1
|
Suwankanit K, Shimizu M. Effects of Neuromuscular Electrical Stimulation and Therapeutic Ultrasound on Quadriceps Contracture of Immobilized Rats. Vet Sci 2024; 11:158. [PMID: 38668425 PMCID: PMC11054819 DOI: 10.3390/vetsci11040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Quadriceps contracture is a condition where the muscle-tendon unit is abnormally shortened. The treatment prognosis is guarded to poor depending on the progress of the disease. To improve the prognosis, we investigated the effectiveness of therapeutic ultrasound and NMES in treating quadriceps contracture in an immobilized rat model. Thirty-six Wistar rats were randomized into control, immobilization alone, immobilization and spontaneous recovery, immobilization and therapeutic ultrasound, immobilization and NMES, and immobilization and therapeutic ultrasound and NMES combination groups. The continuous therapeutic ultrasound (frequency, 3 MHz, intensity 1 W/cm2) and NMES (TENS mode, frequency 50 Hz; intensity 5.0 ± 0.8 mA) were performed on the quadriceps muscle. On Day 15, immobilization-induced quadriceps contracture resulted in a decreased ROM of the stifle joint, reduction in the sarcomere length, muscle atrophy, and muscle fibrosis. On Day 43, therapeutic ultrasound, NMES, and combining both methods improved muscle atrophy and shortening and decreased collagen type I and III and α-SMA protein. The combination of therapeutic ultrasound and NMES significantly reduced the mRNA expression of IL-1β, TGF-β1, and HIF-1α and increased TGF-β3. Therefore, the combination of therapeutic ultrasound and NMES is the most potent rehabilitation program for treating quadriceps contracture.
Collapse
Affiliation(s)
- Kanokwan Suwankanit
- Department of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-0054, Tokyo, Japan;
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Miki Shimizu
- Department of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-0054, Tokyo, Japan;
| |
Collapse
|
2
|
Honda Y, Takahashi A, Tanaka N, Kajiwara Y, Sasaki R, Okita S, Sakamoto J, Okita M. Muscle contractile exercise through a belt electrode device prevents myofiber atrophy, muscle contracture, and muscular pain in immobilized rat gastrocnemius muscle. PLoS One 2022; 17:e0275175. [PMID: 36149919 PMCID: PMC9506634 DOI: 10.1371/journal.pone.0275175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose
Immobilization of skeletal muscles causes muscle atrophy, muscle contracture, and muscle pain, the mechanisms of which are related to macrophage accumulation. However, muscle contractile exercise through a belt electrode device may mitigate macrophage accumulation. We hypothesized that such exercise would be effective in preventing myofiber atrophy, muscle contracture, and muscular pain. This study tested this hypothesis in immobilized rat gastrocnemius muscle.
Materials and methods
A total of 32 rats were divided into the following control and experimental groups: immobilization (immobilized treatment only), low-frequency (LF; immobilized treatment and muscle contractile exercise with a 2 s (do) /6 s (rest) duty cycle), and high-frequency (HF; immobilized treatment and muscle contractile exercise with a 2 s (do)/2 s (rest) duty cycle). Electrical stimulation was performed at 50 Hz and 4.7 mA, and muscle contractile exercise was applied to the lower limb muscles for 15 or 20 min/session (once daily) for 2 weeks (6 times/week). After the behavioral tests, the bilateral gastrocnemius muscles were collected for analysis.
Results
The number of macrophages, the Atrogin-1 and MuRF-1 mRNA expression, and the hydroxyproline content in the HF group were lower than those in the immobilization and LF groups. The cross-sectional area (CSA) of type IIb myofibers in the superficial region, the PGC-1α mRNA expression, and the range of motion of dorsiflexion in the HF group were significantly higher than those in the immobilization and LF groups. The pressure pain thresholds in the LF and HF groups were significantly higher than that in the immobilization group, and the nerve growth factor (NGF) content in the LF and HF groups was significantly lower than that in the immobilization group.
Conclusion
Muscle contractile exercise through the belt electrode device may be effective in preventing immobilization-induced myofiber atrophy, muscle contracture, and muscular pain in the immobilized rat gastrocnemius muscle.
Collapse
Affiliation(s)
- Yuichiro Honda
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Ayumi Takahashi
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Natsumi Tanaka
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- Department of Physical Therapy, School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Shizuoka, Japan
| | - Yasuhiro Kajiwara
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- Department of Rehabilitation, Nagasaki University Hospital, Nagasaki, Nagasaki, Japan
| | - Ryo Sasaki
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- Department of Rehabilitation, Jyuzenkai Hospital, Nagasaki, Nagasaki, Japan
| | - Seima Okita
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- Department of Rehabilitation, The Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Nagasaki, Japan
| | - Junya Sakamoto
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Minoru Okita
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
3
|
Fennel ZJ, Amorim FT, Deyhle MR, Hafen PS, Mermier CM. The Heat Shock Connection: Skeletal Muscle Hypertrophy and Atrophy. Am J Physiol Regul Integr Comp Physiol 2022; 323:R133-R148. [PMID: 35536704 DOI: 10.1152/ajpregu.00048.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is an integral tissue system that plays a crucial role in the physical function of all vertebrates and is a key target for maintaining or improving health and performance across the lifespan. Based largely on cellular and animal models, there is some evidence that various forms of heat stress with or without resistance exercise may enhance skeletal muscle growth or reduce its loss. It is not clear whether these stimuli are similarly effective in humans or meaningful in comparison to exercise alone across various heating methodologies. Furthermore, the magnitude by which heat stress may influence whole body thermoregulatory responses and the connection to skeletal muscle adaptation remains ambiguous. Finally, the underlying mechanisms, which may include interaction between relevant heat shock proteins and intracellular hypertrophy and atrophy related factors, remain unclear. In this narrative mini-review we examine the relevant literature regarding heat stress alone or in combination with resistance exercise emphasizing skeletal muscle hypertrophy and atrophy across cellular and animal models, as well as human investigations. Additionally, we present working mechanistic theories for heat shock protein mediated signaling effects regarding hypertrophy and atrophy related signaling processes. Importantly, continued research is necessary to determine the practical effects and mechanisms of heat stress with and without resistance exercise on skeletal muscle function via growth and maintenance.
Collapse
Affiliation(s)
| | | | | | - Paul Samuel Hafen
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States.,Indiana University School of Medicine Department of Anatomy, Cell Biology, and Physiology; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States
| | | |
Collapse
|
4
|
Honda Y, Tanaka N, Kajiwara Y, Kondo Y, Kataoka H, Sakamoto J, Akimoto R, Nawata A, Okita M. Effect of belt electrode-skeletal muscle electrical stimulation on immobilization-induced muscle fibrosis. PLoS One 2021; 16:e0244120. [PMID: 33983958 PMCID: PMC8118259 DOI: 10.1371/journal.pone.0244120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Macrophage accumulation in response to decreasing myonuclei may be the major mechanism underlying immobilization-induced muscle fibrosis in muscle contracture, an intervention strategy suppressing these lesions is necessary. Therefore, this research investigated the effect of belt electrode-skeletal muscle electrical stimulation (B-SES), a new electrical stimulation device, to the macrophage accumulation via myonuclei decrease in immobilization-induced muscle fibrosis. MATERIALS AND METHODS 18 Wistar male rats were divided into the control group, immobilization group (with plaster cast fixation to immobilize the soleus muscles in a shortened position for 2 weeks), and B-SES group (with muscle contractile exercise through B-SES during the immobilization period). B-SES stimulation was performed at a frequency of 50 Hz and an intensity of 4.7 mA, muscle contractile exercise by B-SES was applied to the lower limb muscles for 20 minutes/session (twice a day) for 2 weeks (6 times/week). The bilateral soleus muscles were used for histological, immunohistochemical, biochemical, and molecular biological analyses. RESULTS The number of myonuclei was significantly higher in the B-SES group than in the immobilization group, and there was no significant difference between the B-SES and control groups. The cross-sectional area of type I and II myofibers in the immobilization and B-SES groups was significantly lower than that in the control group, and the cross-sectional area of type I myofibers in the B-SES group was higher than that in the immobilization group. However, Atrogin-1 and MuRF-1 mRNA expression in the immobilization and B-SES groups was significantly higher than those in the control group. Additionally, the number of macrophages, IL-1β, TGF-β1, and α-SMA mRNA expression, and hydroxyproline expression was significantly lower in the control and B-SES groups than those in the immobilization group. CONCLUSION This research surmised that muscle contractile exercise through B-SES prevented immobilization-induced muscle fibrosis, and this alteration suppressed the development of muscle contracture.
Collapse
Affiliation(s)
- Yuichiro Honda
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Japan
| | - Natsumi Tanaka
- Department of Rehabilitation, Nagasaki University Hospital, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuhiro Kajiwara
- Department of Rehabilitation, Nagasaki University Hospital, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasutaka Kondo
- Department of Rehabilitation, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Hideki Kataoka
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Rehabilitation, Nagasaki Memorial Hospital, Nagasaki, Japan
| | - Junya Sakamoto
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Japan
| | - Ryuji Akimoto
- Research and Development Division, HOMER ION Co., Ltd., Shibuya, Tokyo, Japan
| | - Atsushi Nawata
- Medical Engineering Research Laboratory, ALCARE Co., Ltd., Sumida, Tokyo, Japan
| | - Minoru Okita
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Japan
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
5
|
Stadnyk AMJ, Rehrer NJ, Handcock PJ, Meredith-Jones KA, Cotter JD. No clear benefit of muscle heating on hypertrophy and strength with resistance training. Temperature (Austin) 2017; 5:175-183. [PMID: 30393753 DOI: 10.1080/23328940.2017.1391366] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
Heat is a major stressor during exercise, though its value in driving adaptation is not well understood. Muscle heating can upregulate pathways facilitating protein synthesis and could thereby enhance effects of exercise training, however, few studies have investigated this possibility. We examined whether heating active muscle during resistance training differentially affected physical and functional adaptations. Within a randomised contralateral-limb control study, ten healthy, resistance-untrained individuals (21 ± 3 y; 5 female) completed 30 sessions of progressive resistance training (12 weeks), performing 4 × 8 unilateral knee extensions at 70% of 1RM. One randomly-allocated thigh was heated during, and for 20 min after, each session using an electric pad eliciting muscle temperatures of >38 °C (HOT); the contralateral limb remained unheated (CON). Training intensity was progressed using 4-weekly strength assessments. Quadricep lean mass (measured using DXA) increased by 15 ± 7% in HOT (p = 0.00) and 15 ± 6% in CON (p = 0.00); the difference being trivial (p = 0.94). Peak isokinetic torque at 90°.s-1 increased by 30 ± 25% (HOT; p = 0.00) and 34 ± 33% (CON; p = 0.01), with no difference (p = 0.84) between limbs. Rate of torque development increased ∼40%, with no difference between limbs (p = 0.73). The increase in 3-RM strength was also similar in HOT (75 ± 16%) and CON (71 ± 14%; p = 0.80 for difference). No differences in mass or strength changes were evident between sexes. In conclusion, supplemental heating of active muscle during and after each bout of resistance training showed no clear positive (or negative) effect on training-induced hypertrophy or function.
Collapse
Affiliation(s)
- Antony M J Stadnyk
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Nancy J Rehrer
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Phil J Handcock
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | | | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Kataoka H, Nakano J, Kondo Y, Honda Y, Sakamoto J, Origuchi T, Okita M. The influence of aging on the effectiveness of heat stress in preventing disuse muscle atrophy. Physiol Int 2017; 104:316-328. [PMID: 29278025 DOI: 10.1556/2060.104.2017.4.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study examined the aging effect on disuse muscle atrophy prevention using heat stress. Wistar rats aged 7 and 60 weeks were divided into three groups as follows: control, immobilized (Im), and immobilized and heat stressed (ImH). Heat stress was given by immersing the hindlimbs in hot water (42 °C) for 60 min, once in every 3 days and the gastrocnemius (GAS) and soleus (SOL) muscles were extracted after 14 days. Muscle-fiber types were classified using ATPase staining. Heat shock protein 70 (HSP70) was assessed through Western blotting. In GAS muscle of both groups and SOL muscle of 7-week-old rats, the fiber diameter of each muscle type in the ImH group significantly increased compared with that in the Im group. However, this could not be observed in the SOL muscle of the 60-week-old rats. The increased percentage of type-I fibers and variability of types I and II muscle-fiber diameter were evident in the SOL muscle of the 60-week rats. HSP70 was significantly elevated in the ImH group compared with in the Im group in both muscle types of both age groups. Thus, effectiveness of heat stress in the prevention of disuse muscle atrophy appears unsatisfactory in aging muscle fibers.
Collapse
Affiliation(s)
- H Kataoka
- 1 Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan.,2 Department of Rehabilitation, Nagasaki Memorial Hospital , Nagasaki, Japan
| | - J Nakano
- 3 Unit of Physical Therapy and Occupational Therapy Sciences, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Y Kondo
- 4 Department of Rehabilitation, Nagasaki Genbaku Hospital , Nagasaki, Japan
| | - Y Honda
- 1 Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan.,5 Department of Rehabilitation, Nagasaki University Hospital , Nagasaki, Japan
| | - J Sakamoto
- 3 Unit of Physical Therapy and Occupational Therapy Sciences, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - T Origuchi
- 1 Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - M Okita
- 1 Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| |
Collapse
|
7
|
Morimoto Y, Kondo Y, Kataoka H, Honda Y, Kozu R, Sakamoto J, Nakano J, Origuchi T, Yoshimura T, Okita M. Heat treatment inhibits skeletal muscle atrophy of glucocorticoid-induced myopathy in rats. Physiol Res 2015; 64:897-905. [PMID: 26047372 DOI: 10.33549/physiolres.932942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to investigate the influence of heat treatment on glucocorticoid (GC)-induced myopathy. Eight-week-old Wistar rats were randomly assigned to the control, Dex, and Dex + Heat groups. Dexamethasone (2 mg/kg) was injected subcutaneously 6 days per week for 2 weeks in the Dex and Dex + Heat group. In the Dex + Heat group, heat treatment was performed by immersing hindlimbs in water at 42 °C for 60 min, once every 3 days for 2 weeks. The extensor digitorum longus muscle was extracted following 2 weeks of experimentation. In the Dex + Heat group, muscle fiber diameter, capillary/muscle fiber ratio, and level of heat shock protein 72 were significantly higher and atrogene expression levels were significantly lower than in the Dex group. Our results suggest that heat treatment inhibits the development of GC-induced myopathy by decreasing atrogene expression and increasing angiogenesis.
Collapse
Affiliation(s)
- Y Morimoto
- Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|