1
|
Bloom BT, Bushell MJ. Vaccines against Drug Abuse-Are We There Yet? Vaccines (Basel) 2022; 10:860. [PMID: 35746468 PMCID: PMC9230984 DOI: 10.3390/vaccines10060860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Drug abuse is a worldwide problem that is detrimental to public health. The potential for drug abuse extends to both legal and illicit drugs. Drawbacks associated with current treatments include limited effectiveness, potential side effects and, in some instances, the absence of or concerns with approved therapy options. A significant amount of clinical research has been conducted investigating immunotherapy as a treatment option against drug abuse. Vaccines against drug abuse have been the main area of research, and are the focus of this review. METHODS An extensive search using "EBSCOhost (Multiple database collection)" with all 28 databases enabled (including "Academic Search Ultimate", "CINAHL Plus with Full Text", and MEDLINE), interrogation of the ClinicalTrials.gov website, and searches of individual clinical trial registration numbers, was performed in February and March of 2022. This search extended to references within the obtained articles. RESULTS A total of 23 registered clinical trials for treating drug abuse were identified: 15 for treatment of nicotine abuse (all vaccine-based trials), 6 against cocaine abuse (4 were vaccine-based trials and 2 were metabolic-enzyme-based trials), 1 against methamphetamine abuse (a monoclonal-antibody-based trial), and 1 multivalent opioid treatment (vaccine-based trial). As indicated on the ClinicalTrials.gov website (Home-ClinicalTrials.gov), the status of all but two of these trials was "Completed". Phase 3 clinical trials were completed for vaccine treatments against nicotine and cocaine abuse only. CONCLUSION Evidence in the form of efficacy data indicates that vaccines are not an option for treating nicotine or cocaine abuse. Efficacy data are yet to be obtained through completion of clinical trials for vaccines against opioid abuse. These findings align with the absence of regulatory approval for any of these treatments. This review further highlights the need for novel treatment strategies in instances where patients do not respond to current treatments, and while the search for efficacious vaccine-based treatments continues.
Collapse
|
2
|
Hwang CS, Smith LC, Wenthur CJ, Ellis B, Zhou B, Janda KD. Heroin vaccine: Using titer, affinity, and antinociception as metrics when examining sex and strain differences. Vaccine 2019; 37:4155-4163. [PMID: 31176539 DOI: 10.1016/j.vaccine.2019.05.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/03/2023]
Abstract
Anti-drug vaccines have potential as new interventions against substance use disorder (SUD). However, given the challenges seen with inter-individual variability in SUD vaccine trials to date, new interventions should ensure a robust immune response and safety profile among a diverse population. This requires accounting for sex and heritable genetic differences in response to both abused substances as well as the vaccination itself. To test response variability to our heroin-tetanus toxoid (Her-TT) immunoconjugate vaccine, we vaccinated male and female mice from several mouse strains including Swiss Webster (SW), BALB/c, and Jackson diversity mice (J:DO). Previous studies with vaccinated male SW mice demonstrated a rare hypersensitivity resulting in mice rapidly expiring with exposure to a low dose of heroin. Our results indicate that this response is limited to only male SW mice, and not to any other strain or female SW mice. Our data suggest that this hypersensitivity is not the result of an overactive cytokine or IgE response. Vaccination was similarly effective among the sexes for each strain and against repeated heroin challenge. Inbred BALB/c and J:DO mice were found to have the best vaccine response against heroin in antinociception behavioral assay. These results highlight the importance of incorporating both male and female subjects, along with different strains to mimic diverse human populations, as new SUD vaccines are being tested.
Collapse
Affiliation(s)
- Candy S Hwang
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lauren C Smith
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Cody J Wenthur
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Beverly Ellis
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Bin Zhou
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kim D Janda
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Hwang CS, Ellis B, Zhou B, Janda KD. Heat shock proteins: A dual carrier-adjuvant for an anti-drug vaccine against heroin. Bioorg Med Chem 2019; 27:125-132. [PMID: 30497790 PMCID: PMC6442938 DOI: 10.1016/j.bmc.2018.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Heroin is a highly abused opioid that has reached epidemic status within the United States. Yet, existing therapies to treat addiction are inadequate and frequently result into rates of high recidivism. Vaccination against heroin offers a promising alternative therapeutic option but requires further development to enhance the vaccine's performance. Hsp70 is a conserved protein with known immunomodulatory properties and is considered an excellent immunodominant antigen. Within an antidrug vaccine context, we envisioned Hsp70 as a potential dual carrier-adjuvant, wherein immunogenicity would be increased by co-localization of adjuvant and antigenic drug hapten. Recombinant Mycobacterium tuberculosis Hsp70 was appended with heroin haptens and the resulting immunoconjugate granted anti-heroin antibody production and blunted heroin-induced antinociception. Moreover, Hsp70 as a carrier protein surpassed our benchmark Her-KLH cocktail through antibody-mediated blockade of 6-acetylmorphine, the main mediator of heroin's psychoactivity. The work presents a new avenue for exploration in the use of hapten-Hsp70 conjugates to elicit anti-drug immune responses.
Collapse
Affiliation(s)
- Candy S Hwang
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beverly Ellis
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bin Zhou
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kim D Janda
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Kvello AMS, Andersen JM, Øiestad EL, Steinsland S, Aase A, Mørland J, Bogen IL. A Monoclonal Antibody against 6-Acetylmorphine Protects Female Mice Offspring from Adverse Behavioral Effects Induced by Prenatal Heroin Exposure. J Pharmacol Exp Ther 2018; 368:106-115. [PMID: 30361238 DOI: 10.1124/jpet.118.251504] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/22/2018] [Indexed: 01/04/2023] Open
Abstract
Escalating opioid use among fertile women has increased the number of children being exposed to opioids during fetal life. Furthermore, accumulating evidence links prenatal opioid exposure, including opioid maintenance treatment, to long-term negative effects on cognition and behavior, and presses the need to explore novel treatment strategies for pregnant opioid users. The present study examined the potential of a monoclonal antibody (mAb) targeting heroin's first metabolite, 6-acetylmorphine (6-AM), in providing fetal protection against harmful effects of prenatal heroin exposure in mice. First, we examined anti-6-AM mAb's ability to block materno-fetal transfer of active metabolites after maternal heroin administration. Next, we studied whether maternal mAb pretreatment could prevent adverse effects in neonatal and adolescent offspring exposed to intrauterine heroin (3 × 1.05 mg/kg). Anti-6-AM mAb pretreatment of pregnant dams profoundly reduced the distribution of active heroin metabolites to the fetal brain. Furthermore, maternal mAb administration prevented hyperactivity and drug sensitization in adolescent female offspring prenatally exposed to heroin. Our findings demonstrate that passive immunization with a 6-AM-specific antibody during pregnancy provides fetal neuroprotection against heroin metabolites, and thereby prevents persistent adverse behavioral effects in the offspring. An immunotherapeutic approach to protect the fetus against long-term effects of prenatal drug exposure has not been reported previously, and should be further explored as prophylactic treatment of pregnant heroin users susceptible to relapse.
Collapse
Affiliation(s)
- Anne Marte Sjursen Kvello
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Jannike Mørch Andersen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Leere Øiestad
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Synne Steinsland
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Audun Aase
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Jørg Mørland
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Inger Lise Bogen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
5
|
Moulahoum H, Zihnioglu F, Timur S, Coskunol H. Novel technologies in detection, treatment and prevention of substance use disorders. J Food Drug Anal 2018; 27:22-31. [PMID: 30648574 PMCID: PMC9298618 DOI: 10.1016/j.jfda.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/18/2018] [Accepted: 09/10/2018] [Indexed: 11/03/2022] Open
Abstract
Substance use disorders are a widely recognized problem, which affects various levels of communities and influenced the world socioeconomically. Its source is deeply embedded in the global population. In order to fight against such an adversary, governments have spared no efforts in implementing substance abuse treatment centers and funding research to develop treatments and prevention procedures. In this review, we will discuss the use of immunological-based treatments and detection kit technologies. We will be detailing the steps followed to produce performant antibodies (antigens, carriers, and adjuvants) focusing on cocaine and methamphetamine as examples. Furthermore, part of this review is dedicated to substance use detection. Owing to novel technologies such as bio-functional polymeric surfaces and biosensors manufacturing, detection has become a more convenient method with the fast and on-site developed devices. Commercially available devices are able to test substance use disorders in urine, saliva, hair, and sweat. This improvement has had a tremendous impact on the prevention of driving under influence and other illicit behaviors. Lastly, substance abuse became a major issue involving the cooperation of experts on all levels to devise better treatment programs and prevent abuse-based accidents, injury and death.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, Izmir 35100, Turkey
| | - Hakan Coskunol
- Addiction Treatment Center, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
6
|
Blocking interleukin-4 enhances efficacy of vaccines for treatment of opioid abuse and prevention of opioid overdose. Sci Rep 2018; 8:5508. [PMID: 29615715 PMCID: PMC5882912 DOI: 10.1038/s41598-018-23777-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
Vaccines offer an option to treat heroin and prescription opioid abuse and prevent fatal overdoses. Opioid vaccines elicit antibodies that block opioid distribution to the brain and reduce opioid-induced behavioral effects and toxicity. The major limitation to the translation of addiction vaccines is that efficacy is observed only in subjects achieving optimal drug-specific serum antibody levels. This study tested whether efficacy of a vaccine against oxycodone is increased by immunomodulators targeting key cytokine signaling pathways involved in B and T cell lymphocyte activation. Blockage of IL-4 signaling increased vaccine efficacy in blocking oxycodone distribution to the brain and protection against opioid-induced behavior and toxicity in mice. This strategy generalized to a peptide-protein conjugate immunogen, and a tetanus-diphtheria-pertussis vaccine. These data demonstrate that cytokine-based immunomodulators increase efficacy of vaccines against small molecules, peptides and proteins, and identify IL-4 as a pharmacological target for improving efficacy of next-generation vaccines.
Collapse
|
7
|
Carfora A, Cassandro P, Feola A, La Sala F, Petrella R, Borriello R. Ethical Implications in Vaccine Pharmacotherapy for Treatment and Prevention of Drug of Abuse Dependence. JOURNAL OF BIOETHICAL INQUIRY 2018; 15:45-55. [PMID: 29350320 DOI: 10.1007/s11673-017-9834-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Different immunotherapeutic approaches are in the pipeline for the treatment of drug dependence. "Drug vaccines" aim to induce the immune system to produce antibodies that bind to drugs and prevent them from inducing rewarding effects in the brain. Drugs of abuse currently being tested using these new approaches are opioids, nicotine, cocaine, and methamphetamine. In human clinical trials, "cocaine and nicotine vaccines" have been shown to induce sufficient antibody levels while producing few side effects. Studies in humans, determining how these vaccines interact in combination with their target drug, are underway. However, although vaccines can become a reasonable treatment option for drugs of abuse, there are several disadvantages that must be considered. These include i) great individual variability in the formation of antibodies, ii) the lack of protection against a structurally dissimilar drug that produces the same effects as the drug of choice, and iii) the lack of an effect on the drug desire that may predispose an addict to relapse. In addition, a comprehensive overview of several crucial ethical issues has not yet been widely discussed in order to have not only a biological approach to immunotherapy of addiction. Overall, immunotherapy offers a range of possible treatment options: the pharmacological treatment of addiction, the treatment of overdoses, the prevention of toxicity to the brain or the heart, and the protection of the fetus during pregnancy. So far, the results obtained from a small-scale experiment using vaccines against cocaine and nicotine suggest that a number of important technical challenges still need to be overcome before such vaccines can be approved for clinical use.
Collapse
Affiliation(s)
- Anna Carfora
- Forensic Toxicology Unit, Section of Legal Medicine, Università degli Studi della Campania "L. Vanvitelli", Via L. Armanni, 5, 80138, Naples, Italy.
| | - Paola Cassandro
- Forensic Toxicology Unit, Section of Legal Medicine, Università degli Studi della Campania "L. Vanvitelli", Via L. Armanni, 5, 80138, Naples, Italy
| | - Alessandro Feola
- Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Francesco La Sala
- Forensic Toxicology Unit, Section of Legal Medicine, Università degli Studi della Campania "L. Vanvitelli", Via L. Armanni, 5, 80138, Naples, Italy
| | - Raffaella Petrella
- Forensic Toxicology Unit, Section of Legal Medicine, Università degli Studi della Campania "L. Vanvitelli", Via L. Armanni, 5, 80138, Naples, Italy
| | - Renata Borriello
- Forensic Toxicology Unit, Section of Legal Medicine, Università degli Studi della Campania "L. Vanvitelli", Via L. Armanni, 5, 80138, Naples, Italy
| |
Collapse
|
8
|
Beard E, Shahab L, Cummings DM, Michie S, West R. New Pharmacological Agents to Aid Smoking Cessation and Tobacco Harm Reduction: What Has Been Investigated, and What Is in the Pipeline? CNS Drugs 2016; 30:951-83. [PMID: 27421270 DOI: 10.1007/s40263-016-0362-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A wide range of support is available to help smokers to quit and to aid attempts at harm reduction, including three first-line smoking cessation medications: nicotine replacement therapy, varenicline and bupropion. Despite the efficacy of these, there is a continual need to diversify the range of medications so that the needs of tobacco users are met. This paper compares the first-line smoking cessation medications with (1) two variants of these existing products: new galenic formulations of varenicline and novel nicotine delivery devices; and (2) 24 alternative products: cytisine (novel outside Central and Eastern Europe), nortriptyline, other tricyclic antidepressants, electronic cigarettes, clonidine (an anxiolytic), other anxiolytics (e.g. buspirone), selective serotonin reuptake inhibitors, supplements (e.g. St John's wort), silver acetate, Nicobrevin, modafinil, venlafaxine, monoamine oxidase inhibitors (MAOIs), opioid antagonists, nicotinic acetylcholine receptor (nAChR) antagonists, glucose tablets, selective cannabinoid type 1 receptor antagonists, nicotine vaccines, drugs that affect gamma-aminobutyric acid (GABA) transmission, drugs that affect N-methyl-D-aspartate (NMDA) receptors, dopamine agonists (e.g. levodopa), pioglitazone (Actos; OMS405), noradrenaline reuptake inhibitors and the weight management drug lorcaserin. Six 'ESCUSE' criteria-relative efficacy, relative safety, relative cost, relative use (overall impact of effective medication use), relative scope (ability to serve new groups of patients) and relative ease of use-are used. Many of these products are in the early stages of clinical trials; however, cytisine looks most promising in having established efficacy and safety with low cost. Electronic cigarettes have become very popular, appear to be efficacious and are safer than smoking, but issues of continued dependence and possible harms need to be considered.
Collapse
Affiliation(s)
- Emma Beard
- Department of Epidemiology and Public Health, Cancer Research UK Health Behaviour Research Centre, University College London, London, WC1E 6BP, UK.
- Department of Clinical, Educational and Health Psychology, University College London, London, WC1E 6BP, UK.
| | - Lion Shahab
- Department of Epidemiology and Public Health, Cancer Research UK Health Behaviour Research Centre, University College London, London, WC1E 6BP, UK
| | - Damian M Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Susan Michie
- Department of Clinical, Educational and Health Psychology, University College London, London, WC1E 6BP, UK
| | - Robert West
- Department of Epidemiology and Public Health, Cancer Research UK Health Behaviour Research Centre, University College London, London, WC1E 6BP, UK
| |
Collapse
|
9
|
Pravetoni M. Biologics to treat substance use disorders: Current status and new directions. Hum Vaccin Immunother 2016; 12:3005-3019. [PMID: 27441896 DOI: 10.1080/21645515.2016.1212785] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Biologics (vaccines, monoclonal antibodies (mAb), and genetically modified enzymes) offer a promising class of therapeutics to treat substance use disorders (SUD) involving abuse of opioids and stimulants such as nicotine, cocaine, and methamphetamine. In contrast to small molecule medications targeting brain receptors, biologics for SUD are larger molecules that do not cross the blood-brain barrier (BBB), but target the drug itself, preventing its distribution to the brain and blunting its effects on the central nervous system (CNS). Active and passive immunization approaches rely on antibodies (Ab) that bind drugs of abuse in serum and block their distribution to the brain, preventing the rewarding effects of drugs and addiction-related behaviors. Alternatives to vaccines and anti-drug mAb are genetically engineered human or bacterial enzymes that metabolize drugs of abuse, lowering the concentration of free active drug. Pre-clinical and clinical data support development of effective biologics for SUD.
Collapse
Affiliation(s)
- Marco Pravetoni
- a Minneapolis Medical Research Foundation, and University of Minnesota Medical School, Departments of Medicine and Pharmacology , Center for Immunology , Minneapolis , MN , USA
| |
Collapse
|
10
|
Kvello AMS, Andersen JM, Øiestad EL, Mørland J, Bogen IL. Pharmacological Effects of a Monoclonal Antibody against 6-Monoacetylmorphine upon Heroin-Induced Locomotor Activity and Pharmacokinetics in Mice. J Pharmacol Exp Ther 2016; 358:181-9. [PMID: 27217591 DOI: 10.1124/jpet.116.233510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy can provide a supplemental treatment strategy against heroin use on the principle of sequestering the active drug in the bloodstream, thereby reducing its distribution to the brain. Previous studies have shown that heroin's first metabolite, 6-monoacetylmorphine (6-MAM), is the main mediator of acute heroin effects. The objective of the present study was to characterize the pharmacological potential of a monoclonal antibody against 6-MAM (anti-6-MAM mAb) to counteract the heroin response. The individual contributions from heroin and 6-MAM to heroin effects were also examined by pretreating mice with anti-6-MAM mAb (10-100 mg/kg) prior to either heroin or 6-MAM injection (1.25-2.5 μmol/kg). The opioid-induced behavioral response was assessed in a locomotor activity test, followed by opioid and antibody quantification in blood and brain tissue. Pretreatment with mAb caused a profound reduction of heroin- and 6-MAM-induced behavior, accompanied by correspondingly decreased levels of 6-MAM in brain tissue. mAb pretreatment was more efficient against 6-MAM injection than against heroin, leading to an almost complete blockade of 6-MAM-induced effects. mAb pretreatment was unable to block the immediate (5-minute) transport of active metabolites across the blood-brain barrier after heroin injection, indicating that heroin itself appears to enhance the immediate delivery of 6-MAM to the brain. The current study provides additional evidence that 6-MAM sequestration is crucial for counteracting the acute heroin response, and demonstrates the pharmacological potential of immunotherapy against heroin use.
Collapse
Affiliation(s)
- Anne Marte Sjursen Kvello
- Department of Drug Abuse Research, Domain for Forensic Sciences, Norwegian Institute of Public Health (A.M.S.K., J.M.A., E.L.Ø., J.M. and I.L.B.) and School of Pharmacy, University of Oslo (E.L.Ø.) Oslo, Norway
| | - Jannike Mørch Andersen
- Department of Drug Abuse Research, Domain for Forensic Sciences, Norwegian Institute of Public Health (A.M.S.K., J.M.A., E.L.Ø., J.M. and I.L.B.) and School of Pharmacy, University of Oslo (E.L.Ø.) Oslo, Norway
| | - Elisabeth Leere Øiestad
- Department of Drug Abuse Research, Domain for Forensic Sciences, Norwegian Institute of Public Health (A.M.S.K., J.M.A., E.L.Ø., J.M. and I.L.B.) and School of Pharmacy, University of Oslo (E.L.Ø.) Oslo, Norway
| | - Jørg Mørland
- Department of Drug Abuse Research, Domain for Forensic Sciences, Norwegian Institute of Public Health (A.M.S.K., J.M.A., E.L.Ø., J.M. and I.L.B.) and School of Pharmacy, University of Oslo (E.L.Ø.) Oslo, Norway
| | - Inger Lise Bogen
- Department of Drug Abuse Research, Domain for Forensic Sciences, Norwegian Institute of Public Health (A.M.S.K., J.M.A., E.L.Ø., J.M. and I.L.B.) and School of Pharmacy, University of Oslo (E.L.Ø.) Oslo, Norway
| |
Collapse
|
11
|
Biologic Approaches to Treat Substance-Use Disorders. Trends Pharmacol Sci 2016; 36:628-635. [PMID: 26435208 DOI: 10.1016/j.tips.2015.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 01/09/2023]
Abstract
In contrast to traditional pharmacodynamic approaches to treat substance-use disorders (SUDs), the use of biologics (vaccines, monoclonal antibodies, and genetically modified enzymes) is based on a pharmacokinetic principle: reduce the amount of (and, ideally, eliminate) abused drug entering the central nervous system (CNS). Preclinical studies indicate that biologics are effective in both facilitating abstinence and preventing relapse to abused substances ranging from nicotine to heroin. While data are still emerging, the results from multiple clinical trials can best be described as mixed. Nonetheless, these clinical studies have already provided important insights using 'first-generation' tools that may inform the development of effective and commercially viable biologics to treat tobacco-, cocaine-, and methamphetamine-use disorders.
Collapse
|
12
|
Is immunotherapy an opportunity for effective treatment of drug addiction? Vaccine 2015; 33:6545-51. [PMID: 26432911 DOI: 10.1016/j.vaccine.2015.09.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022]
Abstract
Immunotherapy has a great potential of becoming a new therapeutic strategy in the treatment of addiction to psychoactive drugs. It may be used to treat addiction but also to prevent neurotoxic complications of drug overdose. In preclinical studies two immunological methods have been tested; active immunization, which relies on the administration of vaccines and passive immunization, which relies on the administration of monoclonal antibodies. Until now researchers have succeeded in developing vaccines and/or antibodies against addiction to heroin, cocaine, methamphetamine, nicotine and phencyclidine. Their effectiveness has been confirmed in preclinical studies. At present, clinical studies are being conducted for vaccines against nicotine and cocaine and also anti-methamphetamine monoclonal antibody. These preclinical and clinical studies suggest that immunotherapy may be useful in the treatment of addiction and drug overdose. However, there are a few problems to be solved. One of them is controlling the level of antibodies due to variability between subjects. But even obtaining a suitable antibody titer does not guarantee the effectiveness of the vaccine. Additionally, there is a risk of intentional or unintentional overdose. As vaccines prevent passing of drugs through the blood/brain barrier and thereby prevent their positive reinforcement, some addicted patients may erroneously seek higher doses of psychoactive substances to get "high". Consequently, vaccination should be targeted at persons who have a strong motivation to free themselves from drug dependency. It seems that immunotherapy may be an opportunity for effective treatment of drug addiction if directed to adequate candidates for treatment. For other addicts, immunotherapy may be a very important element supporting psycho- and pharmacotherapy.
Collapse
|
13
|
Assessment of Pharmacokinetic and Pharmacodynamic Interactions Between Albumin-Fused Mutated Butyrylcholinesterase and Intravenously Administered Cocaine in Recreational Cocaine Users. J Clin Psychopharmacol 2015; 35:396-405. [PMID: 26082975 DOI: 10.1097/jcp.0000000000000347] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED Cocaine dependence presents a major public health issue, and to date, no pharmacotherapies are approved for its treatment. TV-1380 is a novel recombinant albumin-fused mutated butyrylcholinesterase (Albu-BChE) that has increased catalytic efficiency for cocaine compared with wild-type BChE and therefore has the potential to facilitate abstinence in cocaine-dependent subjects by decreasing exposure to cocaine and its reinforcing effects. METHODS This randomized, double-blind, placebo-controlled, parallel-group study in nondependent cocaine users was conducted to evaluate the effect of a single intramuscular dose of Albu-BChE (50, 100, and 300 mg) on the pharmacokinetic and metabolic profile of intravenous cocaine infusions (40 mg) administered at baseline and at 24, 96, and 168 hours after Albu-BChE dosing, to assess safety of coadministering Albu-BChE and cocaine, and to explore the subjective responses to cocaine infusions after Albu-BChE dosing. RESULTS Administration of Albu-BChE resulted in significant dose-dependent reductions in cocaine exposure (maximum concentration, area under the curve) and half-life. Effects were greatest at 24 hours after Albu-BChE dose, but were sustained up to 168 hours. Spearman correlations indicated a significant negative relationship between Albu-BChE concentration and cocaine clearance and exposure. Consistent with its mechanism of action, Albu-BChE also shifted cocaine metabolism toward preferential formation of ecgonine methyl ester. Administration of Albu-BChE was associated with modest decreases in subjective reports of feeling high and willingness to take cocaine again after cocaine infusion. Coadministration of Albu-BChE and cocaine was safe and well tolerated. CONCLUSIONS Administration of Albu-BChE at single doses of 50, 100, and 300 mg safely resulted in long-lasting decreases in cocaine exposure in recreational cocaine users.
Collapse
|
14
|
Lockner JW, Eubanks LM, Choi JL, Lively JM, Schlosburg JE, Collins KC, Globisch D, Rosenfeld-Gunn RJ, Wilson IA, Janda KD. Flagellin as carrier and adjuvant in cocaine vaccine development. Mol Pharm 2015; 12:653-62. [PMID: 25531528 PMCID: PMC4319694 DOI: 10.1021/mp500520r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cocaine abuse is problematic, directly and indirectly impacting the lives of millions, and yet existing therapies are inadequate and usually ineffective. A cocaine vaccine would be a promising alternative therapeutic option, but efficacy is hampered by variable production of anticocaine antibodies. Thus, new tactics and strategies for boosting cocaine vaccine immunogenicity must be explored. Flagellin is a bacterial protein that stimulates the innate immune response via binding to extracellular Toll-like receptor 5 (TLR5) and also via interaction with intracellular NOD-like receptor C4 (NLRC4), leading to production of pro-inflammatory cytokines. Reasoning that flagellin could serve as both carrier and adjuvant, we modified recombinant flagellin protein to display a cocaine hapten termed GNE. The resulting conjugates exhibited dose-dependent stimulation of anti-GNE antibody production. Moreover, when adjuvanted with alum, but not with liposomal MPLA, GNE-FliC was found to be better than our benchmark GNE-KLH. This work represents a new avenue for exploration in the use of hapten-flagellin conjugates to elicit antihapten immune responses.
Collapse
Affiliation(s)
- Jonathan W Lockner
- Departments of Chemistry, Integrative Structural and Computational Biology, and Immunology and Microbial Science, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Miller KD, Roque R, Clegg CH. Novel Anti-Nicotine Vaccine Using a Trimeric Coiled-Coil Hapten Carrier. PLoS One 2014; 9:e114366. [PMID: 25494044 PMCID: PMC4262398 DOI: 10.1371/journal.pone.0114366] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/07/2014] [Indexed: 12/13/2022] Open
Abstract
Tobacco addiction represents one of the largest public health problems in the world and is the leading cause of cancer and heart disease, resulting in millions of deaths a year. Vaccines for smoking cessation have shown considerable promise in preclinical models, although functional antibody responses induced in humans are only modestly effective in preventing nicotine entry into the brain. The challenge in generating serum antibodies with a large nicotine binding capacity is made difficult by the fact that this drug is non-immunogenic and must be conjugated as a hapten to a protein carrier. To circumvent the limitations of traditional carriers like keyhole limpet hemocyanin (KLH), we have synthesized a short trimeric coiled-coil peptide (TCC) that creates a series of B and T cell epitopes with uniform stoichiometry and high density. Here we compared the relative activities of a TCC-nic vaccine and two control KLH-nic vaccines using Alum as an adjuvant or GLA-SE, which contains a synthetic TLR4 agonist formulated in a stable oil-in-water emulsion. The results showed that the TCC's high hapten density correlated with a better immune response in mice as measured by anti-nicotine Ab titer, affinity, and specificity, and was responsible for a reduction in anti-carrier immunogenicity. The Ab responses achieved with this synthetic vaccine resulted in a nicotine binding capacity in serum that could prevent >90% of a nicotine dose equivalent to three smoked cigarettes (0.05 mg/kg) from reaching the brain.
Collapse
Affiliation(s)
- Keith D. Miller
- TRIA Bioscience Corp, Seattle, Washington, United States of America
| | - Richard Roque
- TRIA Bioscience Corp, Seattle, Washington, United States of America
| | | |
Collapse
|
16
|
Abstract
This paper provides an overview on the status of antagonist models for treating patients with substance use disorders. It begins with an overview describing the ambivalence about stopping or not stopping substance use and how antagonist approaches, combined with psychosocial treatment, are aimed to address it. It then goes on to review data on disulfiram and acamprosate treatment of alcohol dependence and naltrexone treatment of opioid and alcohol dependence. The superior results achieved by extended release formulations are emphasized. The mixed findings on naltrexone treatment for amphetamine dependence are presented and the chapter ends with a brief review of vaccine development for treatment of substance use disorders. Overall conclusions are that the strongest treatment effects are with extended release naltrexone with opioid dependence. Disulfiram treatment of alcohol dependence also has strong effects but is not widely used due to low levels of patient acceptance and concerns about its potential for serious adverse events. Less robust but clinically meaningful effects are seen with naltrexone or acamprosate treatment of alcohol dependence. Vaccines are a very interesting and promising new development but many challenges and hurdles must be overcome before they are ready for clinical use.
Collapse
Affiliation(s)
- George E Woody
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Treatment Research Institute, 150 South Independence Mall (W), Philadelphia, PA, 19106, USA,
| |
Collapse
|
17
|
Yasgar A, Simeonov A. Current approaches for the discovery of drugs that deter substance and drug abuse. Expert Opin Drug Discov 2014; 9:1319-31. [PMID: 25251069 DOI: 10.1517/17460441.2014.956721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Much has been presented and debated on the topic of drug abuse and its multidimensional nature, including the role of society and its customs and laws, economical factors, and the magnitude and nature of the burden. Given the complex nature of the receptors and pathways implicated in regulation of the cognitive and behavioral processes associated with addiction, a large number of molecular targets have been interrogated during recent years to discover starting points for development of small-molecule interventions. AREAS COVERED This review describes recent developments in the field of early drug discovery for drug abuse interventions with an emphasis on the advances published during the 2012 - 2014 period. EXPERT OPINION Technologically, the processes/platforms utilized in drug abuse drug discovery are nearly identical to those used in the other disease areas. A key complicating factor in drug abuse research is the enormous biological complexity surrounding the brain processes involved and the associated difficulty in finding 'good' targets and achieving exquisite selectivity of treatment agents. While tremendous progress has been made during recent years to use the power of high-throughput technologies to discover proof-of-principle molecules for many new targets, next-generation models will be especially important in this field. Examples include: seeking advantageous drug-drug combinations, the use of automated whole-animal behavioral screening systems, advancing our understanding of the role of epigenetics in drug addiction and the employment of organoid-level 3D test platforms (also referred to as tissue-chip or organs-on-chip).
Collapse
Affiliation(s)
- Adam Yasgar
- National Institutes of Health, NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Bethesda, MD , USA +1 301 217 5721 ; +1 301 217 5736 ;
| | | |
Collapse
|
18
|
Abstract
Drug addiction is a serious problem worldwide. One therapy being investigated is vaccines against drugs of abuse. The antibodies elicited against the drug can take up the drug and prevent it from reaching the reward centers in the brain. Few such vaccines have entered clinical trials, but research is going on apace. Many studies are very promising and more clinical trials should be coming out in the near future.
Collapse
Affiliation(s)
- Berma Kinsey
- Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Murthy V, Gao Y, Geng L, LeBrasseur NK, White TA, Parks RJ, Brimijoin S. Physiologic and metabolic safety of butyrylcholinesterase gene therapy in mice. Vaccine 2014; 32:4155-62. [PMID: 24892251 DOI: 10.1016/j.vaccine.2014.05.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/13/2014] [Accepted: 05/20/2014] [Indexed: 01/22/2023]
Abstract
In continuing efforts to develop gene transfer of human butyrylcholinesterase (BChE) as therapy for cocaine addiction, we conducted wide-ranging studies of physiological and metabolic safety. For that purpose, mice were given injections of adeno-associated virus (AAV) vector or helper-dependent adenoviral (hdAD) vector encoding human or mouse BChE mutated for optimal cocaine hydrolysis. Age-matched controls received saline or AAV-luciferase control vector. At times when transduced BChE was abundant, physiologic and metabolic parameters in conscious animals were evaluated by non-invasive Echo-MRI and an automated "Comprehensive Laboratory Animal Monitoring System" (CLAMS). Despite high vector doses (up to 10(13) particles per mouse) and high levels of transgene protein in the plasma (∼1500-fold above baseline), the CLAMS apparatus revealed no adverse physiologic or metabolic effects. Likewise, body composition determined by Echo-MRI, and glucose tolerance remained normal. A CLAMS study of vector-treated mice given 40 mg/kg cocaine showed none of the physiologic and metabolic fluctuations exhibited in controls. We conclude that neither the tested vectors nor great excesses of circulating BChE affect general physiology directly, while they protect mice from disturbance by cocaine. Hence, viral gene transfer of BChE appears benign and worth exploring as a therapy for cocaine abuse and possibly other disorders as well.
Collapse
Affiliation(s)
- Vishakantha Murthy
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| | - Yang Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Liyi Geng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Robin J Parks
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Orson FM, Wang R, Brimijoin S, Kinsey BM, Singh RA, Ramakrishnan M, Wang HY, Kosten TR. The future potential for cocaine vaccines. Expert Opin Biol Ther 2014; 14:1271-83. [PMID: 24835496 DOI: 10.1517/14712598.2014.920319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Addiction to cocaine is a major problem around the world, but especially in developed countries where the combination of wealth and user demand has created terrible social problems. Although only some users become truly addicted, those who are often succumb to a downward spiral in their lives from which it is very difficult to escape. From the medical perspective, the lack of effective and safe, non-addictive therapeutics has instigated efforts to develop alternative approaches for treatment, including anticocaine vaccines designed to block cocaine's pharmacodynamic effects. AREAS COVERED This paper discusses the implications of cocaine pharmacokinetics for robust vaccine antibody responses, the results of human vaccine clinical trials, new developments in animal models for vaccine evaluation, alternative vaccine formulations and complementary therapy to enhance anticocaine effectiveness. EXPERT OPINION Robust anti-cocaine antibody responses are required for benefit to cocaine abusers, but since any reasonably achievable antibody level can be overcome with higher drug doses, sufficient motivation to discontinue use is also essential so that the relative barrier to cocaine effects will be appropriate for each individual. Combining a vaccine with achievable levels of an enzyme to hydrolyze cocaine to inactive metabolites, however, may substantially increase the blockade and improve treatment outcomes.
Collapse
Affiliation(s)
- Frank M Orson
- Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Department of Medicine , Bldg. 109, Rm. 234, 2002 Holcombe Blvd, Houston, TX 77030 , USA +1 713 794 7960 ; +1 713 794 7938 ;
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bogen IL, Boix F, Nerem E, Mørland J, Andersen JM. A monoclonal antibody specific for 6-monoacetylmorphine reduces acute heroin effects in mice. J Pharmacol Exp Ther 2014; 349:568-76. [PMID: 24700886 DOI: 10.1124/jpet.113.212035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy against drugs of abuse is being studied as an alternative treatment option in addiction medicine and is based on antibodies sequestering the drug in the bloodstream and blocking its entry into the brain. Producing an efficient vaccine against heroin has been considered particularly challenging because of the rapid metabolism of heroin to multiple psychoactive molecules. We have previously reported that heroin's first metabolite, 6-monoacetylmorphine (6-MAM), is the predominant mediator for heroin's acute behavioral effects and that heroin is metabolized to 6-MAM primarily prior to brain entry. On this basis, we hypothesized that antibody sequestration of 6-MAM is sufficient to impair heroin-induced effects and therefore examined the effects of a monoclonal antibody (mAb) specific for 6-MAM. In vitro experiments in human and rat blood revealed that the antibody was able to bind 6-MAM and block the metabolism to morphine almost completely, whereas the conversion of heroin to 6-MAM remained unaffected. Mice pretreated with the mAb toward 6-MAM displayed a reduction in heroin-induced locomotor activity that corresponded closely to the reduction in brain 6-MAM levels. Intraperitoneal and intravenous administration of the anti-6-MAM mAb gave equivalent protection against heroin effects, and the mAb was estimated to have a functional half-life of 8 to 9 days in mice. Our study implies that an antibody against 6-MAM is effective in counteracting heroin effects.
Collapse
Affiliation(s)
- Inger Lise Bogen
- Department of Drug Abuse Research and Method Development, Division of Forensic Sciences, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | |
Collapse
|
22
|
Pentel PR, LeSage MG. New directions in nicotine vaccine design and use. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:553-80. [PMID: 24484987 DOI: 10.1016/b978-0-12-420118-7.00014-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clinical trials of nicotine vaccines suggest that they can enhance smoking cessation rates but do not reliably produce the consistently high serum antibody concentrations required. A wide array of next-generation strategies are being evaluated to enhance vaccine efficacy or provide antibody through other mechanisms. Protein conjugate vaccines may be improved by modifications of hapten or linker design or by optimizing hapten density. Conjugating hapten to viruslike particles or disrupted virus may allow exploitation of naturally occurring viral features associated with high immunogenicity. Conjugates that utilize different linker positions on nicotine can function as independent immunogens, so that using them in combination generates higher antibody concentrations than can be produced by a single immunogen. Nanoparticle vaccines, consisting of hapten, T cell help peptides, and adjuvants attached to a liposome or synthetic scaffold, are in the early stages of development. Nanoparticle vaccines offer the possibility of obtaining precise and consistent control of vaccine component stoichiometry and spacing and immunogen size and shape. Passive transfer of nicotine-specific monoclonal antibodies offers a greater control of antibody dose, the ability to give very high doses, and an immediate onset of action but is expensive and has a shorter duration of action than vaccines. Viral vector-mediated transfer of genes for antibody production can elicit high levels of antibody expression in animals and may present an alternative to vaccination or passive immunization if the long-term safety of this approach is confirmed. Next-generation immunotherapies are likely to be substantially more effective than first-generation vaccines.
Collapse
Affiliation(s)
- Paul R Pentel
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA; Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA; Minneapolis Medical Research Foundation, Minneapolis, Minnesota, USA.
| | - Mark G LeSage
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA; Minneapolis Medical Research Foundation, Minneapolis, Minnesota, USA; Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
23
|
Oviedo-Orta E, Plotkin SA, Ulmer JB, Ahmed SS. Therapeutic vaccines and immunotherapies: current challenges and new frontiers. Expert Rev Vaccines 2013; 12:243-4. [DOI: 10.1586/erv.13.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|