1
|
Nguyen BL, Yoshihara T, Deminice R, Lawrence J, Ozdemir M, Hyatt H, Powers SK. Alterations in renin-angiotensin receptors are not responsible for exercise preconditioning of skeletal muscle fibers. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:148-156. [PMID: 35784524 PMCID: PMC9219300 DOI: 10.1016/j.smhs.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/27/2022] Open
Abstract
Endurance exercise training promotes a protective phenotype in skeletal muscle known as exercise preconditioning. Exercise preconditioning protects muscle fibers against a variety of threats including inactivity-induced muscle atrophy. The mechanism(s) responsible for exercise preconditioning remain unknown and are explored in these experiments. Specifically, we investigated the impact of endurance exercise training on key components of the renin-angiotensin system (RAS). The RAS was targeted because activation of the classical axis of the RAS pathway via angiotensin II type I receptors (AT1Rs) promotes muscle atrophy whereas activation of the non-classical RAS axis via Mas receptors (MasRs) inhibits the atrophic signaling of the classical RAS pathway. Guided by prior studies, we hypothesized that an exercise-induced decrease in AT1Rs and/or increases in MasRs in skeletal muscle fibers is a potential mechanism responsible for exercise preconditioning. Following endurance exercise training in rats, we examined the abundance of AT1Rs and MasRs in both locomotor and respiratory muscles. Our results indicate that endurance exercise training does not alter the protein abundance of AT1Rs or MasRs in muscle fibers from the diaphragm, plantaris, and soleus muscles compared to sedentary controls (p > 0.05). Furthermore, fluorescent angiotensin II (AngII) binding analyses confirm our results that exercise preconditioning does not alter the protein abundance of AT1Rs in the diaphragm, plantaris, and soleus (p > 0.05). This study confirms that exercise-induced changes in RAS receptors are not a key mechanism that contributes to the beneficial effects of exercise preconditioning in skeletal muscle fibers.
Collapse
Affiliation(s)
- Branden L. Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
| | - Toshinori Yoshihara
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
- Department of Exercise Physiology, Juntendo University, Tokyo, 270-1695, Japan
| | - Rafael Deminice
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
- Department of Physical Education, University of Estadual of Londrina, Londrina, 10011, Brazil
| | - Jensen Lawrence
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
| | - Hayden Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
| | - Scott K. Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, Florida, USA
- Corresponding authors. Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
2
|
Mechanical loading of tissue engineered skeletal muscle prevents dexamethasone induced myotube atrophy. J Muscle Res Cell Motil 2020; 42:149-159. [PMID: 32955689 PMCID: PMC8332579 DOI: 10.1007/s10974-020-09589-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
Skeletal muscle atrophy as a consequence of acute and chronic illness, immobilisation, muscular dystrophies and aging, leads to severe muscle weakness, inactivity and increased mortality. Mechanical loading is thought to be the primary driver for skeletal muscle hypertrophy, however the extent to which mechanical loading can offset muscle catabolism has not been thoroughly explored. In vitro 3D-models of skeletal muscle provide a controllable, high throughput environment and mitigating many of the ethical and methodological constraints present during in vivo experimentation. This work aimed to determine if mechanical loading would offset dexamethasone (DEX) induced skeletal muscle atrophy, in muscle engineered using the C2C12 murine cell line. Mechanical loading successfully offset myotube atrophy and functional degeneration associated with DEX regardless of whether the loading occurred before or after 24 h of DEX treatment. Furthermore, mechanical load prevented increases in MuRF-1 and MAFbx mRNA expression, critical regulators of muscle atrophy. Overall, we demonstrate the application of tissue engineered muscle to study skeletal muscle health and disease, offering great potential for future use to better understand treatment modalities for skeletal muscle atrophy.
Collapse
|
3
|
Rocha LC, Jacob CDS, Barbosa GK, Pimentel Neto J, Krause Neto W, Gama EF, Ciena AP. Remodeling of the skeletal muscle and postsynaptic component after short-term joint immobilization and aquatic training. Histochem Cell Biol 2020; 154:621-628. [PMID: 32797254 DOI: 10.1007/s00418-020-01910-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Joint immobilization is commonly used as a conservative treatment for osteoarticular and musculotendinous traumas. However, joint immobilization might elicit degenerative effects on the neuromuscular system and muscle atrophy. For this reason, the choice of strategies that mitigate these effects is essential in the post-immobilization period. Therefore, this study aimed to investigate the impact of aquatic training on the morphology of muscle fibers and motor endplates of the gastrocnemius muscle in the post-immobilization period. Male Wistar rats (90 days old) were divided into groups: Sedentary: no procedure; Immobilization: joint immobilization protocol (10 days); Immobilization/non-training: joint immobilization protocol (10 days) followed by four weeks without exercise intervention; Immobilization/training: joint immobilization protocol (10 days) and post-immobilization aquatic training (4 weeks). After the procedures, we quantified the cross-sectional area (CSA), volume and numerical density of different myofibers types, and total and stained area and perimeter of the motor endplate. We demonstrate the following main results: (a) short-term joint immobilization resulted in myofibers atrophy; however, we verified a small change in the postsynaptic component; (b) the period of inactivity after immobilization caused severe changes in the motor endplate (lower stained area, stained perimeter, total area, and total perimeter) and maintenance of muscle atrophy due to immobilization; (c) the prescription of post-immobilization exercise proved to be effective in restoring muscle morphology and inducing plasticity in the motor endplate. We conclude that short-term joint immobilization (10 days) results in atrophy type I and II myofibers, in addition to a decline in the total perimeter of the motor endplate. Besides, the post-immobilization period appears to be decisive in muscle and postsynaptic remodeling. Thus, aquatic training is effective in stimulating adjustments associated with muscle hypertrophy and plasticity of the motor endplate during the post-immobilization period.
Collapse
Affiliation(s)
- Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Avenue 24A, n 1515, Rio Claro, SP, 13506-900, Brazil
| | - Carolina Dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Avenue 24A, n 1515, Rio Claro, SP, 13506-900, Brazil
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Avenue 24A, n 1515, Rio Claro, SP, 13506-900, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Avenue 24A, n 1515, Rio Claro, SP, 13506-900, Brazil
| | - Walter Krause Neto
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, SP, Brazil
| | - Eliane Florencio Gama
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, SP, Brazil
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Avenue 24A, n 1515, Rio Claro, SP, 13506-900, Brazil.
| |
Collapse
|
4
|
Wang F, Zhang QB, Zhou Y, Liu AY, Huang PP, Liu Y. Effect of ultrashort wave treatment on joint dysfunction and muscle atrophy in a rabbit model of extending knee joint contracture: Enhanced expression of myogenic differentiation. Knee 2020; 27:795-802. [PMID: 32201041 DOI: 10.1016/j.knee.2020.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/01/2019] [Accepted: 02/05/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the effects of ultrashort wave treatment on joint dysfunction and muscle atrophy in a rabbit model of extending knee joint contracture. METHODS Forty rabbits were randomly divided into eight groups. In group C, the left knee joint was not fixed. In group I-8, the left knee joint was only fixed for eight weeks. In groups R-1, R-2, and R-4, the left knee joint was fixed for eight weeks before the rabbits underwent one, two, and four weeks of self-recovery, respectively. In groups T-1, T-2, and T-4, the left knee joint was fixed for eight weeks before the rabbits underwent one, two, and four weeks of ultrashort wave treatment, respectively. The degree of total contracture and myogenic contracture were measured, the cross-sectional area (CSA) and protein levels for myogenic differentiation (MyoD) of the rectus femoris were evaluated. RESULTS There was a tendency toward a reduced degree of total and myogenic contracture, and also a tendency toward an increased CSA of the rectus femoris and increased protein levels for MyoD after both self-recovery and ultrashort wave treatment. The ultrashort wave was more effective than self-recovery in reducing the total and myogenic contracture, and increasing the CSA and MyoD protein levels of the rectus femoris. CONCLUSIONS Ultrashort wave treatment may ameliorate joint dysfunction and muscle atrophy by upregulating the expression of MyoD protein in a rabbit model of extending knee joint contracture.
Collapse
Affiliation(s)
- Feng Wang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Quan Bing Zhang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China.
| | - A Ying Liu
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Peng Peng Huang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yi Liu
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Wang F, Zhang QB, Zhou Y, Chen S, Huang PP, Liu Y, Xu YH. The mechanisms and treatments of muscular pathological changes in immobilization-induced joint contracture: A literature review. Chin J Traumatol 2019; 22:93-98. [PMID: 30928194 PMCID: PMC6488749 DOI: 10.1016/j.cjtee.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/15/2018] [Accepted: 01/26/2019] [Indexed: 02/04/2023] Open
Abstract
The clinical treatment of joint contracture due to immobilization remains difficult. The pathological changes of muscle tissue caused by immobilization-induced joint contracture include disuse skeletal muscle atrophy and skeletal muscle tissue fibrosis. The proteolytic pathways involved in disuse muscle atrophy include the ubiquitin-proteasome-dependent pathway, caspase system pathway, matrix metalloproteinase pathway, Ca2+-dependent pathway and autophagy-lysosomal pathway. The important biological processes involved in skeletal muscle fibrosis include intermuscular connective tissue thickening caused by transforming growth factor-β1 and an anaerobic environment within the skeletal muscle leading to the induction of hypoxia-inducible factor-1α. This article reviews the progress made in understanding the pathological processes involved in immobilization-induced muscle contracture and the currently available treatments. Understanding the mechanisms involved in immobilization-induced contracture of muscle tissue should facilitate the development of more effective treatment measures for the different mechanisms in the future.
Collapse
Affiliation(s)
- Feng Wang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Quan-Bing Zhang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, 230601, China,Corresponding author.
| | - Shuang Chen
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Peng-Peng Huang
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yi Liu
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuan-Hong Xu
- Department of Clinical Laboratory, The First Hospital of Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
6
|
Theilen NT, Jeremic N, Weber GJ, Tyagi SC. Exercise preconditioning diminishes skeletal muscle atrophy after hindlimb suspension in mice. J Appl Physiol (1985) 2018; 125:999-1010. [PMID: 29975600 PMCID: PMC6230574 DOI: 10.1152/japplphysiol.00137.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The aim of the present study was to investigate whether short-term, concurrent exercise training before hindlimb suspension (HLS) prevents or diminishes both soleus and gastrocnemius atrophy and to analyze whether changes in mitochondrial molecular markers were associated. Male C57BL/6 mice were assigned to control at 13 ± 1 wk of age, 7-day HLS at 12 ± 1 wk of age (HLS), 2 wk of exercise training before 7-day HLS at 10 ± 1 wk of age (Ex+HLS), and 2 wk of exercise training at 11 ± 1 wk of age (Ex) groups. HLS resulted in a 27.1% and 21.5% decrease in soleus and gastrocnemius muscle weight-to-body weight ratio, respectively. Exercise training before HLS resulted in a 5.6% and 8.1% decrease in soleus and gastrocnemius weight-to-body weight ratio, respectively. Exercise increased mitochondrial biogenesis- and function-associated markers and slow myosin heavy chain (SMHC) expression, and reduced fiber-type transitioning marker myosin heavy chain 4 (Myh4). Ex+HLS revealed decreased reactive oxygen species (ROS) and oxidative stress compared with HLS. Our data indicated the time before an atrophic setting, particularly caused by muscle unloading, may be a useful period to intervene short-term, progressive exercise training to prevent skeletal muscle atrophy and is associated with mitochondrial biogenesis, function, and redox balance. NEW & NOTEWORTHY Mitochondrial dysfunction is associated with disuse-induced skeletal muscle atrophy, whereas exercise is known to increase mitochondrial biogenesis and function. Here we provide evidence of short-term concurrent exercise training before an atrophic event protecting skeletal muscle from atrophy in two separate muscles with different, dominant fiber-types, and we reveal an association with the adaptive changes of mitochondrial molecular markers to exercise.
Collapse
Affiliation(s)
- Nicholas T Theilen
- Department of Physiology, University of Louisville , Louisville, Kentucky
| | - Nevena Jeremic
- Department of Physiology, University of Louisville , Louisville, Kentucky
| | - Gregory J Weber
- Department of Physiology, University of Louisville , Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville , Louisville, Kentucky
| |
Collapse
|