1
|
Hajjo R, Sabbah DA, Bardaweel SK, Tropsha A. Shedding the Light on Post-Vaccine Myocarditis and Pericarditis in COVID-19 and Non-COVID-19 Vaccine Recipients. Vaccines (Basel) 2021; 9:vaccines9101186. [PMID: 34696294 PMCID: PMC8541143 DOI: 10.3390/vaccines9101186] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
Myocarditis and pericarditis have been linked recently to COVID-19 vaccines without exploring the underlying mechanisms, or compared to cardiac adverse events post-non-COVID-19 vaccines. We introduce an informatics approach to study post-vaccine adverse events on the systems biology level to aid the prioritization of effective preventive measures and mechanism-based pharmacotherapy by integrating the analysis of adverse event reports from the Vaccine Adverse Event Reporting System (VAERS) with systems biology methods. Our results indicated that post-vaccine myocarditis and pericarditis were associated most frequently with mRNA COVID-19 vaccines followed by live or live-attenuated non-COVID-19 vaccines such as smallpox and anthrax vaccines. The frequencies of cardiac adverse events were affected by vaccine, vaccine type, vaccine dose, sex, and age of the vaccinated individuals. Systems biology results suggested a central role of interferon-gamma (INF-gamma) in the biological processes leading to cardiac adverse events, by impacting MAPK and JAK-STAT signaling pathways. We suggest that increasing the time interval between vaccine doses minimizes the risks of developing inflammatory adverse reactions. We also propose glucocorticoids as preferred treatments based on system biology evidence. Our informatics workflow provides an invaluable tool to study post-vaccine adverse events on the systems biology level to suggest effective mechanism-based pharmacotherapy and/or suitable preventive measures.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27515, USA;
- National Center for Epidemics and Communicable Disease Control, Amman 11942, Jordan
- Correspondence:
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan;
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27515, USA;
| |
Collapse
|
2
|
Liong CS, Smith AAA, Mann JL, Roth GA, Gale EC, Maikawa CL, Ou BS, Appel EA. Enhanced Humoral Immune Response by High Density TLR Agonist Presentation on Hyperbranched Polymers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Celine S. Liong
- Dept. of Bioengineering Stanford University Stanford CA 94305 USA
| | - Anton A. A. Smith
- Dept. of Materials Science & Engineering Stanford University Stanford CA 94305 USA
- Dept. of Chemistry Aarhus University Aarhus 8000 Denmark
| | - Joseph L. Mann
- Dept. of Materials Science & Engineering Stanford University Stanford CA 94305 USA
| | - Gillie A. Roth
- Dept. of Bioengineering Stanford University Stanford CA 94305 USA
| | - Emily C. Gale
- Dept. of Biochemistry Stanford University Stanford CA 94305 USA
| | | | - Ben S. Ou
- Dept. of Bioengineering Stanford University Stanford CA 94305 USA
| | - Eric. A. Appel
- Dept. of Bioengineering Stanford University Stanford CA 94305 USA
- Dept. of Materials Science & Engineering Stanford University Stanford CA 94305 USA
- ChEM‐H Institute Stanford University Stanford CA 94305 USA
| |
Collapse
|
3
|
Corigliano MG, Sander VA, Sánchez López EF, Ramos Duarte VA, Mendoza Morales LF, Angel SO, Clemente M. Heat Shock Proteins 90 kDa: Immunomodulators and Adjuvants in Vaccine Design Against Infectious Diseases. Front Bioeng Biotechnol 2021; 8:622186. [PMID: 33553125 PMCID: PMC7855457 DOI: 10.3389/fbioe.2020.622186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 02/03/2023] Open
Abstract
Heat shock proteins 90 kDa (Hsp90s) were originally identified as stress-responsive proteins and described to participate in several homeostatic processes. Additionally, extracellular Hsp90s have the ability to bind to surface receptors and activate cellular functions related to immune response (cytokine secretion, cell maturation, and antigen presentation), making them very attractive to be studied as immunomodulators. In this context, Hsp90s are proposed as new adjuvants in the design of novel vaccine formulations that require the induction of a cell-mediated immune response to prevent infectious diseases. In this review, we summarized the adjuvant properties of Hsp90s when they are either alone, complexed, or fused to a peptide to add light to the knowledge of Hsp90s as carriers and adjuvants in the design of vaccines against infectious diseases. Besides, we also discuss the mechanisms by which Hsp90s activate and modulate professional antigen-presenting cells.
Collapse
Affiliation(s)
- Mariana G Corigliano
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Valeria A Sander
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Edwin F Sánchez López
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Víctor A Ramos Duarte
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Luisa F Mendoza Morales
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Sergio O Angel
- Unidad Biotecnológica 2-UB2, Laboratorio de Parasitología Molecular, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Marina Clemente
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| |
Collapse
|
4
|
Torrey HL, Kaliaperumal V, Bramhecha Y, Weir GM, Falsey AR, Walsh EE, Langley JM, Schepens B, Saelens X, Stanford MM. Evaluation of the protective potential of antibody and T cell responses elicited by a novel preventative vaccine towards respiratory syncytial virus small hydrophobic protein. Hum Vaccin Immunother 2020; 16:2007-2017. [PMID: 32530723 PMCID: PMC7553696 DOI: 10.1080/21645515.2020.1756671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The small hydrophobic (SH) glycoprotein of human respiratory syncytial virus (RSV) is a transmembrane protein that is poorly accessible by antibodies on the virion but has an ectodomain (SHe) that is accessible and expressed on infected cells. The SHe from RSV strain A has been formulated in DPX, a unique delivery platform containing an adjuvant, and is being evaluated as an RSV vaccine candidate. The proposed mechanism of protection is the immune-mediated clearance of infected cells rather than neutralization of the virion. Our phase I clinical trial data clearly showed that vaccination resulted in robust antibody responses, but it was unclear if these immune responses have any correlation to immune responses to natural infection with RSV. Therefore, we embarked on this study to examine these immune responses in older adults with confirmed RSV infection. We compared vaccine-induced (DPX-RSV(A)) immune responses from participants in a Phase 1 clinical trial to paired acute and convalescent titers from older adults with symptomatic laboratory-confirmed RSV infection. Serum samples were tested for anti-SHe IgG titers and the isotypes determined. T cell responses were evaluated by IFN-γ ELISPOT. Anti-SHe titers were detected in 8 of 42 (19%) in the acute phase and 16 of 42 (38%) of convalescent serum samples. IgG1, IgG3, and IgA were the prevalent isotypes generated by both vaccination and infection. Antigen-specific T cell responses were detected in 9 of 16 (56%) of vaccinated participants. Depletion of CD4+ but not CD8+ T cells abrogated the IFN-γ ELISPOT response supporting the involvement of CD4+ T cells in the immune response to vaccination. The data showed that an immune response like that induced by DPX-RSV(A) could be seen in a subset of participants with confirmed RSV infection. These findings show that older adults with clinically significant infection as well as vaccinated adults generate a humoral response to SHe. The induction of both SHe-specific antibody and cellular responses support further clinical development of the DPX-RSV(A) vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joanne M Langley
- Canadian Center for Vaccinology (IWK Health Centre and Nova Scotia Health Authority and Dalhousie University) , Halifax, NS, Canada.,Dalhousie University , Halifax, NS, Canada
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Ghent University , Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Ghent University , Ghent, Belgium
| | - Marianne M Stanford
- IMV Inc ., Dartmouth, NS, Canada.,Dalhousie University , Halifax, NS, Canada
| |
Collapse
|
5
|
Semisynthetic, self-adjuvanting vaccine development: Efficient, site-specific sortase A-mediated conjugation of Toll-like receptor 2 ligand FSL-1 to recombinant protein antigens under native conditions and application to a model group A streptococcal vaccine. J Control Release 2019; 317:96-108. [PMID: 31758971 DOI: 10.1016/j.jconrel.2019.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/10/2023]
Abstract
Protein antigens are, in general, weakly immunogenic, and therefore require co-delivery with adjuvants to stimulate potent immune responses. The fusion of (poly)peptide antigens to immunostimulatory adjuvants (e.g. Toll-like receptor (TLR) agonists) has been demonstrated to greatly improve vaccine potency compared to mixtures of antigen and adjuvant. Chemical approaches, to enable the rapid, site-specific and high-yielding linkage of TLR2 ligands to recombinant protein antigens, have been previously optimized. These approaches require the use of denaturing conditions to ensure high reaction yields, which limits their application, as maintenance of native protein folding is necessary to elicit antibodies against conformational epitopes. Here, this work aimed to optimize an alternative method, to ensure the efficient bioconjugation of TLR2 ligands onto folded protein antigens. An enzyme-mediated approach, using Staphylococcus aureus sortase A (or a penta mutant with enhanced efficiency), was optimized for reaction yield and time, as well as enzyme type and amount. This approach enabled the site-specific conjugation of the TLR2-agonist fibroblast-stimulating lipopeptide-1 (FSL-1) onto a model group A Streptococcus (GAS) recombinant polytope antigen under conditions that maintain protein folding, yielding a homogeneous, molecularly-defined product, with ligation yields as high as 90%. Following intramuscular (IM) administration of the ligation product to humanized plasminogen AlbPLG1 mice, high-titer, antigen-specific IgG antibodies were observed, which conferred protection against subcutaneous challenge with GAS strain 5448. In comparison, mixtures of the GAS antigen with aluminum hydroxide or FSL-1 failed to provide protection, with the FSL-1 mixture yielding ~1000-fold lower antigen-specific IgG antibody titers, and the mixture with alum yielding a Th2-biased response compared to the more balanced Th1/Th2 responses observed with the FSL-1 conjugate. Overall, a FSL-1 bioconjugation method for the efficient production of antigen-TLR2 agonist conjugates, which maintain protein folding, was produced, with broad utility for the development of self-adjuvanting vaccines against subunit protein antigens.
Collapse
|
6
|
Leaf saponins of Quillaja brasiliensis enhance long-term specific immune responses and promote dose-sparing effect in BVDV experimental vaccines. Vaccine 2018; 36:55-65. [DOI: 10.1016/j.vaccine.2017.11.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022]
|
7
|
Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines (Basel) 2015; 3:320-43. [PMID: 26343190 PMCID: PMC4494348 DOI: 10.3390/vaccines3020320] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 11/16/2022] Open
Abstract
The concept of stimulating the body’s immune response is the basis underlying vaccination. Vaccines act by initiating the innate immune response and activating antigen presenting cells (APCs), thereby inducing a protective adaptive immune response to a pathogen antigen. Adjuvants are substances added to vaccines to enhance the immunogenicity of highly purified antigens that have insufficient immunostimulatory capabilities, and have been used in human vaccines for more than 90 years. While early adjuvants (aluminum, oil-in-water emulsions) were used empirically, rapidly increasing knowledge on how the immune system interacts with pathogens means that there is increased understanding of the role of adjuvants and how the formulation of modern vaccines can be better tailored towards the desired clinical benefit. Continuing safety evaluation of licensed vaccines containing adjuvants/adjuvant systems suggests that their individual benefit-risk profile remains favorable. Adjuvants contribute to the initiation of the innate immune response induced by antigens; exemplified by inflammatory responses at the injection site, with mostly localized and short-lived effects. Activated effectors (such as APCs) then move to draining lymph nodes where they direct the type, magnitude and quality of the adaptive immune response. Thus, the right match of antigens and adjuvants can potentiate downstream adaptive immune responses, enabling the development of new efficacious vaccines. Many infectious diseases of worldwide significance are not currently preventable by vaccination. Adjuvants are the most advanced new technology in the search for new vaccines against challenging pathogens and for vulnerable populations that respond poorly to traditional vaccines.
Collapse
|
8
|
Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines (Basel) 2015; 3:320-343. [PMID: 26343190 DOI: 10.3390/fvaccines3020320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 05/19/2023] Open
Abstract
The concept of stimulating the body's immune response is the basis underlying vaccination. Vaccines act by initiating the innate immune response and activating antigen presenting cells (APCs), thereby inducing a protective adaptive immune response to a pathogen antigen. Adjuvants are substances added to vaccines to enhance the immunogenicity of highly purified antigens that have insufficient immunostimulatory capabilities, and have been used in human vaccines for more than 90 years. While early adjuvants (aluminum, oil-in-water emulsions) were used empirically, rapidly increasing knowledge on how the immune system interacts with pathogens means that there is increased understanding of the role of adjuvants and how the formulation of modern vaccines can be better tailored towards the desired clinical benefit. Continuing safety evaluation of licensed vaccines containing adjuvants/adjuvant systems suggests that their individual benefit-risk profile remains favorable. Adjuvants contribute to the initiation of the innate immune response induced by antigens; exemplified by inflammatory responses at the injection site, with mostly localized and short-lived effects. Activated effectors (such as APCs) then move to draining lymph nodes where they direct the type, magnitude and quality of the adaptive immune response. Thus, the right match of antigens and adjuvants can potentiate downstream adaptive immune responses, enabling the development of new efficacious vaccines. Many infectious diseases of worldwide significance are not currently preventable by vaccination. Adjuvants are the most advanced new technology in the search for new vaccines against challenging pathogens and for vulnerable populations that respond poorly to traditional vaccines.
Collapse
Affiliation(s)
| | - Scott Preiss
- GSK Vaccines, Avenue Fleming, 1300 Wavre, Belgium.
| | | | | |
Collapse
|
9
|
Bielinska AU, Makidon PE, Janczak KW, Blanco LP, Swanson B, Smith DM, Pham T, Szabo Z, Kukowska-Latallo JF, Baker JR. Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant. THE JOURNAL OF IMMUNOLOGY 2014; 192:2722-33. [PMID: 24532579 DOI: 10.4049/jimmunol.1301424] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1- and Th-17-balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell-mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses.
Collapse
Affiliation(s)
- Anna U Bielinska
- Division of Allergy, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kochhar S. Scientific challenges and opportunities in developing novel vaccines for the emerging and developing markets: New Technologies in Emerging Markets, October 16th-18th 2012, World Vaccine Congress, Lyon. Hum Vaccin Immunother 2013; 9:928-31. [DOI: 10.4161/hv.23514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|