2) and GRA5 (rGRA5) were cloned, expressed, and purified in Escherichia coli, BL21 (DE3) pLysS. The potential of these purified antigens as subunit vaccine candidates against toxoplasmosis were evaluated through subcutaneous injection of BALB/c mice followed by immunological characterization (humoral- and cellular-mediated) and lethal challenge against virulent T. gondii RH strain in BALB/c mice. Results obtained demonstrated that rGRA2 and rGRA5 elicited humoral and cellular-mediated immunity in the mice. High level of IgG antibody was produced with the isotype IgG2a/IgG1 ratio of ≈0.87 (p < 0.001). Significant increase (p < 0.05) in the level of four cytokines (IFN-γ, IL-2, IL-4, and IL-10) was obtained. The antibody and cytokine results suggest that a mix mode of Th1/Th2-immunity was elicited with predominant Th1-immune response inducing partial protection against T. gondii acute infection in BALB/c mice. Our findings indicated that both GRA2 and GRA5 are potential candidates for vaccine development against T. gondii acute infection.
Collapse
Affiliation(s)
- Xiao T Ching
- Department of Parasitology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Mun Y Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Yee L Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Zhang NZ, Xu Y, Wang M, Chen J, Huang SY, Gao Q, Zhu XQ. Vaccination with Toxoplasma gondii calcium-dependent protein kinase 6 and rhoptry protein 18 encapsulated in poly(lactide-co-glycolide) microspheres induces long-term protective immunity in mice. BMC Infect Dis 2016; 16:168. [PMID: 27090890 PMCID: PMC4836102 DOI: 10.1186/s12879-016-1496-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 04/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background Toxoplasmosis is a worldwide zoonosis caused by the intracellular parasite Toxoplasma gondii. However, no effective vaccine is yet available. Poly(lactide-co-glycolide) polymers can reduce protein degradation and sustain the release of antigens over a long period, which could generate a long-lasting immune response in vivo. Using a mouse model of toxoplasmosis, we evaluated the protective efficacy of vaccination with two recombinant proteins, which are formulated in biodegradable polymers. Methods Two recombinant proteins, rCDPK6 and rROP18, were encapsulated in poly(d,l-lactide-co-glycolide) (PLG), and then injected subcutaneously into Kunming mice. The mice immune responses were evaluated in terms of lympho-proliferation, cytokine expression, and antibodies. The survival of infected mice and brain cyst formation were also evaluated at 6 weeks after challenge with T. gondii RH strain (genotype I) or PRU strain (genotype II). Results Both protein vaccines induced Th1-biased immune responses, with increased specific antibodies and T cells, high levels of interferon-γ and interleukin 2, and strong lymphocyte proliferative responses. The mice immunized with the various protein vaccines survived slightly longer time than the control groups (P > 0.05) after injection with T. gondii RH strain. There were fewer brain cysts in the mice in all the immunized groups than that in the control groups, and the brain cysts were significantly reduced in mice immunized with proteins + 206, rCDPK6 + PLG and rCDPK6 + rROP18 + PLG (P < 0.05) compared controls. Further comparison of the immune responses to the proteins adjuvanted with PLG or Montanide™ ISA 206 VG 6 weeks after the last immunization revealed that antigens encapsulated in PLG conferred greater protective immunity against challenge. Conclusions These findings suggest that the two recombinant T. gondii proteins encapsulated in PLG conferred immunity to T. gondii for an extended period, providing the foundation for the further development of a commercial vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Ying Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Jia Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, PR China
| | - Qi Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, PR China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, PR China.
| |
Collapse
|
39
|
Zhao Y, Li ZY, Chen J, Sun XL, Liu SS, Zhu XQ, Zhou DH. Protective efficacy of pVAX-RON5p against acute and chronic infections of Toxoplasma gondii in BALB/c mice. Exp Parasitol 2016; 163:24-30. [PMID: 26821295 DOI: 10.1016/j.exppara.2016.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
Toxoplasma gondii can infect all the warm-blooded animals and humans and causes serious diseases especially in immuno-compromised patients and pregnant women. Rhoptry neck proteins (RONs) play an important role in the formation of moving junction, which mediates the invasion of this parasite. A recombinant plasmid pVAX-RON5p, which can express part of RON5 protein in the eukaryocyte, was generated and used to immune BALB/c mice for evaluating the protective efficacy against the acute and chronic infections of T. gondii. Both humoral and cellular immune responses were evoked in mice by pVAX-RON5p immunization, and a slightly prolonged survival period was detected in the immunized group (7.6 ± 3.31 days) compared to the blank control (4.9 ± 0.32 days) after acute T. gondii infection (P < 0.05). For chronic infection of T. gondii, the number of cysts in the brain of pVAX-RON5p-immunized mice decreased 25.8% compared to blank control (P < 0.05). Our data suggested that RON5p DNA vaccine can induce partial protective immunity against acute and chronic T. gondii infections.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, PR China
| | - Zhong-Yuan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Jia Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Xiao-Lin Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, PR China
| | - Shan-Shan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, PR China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province 225009, PR China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| |
Collapse
|
40
|
Chen J, Li ZY, Petersen E, Liu WG, Zhu XQ. Co-administration of interleukins 7 and 15 with DNA vaccine improves protective immunity against Toxoplasma gondii. Exp Parasitol 2015; 162:18-23. [PMID: 26706605 DOI: 10.1016/j.exppara.2015.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Toxoplasma gondii is an obligatory intracellular parasite, which can infect all warm-blooded animals including humans. Cytokines, including IL-15 and IL-7, play a critical role in the regulation of the homeostasis of naive and memory T cells. Co-administration the DNA vaccine with cytokines may improve its efficacy. IL-7 and IL-15 from splenic tissues of Kunming mice were cloned, and eukaryotic plasmid pVAX-IL-7-IL-15 was constructed. Kunming mice were administrated with DNA vaccine expressing T. gondii calcium-dependent protein kinase 1 (TgCDPK1), pVAX-CDPK1, in the presence or absence of IL-7 and IL-15 plasmids (pVAX-IL-7-IL-15), immune responses were analyzed including lymphoproliferative assay, cytokine and serum antibody measurements, flow cytometric surface markers on lymphocytes, and thus protective immunity against acute and chronic T. gondii infection was estimated. Mice injected with pVAX-CDPK1 supplemented with pVAX-IL-7-IL-15 showed higher Toxoplasma-specific IgG2a titers, Th1 responses associated with the production of IFN-γ, IL-2 as well as cell-mediated cytotoxic activity where stronger frequencies of IFN-γ secreting CD8+ and CD4+ T cells (CD8+/CD4+ IFN-γ+ T cells) compared to controls. Co-administration of pVAX-IL-7-IL-15 and pVAX-CDPK1 significantly (P < 0.05) increased survival time (18.07 ± 5.43 days) compared with pVAX-CDPK1 (14.13 ± 3.85 days) or pVAX-IL-7-IL-15 (11.73 ± 1.83 days) alone, and pVAX-IL-7-IL-15 + pVAX-CDPK1 significantly reduced the number of brain cysts (73.5%) in contrast to pVAX-CDPK1 (46.0%) or pVAX-IL-7-IL-15 alone (45.0%). Our results indicate that supplementation of DNA vaccine with IL-7 and IL-15 would facilitate specific humoral and cellular immune responses elicited by DNA vaccine against acute and chronic T. gondii infection in mice.
Collapse
Affiliation(s)
- Jia Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; Ningbo University School of Medicine, Ningbo, Zhejiang province 315211, PR China
| | - Zhong-Yuan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Eskild Petersen
- Department of Infectious Diseases and Clinical Microbiology, Institute for Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Wen-Ge Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province 225009, PR China.
| |
Collapse
|
41
|
Chen J, Li ZY, Petersen E, Huang SY, Zhou DH, Zhu XQ. DNA vaccination with genes encoding Toxoplasma gondii antigens ROP5 and GRA15 induces protective immunity against toxoplasmosis in Kunming mice. Expert Rev Vaccines 2015; 14:617-24. [PMID: 25749394 DOI: 10.1586/14760584.2015.1011133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To evaluate the protective efficacy of a DNA vaccine encoding Toxoplasma gondii rhoptry protein 5 (ROP5) and GRA15 antigens. METHODS We constructed eukaryotic plasmids expressing pVAX-ROP5 and pVAX-GRA15, and measured the immune responses to these DNA vaccines. RESULTS Kunming mice immunized with pVAX-ROP5 or pVAX-GRA15 showed significantly increased serum IgG2a titers; Th1 responses association with the production of IFN-γ, IL-2, IL12 p40 and IL-12 p70; cell-mediated cytotoxic activity with increased frequencies of IFN-γ secreting CD8(+) T cells (CD8(+) IFN-γ+ T cells), as well as prolonged survival time (19.4 ± 4.9 days for ROP5; 17.8 ± 3.8 days for GRA15) and brain cyst reduction (57.4% for ROP5; 65.9% for GRA15) compared to control mice. Co-administration with pVAX-ROP5 and pVAX-GRA15 boosted the cellular and humoral immune responses, and significantly increased cyst reduction (79%) and prolonged the survival of immunized mice (22.7 ± 7.2 days). CONCLUSION Co-immunization of pVAX-ROP5 and pVAX-GRA15 increase the protective efficacy.
Collapse
Affiliation(s)
- Jia Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | | | |
Collapse
|
42
|
Zhang NZ, Wang M, Xu Y, Petersen E, Zhu XQ. Recent advances in developing vaccines against Toxoplasma gondii: an update. Expert Rev Vaccines 2015; 14:1609-21. [PMID: 26467840 DOI: 10.1586/14760584.2015.1098539] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxoplasma gondii, a significant public health risk, is able to infect almost all warm-blooded animals including humans, and it results in economic losses in production animals. In the last three years, a large number of vaccination experiments have been performed to control T. gondii infection, with the target of limiting the acute infection and reducing or eliminating tissue cysts in the intermediate hosts. In this paper, we summarize the latest results of the veterinary vaccines against T. gondii infection since 2013. Immunization with live-attenuated whole organisms of non-reverting mutants has been shown to induce remarkably potent immune responses associated with control of acute and chronic toxoplasmosis. The non-cyst-forming mutants are promising new tools for the development of veterinary vaccines against T. gondii infection.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| | - Meng Wang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| | - Ying Xu
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China.,b Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine , China Agricultural University , Beijing , PR China
| | - Eskild Petersen
- c Department of Infectious Diseases, Clinical Institute, Faculty of Health Sciences , Aarhus University , Aarhus , Denmark
| | - Xing-Quan Zhu
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| |
Collapse
|
43
|
Wang S, Wang Y, Sun X, Zhang Z, Liu T, Gadahi JA, Xu L, Yan R, Song X, Li X. Protective immunity against acute toxoplasmosis in BALB/c mice induced by a DNA vaccine encoding Toxoplasma gondii 10 kDa excretory-secretory antigen (TgESA10). Vet Parasitol 2015; 214:40-8. [PMID: 26421596 DOI: 10.1016/j.vetpar.2015.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/05/2015] [Accepted: 09/11/2015] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii 10 kDa excretory-secretory antigen (TgESA10) is involved in the early stages of host invasion. The aim of this study was to evaluate the immune protective efficacy of a DNA vaccine encoding TgESA10 gene against acute T. gondii infection in mice. The gene sequence encoding TgESA10 was inserted into the eukaryotic expression vector pVAX I, and the efficacy of intramuscular vaccination of BALB/c mice with pVAX-ESA10 was analyzed. Mice immunized with pVAX-ESA10 elicited high titers of total IgG, IgG1, IgG2a, IgA and IgM antibodies, while IgE showed no changes. Analysis of cytokine profiles revealed significant increases of IFN-γ, IL-4 and IL-17, while no significant changes were detected in TGF-β1. Additionally, we found that pVAX-ESA10 enhanced the activation of CD4(+) and CD8(+) T cells and the expression of MHC-I and MHC-II molecules in spleen in mice. Immunization with pVAX-ESA10 significantly prolonged survival time (14.3 ± 1.7 days) after challenge infection with the virulent T. gondii RH strain, compared with the control groups which died within 8 days. These results suggested that TgESA10 DNA vaccine could trigger strong humoral and cellular responses and induce partial protection against acute toxoplasmosis.
Collapse
Affiliation(s)
- Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yujian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaoni Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tingqi Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
44
|
Eissa MM, Barakat AMA, Amer EI, Younis LK. Could miltefosine be used as a therapy for toxoplasmosis? Exp Parasitol 2015; 157:12-22. [PMID: 26112396 DOI: 10.1016/j.exppara.2015.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 06/05/2015] [Accepted: 06/14/2015] [Indexed: 02/08/2023]
Abstract
Toxoplasmosis is a zoonotic protozoal disease affecting more than a billion people worldwide. The shortfalls of the current treatment options necessitate the development of non-toxic and well-tolerated, efficient alternatives especially against the cyst form. The current study was undertaken to investigate, for the first time, the potential potency of miltefosine against Toxoplasma gondii infection in acute and chronic experimental toxoplasmosis. Results showed that there is no evidence of anti-parasitic activity of miltefosine against T. gondii tachyzoites in acute experimental toxoplasmosis. However, anti-parasitic activity of miltefosine against T. gondii cyst stage in chronic experimental toxoplasmosis could not be excluded as demonstrated by significant reduction in brain cyst burden. Moreover, considerable morphological changes in the cysts were revealed by light and electron microscopy study and also by amelioration of pathological changes in the brain. Future studies should focus on enhancement of anti-toxoplasma activity of miltefosine against chronic toxoplasmosis using formulation based nanotechnology. To the best of our knowledge, this is the first study highlighting efficacy of miltefosine against chronic toxoplasmosis, thus, increasing the list of diseases that can be targeted by this drug.
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Eglal I Amer
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Layla K Younis
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
45
|
Chen J, Li ZY, Huang SY, Petersen E, Song HQ, Zhou DH, Zhu XQ. Protective efficacy of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) adjuvated with recombinant IL-15 and IL-21 against experimental toxoplasmosis in mice. BMC Infect Dis 2014; 14:487. [PMID: 25192845 PMCID: PMC4165937 DOI: 10.1186/1471-2334-14-487] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/02/2014] [Indexed: 12/03/2022] Open
Abstract
Background Toxoplasma gondii can infect all warm-blooded animals including humans. Infection with T. gondii is probably the leading cause of posterior uveitis in humans and the most comment route of transmission is raw and undercooked meat from infected animals. T. gondii calcium-dependent protein kinase 1 (TgCDPK1) plays a critical role in direct parasite motility, host-cell invasion, and egress. Methods We constructed a DNA vaccine expressing TgCDPK1 inserted into eukaryotic expression vector pVAX I and evaluated the immune protection induced by pVAX-CDPK1 in Kunming mice. Mice immunized with pVAX-CDPK1 intramuscularly and/or with a plasmid encoding IL-15 and IL-21 (pVAX-IL-21-IL-15). The immune responses were analyzed including lymphoproliferative assay, cytokine, antibody measurements, lymphocyte surface markers by flow cytometry and protective efficacy were measured as survival and cysts numbers after challenge 1 to 2 months post vaccination. Results Immunization with pVAX-CDPK1 or pVAX-IL-21-IL-15 alone developed strong humoral responses and Th1 type cellular immune responses, and the significantly (P < 0.05) increase of both the percentages of CD4+ and CD8+ T cells compared with all the controls (blank control, PBS, and pVAX). Co-injection of pVAX-IL-21-IL-15 significantly increased humoral and cellular immune responses compared to the group of pVAX-CDPK1 or pVAX-IL-21-IL-15. Challenge experiments showed that co-administration of pVAX-IL-21-IL-15 and pVAX-CDPK1 significantly (P < 0.05) increased survival time (19.2 ± 5.1 days) compared with pVAX-CDPK1 (17.3 ± 4.3 days) or pVAX-IL-21-IL-15 (12.0 ± 2.0 days) alone, and pVAX-IL-21-IL-15 + pVAX-CDPK1 significantly reduced the number of brain cysts (72.7%) in contrast to pVAX-ROP13 (45.7%) or pVAX-IL-21-IL-15 alone (43.6%). Conclusions TgCDPK1 is identified to be a promising vaccine candidate for inducing a strong humoral and cellular response against T. gondii infection, and thus synergistic of mIL-21 and mIL-15 can induce non-specific immune responses, but also facilitate specific humoral as well as cellular immune responses elicited by DNA vaccine against acute and chronic T. gondii infection in mice. Electronic supplementary material The online version of this article (doi:10.1186/1471-2334-14-487) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | | | | | | | | |
Collapse
|
46
|
Li ZY, Chen J, Petersen E, Zhou DH, Huang SY, Song HQ, Zhu XQ. Synergy of mIL-21 and mIL-15 in enhancing DNA vaccine efficacy against acute and chronic Toxoplasma gondii infection in mice. Vaccine 2014; 32:3058-65. [DOI: 10.1016/j.vaccine.2014.03.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/19/2014] [Accepted: 03/13/2014] [Indexed: 11/25/2022]
|
47
|
Evaluation of immune responses in mice after DNA immunization with putative Toxoplasma gondii calcium-dependent protein kinase 5. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:924-9. [PMID: 24789795 DOI: 10.1128/cvi.00059-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii can cause serious public health problems and economic losses worldwide. Calcium-dependent protein kinases (CDPKs) are key mediators of T. gondii signaling pathways and are implicated as important virulence factors. In the present study, we cloned a novel T. gondii CDPK gene, named TgCDPK5, and constructed the eukaryotic expression vector pVAX-CDPK5. Then, we evaluated the immune protection induced by pVAX-CDPK5 in Kunming mice. After injection of pVAX-CDPK5 intramuscularly, immune responses, determined with lymphoproliferative assays and cytokine and antibody measurements, were monitored, and mouse survival times and brain cyst formation were evaluated following challenges with the T. gondii RH strain (genotype I) and the PRU strain (genotype II). pVAX-CDPK5 effectively induced immune responses with increased specific antibodies, a predominance of IgG2a production, and a strong lymphocyte proliferative response. The levels of gamma interferon (IFN-γ), interleukin 2 (IL-2), and IL-12(p70) and the percentages of CD3(+) CD4(+) and CD3(+) CD8(+) cells in mice vaccinated with pVAX-CDPK5 were significantly increased. However, IL-4 and IL-10 were not produced in the vaccinated mice. These results demonstrate that pVAX-CDPK5 can elicit strong humoral and cellular Th1 immune responses. The survival time of immunized mice challenged with the T. gondii RH strain (8.67 ± 4.34 days) was slightly, but not significantly, longer than that in the control groups within 7 days (P > 0.05). The numbers of brain cysts in the mice in the pVAX-CDPK5 group were reduced by ∼40% compared with those in the control groups (P < 0.05), which provides a foundation for the further development of effective subunit vaccines against T. gondii.
Collapse
|
48
|
Chen J, Zhou DH, Li ZY, Petersen E, Huang SY, Song HQ, Zhu XQ. Toxoplasma gondii: protective immunity induced by rhoptry protein 9 (TgROP9) against acute toxoplasmosis. Exp Parasitol 2014; 139:42-8. [PMID: 24602875 DOI: 10.1016/j.exppara.2014.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/17/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
Abstract
Toxoplasma gondii rhoptry protein 9 (ROP9) is involved in the early stages of host invasion, and contains B cell epitopes. The aim of this study was to evaluate the immune protective efficacy of a DNA vaccine encoding TgROP9 gene against acute T. gondii infection in mice. A DNA vaccine (pVAX-ROP9) encoding TgROP9 inserted into eukaryotic expression vector pVAX I was constructed, and the efficacy of intramuscular vaccination of Kunming mice with pVAX-ROP9 was analyzed. Mice immunized with pVAX-ROP9 induced a high level of specific anti-T. gondii antibodies, as well as a mixed IgG1/IgG2a response with predominance of IgG2a production. Also, injection of pVAX-ROP9 induced a specific lymphocyte proliferative responses and Th1-type cellular immune response with production of IFN-γ and interleukin-2. The percentages of CD4+ and CD8+ T cells were significantly increased in mice immunized with pVAX-ROP9, compared to empty vector, PBS or blank controls. Immunization with pVAX-ROP9 significantly (P<0.05) prolonged survival time (12.9±2.9days) after challenge infection with the virulent T. gondii RH strain (Type I), compared with the control groups which died within 6days. DNA vaccination with pVAX-ROP9 triggered strong humoral and cellular responses, and induced effective protection in mice against acute T. gondii infection, indicating that TgROP9 is a promising vaccine candidate against acute toxoplasmosis.
Collapse
Affiliation(s)
- Jia Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Zhong-Yuan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Eskild Petersen
- Department of Infectious Diseases, Clinical Institute, and Institute of Medical Microbiology and Immunology, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China.
| |
Collapse
|
49
|
A comparative study between excretory/secretory and autoclaved vaccines against RH strain of Toxoplasma gondii in murine models. J Parasit Dis 2013; 39:526-35. [PMID: 26345065 DOI: 10.1007/s12639-013-0390-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/31/2013] [Indexed: 01/27/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan that has a major importance in public health, in addition to veterinary medicine. Therefore, the development of an effective vaccine for controlling toxoplasmosis is an important goal. Excretory/secretory antigens (ESA), were previously identified as potential vaccine candidates, proved to play important roles in the pathogenesis and immune escape of the parasite. In addition, autoclaved Toxoplasma vaccine (ATV) is a special type of killed vaccine, recently characterized. The aim of the present work was, to compare between excretory/secretory and ATV against RH strain of T. gondii in mice based on; parasitological and histopathological levels. Tachyzoites were harvested from peritoneal exudates of infected mice and were used for challenge infection and vaccine preparation. BCG was used as an adjuvant. Mice were allocated equally into five groups; they were vaccinated intradermally over the sternum. The results of this study showed that the survival time after challenge, extended up to 16 days in ESA vaccinated group and up to 15 days in autoclaved Toxoplasma vaccinated group. ESA vaccinated group exhibited a profound decrease in parasite load following parasite challenge with a higher percentage of reduction in parasite count in all examined organs than the autoclaved Toxoplasma vaccinated group. The histopathological picture of the liver in both immunized groups, revealed marked reduction in the pathological changes observed as compared to controls, especially in ESA vaccinated group. It was concluded that vaccination with ESA showed more promising results versus ATV, as demonstrated by the survival rate of vaccinated mice, tachyzoites count and histopathological examination.
Collapse
|
50
|
Zhang NZ, Huang SY, Zhou DH, Chen J, Xu Y, Tian WP, Lu J, Zhu XQ. Protective immunity against Toxoplasma gondii induced by DNA immunization with the gene encoding a novel vaccine candidate: calcium-dependent protein kinase 3. BMC Infect Dis 2013; 13:512. [PMID: 24176018 PMCID: PMC4228491 DOI: 10.1186/1471-2334-13-512] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/29/2013] [Indexed: 11/22/2022] Open
Abstract
Background Toxoplasma gondii can infect almost all warm-blood animals including human beings. The plant-like calcium-dependent protein kinases (CDPKs) harbored by T. gondii are involved in gliding motility, cell invasion, egress and some other developmental processes, and so have been implicated as important virulence factors. Methods In the present study, we constructed a DNA vaccine expressing T. gondii CDPK3 (TgCDPK3) and evaluated its protective efficacy against T. gondii infection in Kunming mice. The gene sequence encoding TgCDPK3 was inserted into the eukaryotic expression vector pVAX I, and mice were immunized with pVAX-CDPK3 intramuscularly. Results The results showed that mice immunized with pVAX-CDPK3 developed a high level of specific antibodies and a strong lymphoproliferative response. The significantly increased levels of IFN-γ, IL-2, IL-12 (p70) and IL-23 and high ratio of IgG2a to IgG1 antibody titers indicated that a Th1 type response was elicited after immunization with pVAX-CDPK3. Furthermore, the percentage of CD4+ T cells in mice vaccinated with pVAX-CDPK3 was significantly increased. After lethal challenge with the tachyzoites of the virulent T. gondii RH strain, the mice immunized with pVAX-CDPK3 prolonged the survival time from 10 days to 24 days (13.5 ± 4.89) compared to untreated mice or those received PBS or pVAX I which died within 7 days (P < 0.05). In chronic infection model (10 cysts of the T. gondii PRU strain), the numbers of brain cysts of the mice immunized with pVAX-CDPK3 reduced significantly when compared with those in control groups (P < 0.05), and the rate of reduction could reach to about 50%. Conclusions TgCDPK3 can generate protective immunity against acute and chronic T. gondii infection in Kunming mice and is a promising vaccine candidate for further development of an effective vaccine against T. gondii.
Collapse
Affiliation(s)
| | - Si-Yang Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | | | | | | | | | | | | |
Collapse
|