1
|
De Sousa IAL, Boari AJ, Santos AS. Ligninolytic enzyme potential of Trametes spp. associated with leaf litter in riparian forest of the Amazônia region. BRAZ J BIOL 2024; 84:e282099. [PMID: 38985070 DOI: 10.1590/1519-6984.282099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/24/2024] [Indexed: 07/11/2024] Open
Abstract
The present study explored the potential of leaf litter as a source of fungi able to produce ligninolytic enzymes for the biodegradation of anthraquinone dyes. Within the colonies isolated from the leaf litter, only three colonies of two species Trametes were selected based on the detection of oxidation and decolorization halos in Petri dishes with PDA (potato-dextrose-agar) + Guaicol and PDA + RBBR (Remazol Brilliant Blue R). The identification of the colonies was done through sequencing of the ITS region. The enzymatic activity of Lac (lacase), MnP (manganês peroxidase) and LiP (lignina peroxidase) was analyzed by spectrophotometry during fermentation in PD+RBBR imedium. Isolates A1SSI01 and A1SSI02 were identified as Trametes flavida, while A5SS01 was identified as Trametes sp. Laccase showed the highest enzymatic activity, reaching 452.13 IU.L-1 (A1SSI01, 0.05% RBBR) after 96h. Isolate A1SSI02 reached the highest percentage of decolorization, achieving 89.28% in seven days. The results imply that these Trametes isolates can be highly effective in waste treatment systems containing toxic anthraquinone dyes. Keywords: laccase, peroxidases, basidiomycete, litter and biodecolorization.
Collapse
Affiliation(s)
- I A L De Sousa
- Universidade Federal do Pará - UFPA, Programa de Pós-graduação em Biodiversidade e Biotecnologia - PPG-REDE BIONORTE, Instituto de Ciências Biológicas, Belém, PA, Brasil
| | - A J Boari
- Embrapa Amazônia Oriental - EMBRAPA, Laboratório de Fitopatologia, Belém, PA, Brasil
| | - A S Santos
- Universidade Federal do Pará - UFPA, Instituto de Ciências Biológicas, Belém, PA, Brasil
| |
Collapse
|
2
|
Pereira DS, Phillips AJL. Palm Fungi and Their Key Role in Biodiversity Surveys: A Review. J Fungi (Basel) 2023; 9:1121. [PMID: 37998926 PMCID: PMC10672035 DOI: 10.3390/jof9111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Over the past three decades, a wealth of studies has shown that palm trees (Arecaceae) are a diverse habitat with intense fungal colonisation, making them an important substratum to explore fungal diversity. Palm trees are perennial, monocotyledonous plants mainly restricted to the tropics that include economically important crops and highly valued ornamental plants worldwide. The extensive research conducted in Southeast Asia and Australasia indicates that palm fungi are undoubtedly a taxonomically diverse assemblage from which a remarkable number of new species is continuously being reported. Despite this wealth of data, no recent comprehensive review on palm fungi exists to date. In this regard, we present here a historical account and discussion of the research on the palm fungi to reflect on their importance as a diverse and understudied assemblage. The taxonomic structure of palm fungi is also outlined, along with comments on the need for further studies to place them within modern DNA sequence-based classifications. Palm trees can be considered model plants for studying fungal biodiversity and, therefore, the key role of palm fungi in biodiversity surveys is discussed. The close association and intrinsic relationship between palm hosts and palm fungi, coupled with a high fungal diversity, suggest that the diversity of palm fungi is still far from being fully understood. The figures suggested in the literature for the diversity of palm fungi have been revisited and updated here. As a result, it is estimated that there are about 76,000 species of palm fungi worldwide, of which more than 2500 are currently known. This review emphasises that research on palm fungi may provide answers to a number of current fungal biodiversity challenges.
Collapse
Affiliation(s)
- Diana S. Pereira
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alan J. L. Phillips
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
The chalara-like anamorphs of Leotiomycetes. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractThe chalara-like anamorphs of Leotiomycetes are phialidic hyphomycetes with cylindrical collarettes and deeply seated sporulating loci, and hyaline, aseptate or septate, cylindrical conidia. They are commonly found on plant litters in both terrestrial and submerged environments, and with broad geographical distribution. This paper reports our research result of diversity, taxonomy and phylogeny of these fungi in China, which is based on a systematic study by using an integrated approach of literature study, morphological observation and phylogenetic analyses of 153 chalara-like fungal species with diversified morphology in conidiomata, setae, conidiophores, phialides and conidia. The phylogenetic analyses employing different datasets of SSU, LSU and ITS sequences of 116 species showed that these chalara-like fungi were paraphyletic and scattered in 20 accepted genera belonging to five families of Leotiomycetes: Arachnopezizaceae, Hamatocanthoscyphaceae, Helotiaceae, Neolauriomycetaceae and Pezizellaceae. Additional six genera, Ascoconidium, Bioscypha, Chalarodendron, Didonia, Phaeoscypha and Tapesina, all reported with chalara-like anamorphs in literatures, are also accepted as members of Pezizellaceae or Leotiomycetes genera incertae sedis. Among of these 26 accepted genera of chalara-like fungi in Leotiomycetes, 17 genera are asexually typified genera (Ascoconidium, Bloxamia, Chalara, Chalarodendron, Constrictochalara, Cylindrochalara, Cylindrocephalum, Leochalara, Lareunionomyces, Minichalara, Neochalara, Neolauriomyces, Nagrajchalara, Parachalara, Stipitochalara, Xenochalara and Zymochalara), and 9 are sexually typified genera (Bioscypha, Bloxamiella, Calycellina, Calycina, Didonia, Hymenoscyphus, Mollisina, Phaeoscypha and Tapesina). The phylogenetic significance of conidial septation in generic delimitation was further confirmed; while other morphologies such as conidiomata, setae, conidiophores, phialides, conidial length, and conidial ornamentation have little phylogenetic significance, but could be used for species delimitation. The polyphyletic genus Chalara s. lat. is revised with monophyletic generic concepts by redelimitation of Chalara s. str. in a narrow concept, adaption of the emended Calycina to also include asexually typified chalara-like fungi, reinstatement of Cylindrocephalum, and introduction of six new genera: Constrictochalara W.P. Wu & Y.Z. Diao, Leochalara W.P. Wu & Y.Z. Diao, Minichalara W.P. Wu & Y.Z. Diao, Nagrajchalara W.P. Wu & Y.Z. Diao, Parachalara W.P. Wu & Y.Z. Diao and Stipitochalara W.P. Wu & Y.Z. Diao. Chaetochalara becomes a synonym of Chalara s. str., and the known species are disassembled into Chalara s. str. and Nagrajchalara. The polyphyletic genus Bloxamia is also redefined by introducing the new genus Bloxamiella W.P. Wu & Y.Z. Diao for B. cyatheicola. Five existing species of Chalara s. lat. were excluded from Leotiomycetes and reclassified: Chalara breviclavata as Chalarosphaeria breviclavata W.P. Wu & Y.Z. Diao gen. et sp. nov. in Chaetosphaeriaceae, C. vaccinii as Sordariochalara vaccinii W.P. Wu & Y.Z. Diao gen. et sp. nov. in Lasiosphaeriaceae, and three other Chalara species with hyaline phialides, C. hyalina, C. schoenoplecti and C. siamense as combinations of Pyxidiophora in Pyxidiophoraceae. For biodiversity of these fungi in China, a total of 80 species in 12 genera, including 60 new species, 17 new records and 1 new name, were discovered and documented in this paper. In addition, five species including three new species are reported from Japan. In connection to this revision, a total of 44 new combinations are made. The identification keys are provided for most of these genera. Future research area of these fungi should be the phylogenetic relationship of several sexually typified genera such as Bioscypha, Calycellina, Calycina, Didonia, Phaeoscypha, Rodwayella and Tapesina, and systematic revision of existing names under the genera Bloxamia, Chaetochalara and Chalara.
Collapse
|
4
|
Miranda PS, Oliveira TS, Luz EDMN, Santos MALD, Bezerra JL. Ascomycota in the litter of Inga edulis and Lafoensia pacari in an Atlantic Forest remnant in southeastern Bahia state, Brazil. RODRIGUÉSIA 2022. [DOI: 10.1590/2175-7860202273040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract The Ascomycota population in the litter of Inga edulis and Lafoensia pacari trees was identified and its richness was evaluated. The collections were carried out from October 2018 to July 2019. Twenty fallen leaves were collected in different stages of decomposition. The leaf samples were carefully washed in running water and incubated in humid chambers. The fungal structures were mounted in PVLG resin and observed under a light microscope. The identification was done by consulting the specific literature. Distribution studies included richness, frequency, constancy, and similarity of the fungal populations. The total richness was 48 species and 36 genera corresponding to 58.33% in I. edulis and 60.41% in L. pacari. Most taxa had sporadic frequency and accidental constancy. There was low similarity between plant species. Ascomycota populations are well represented in Inga edulis and Lafoensia pacari litter. Richness, frequency, constancy, and similarity of these populations varied little in function of the collection date, climate and host plant. Lower richness observed in the second collection may reflect the effect of reduced humidity observed in that time of the year.
Collapse
|
5
|
Réblová M, Kolařík M, Nekvindová J, Réblová K, Sklenář F, Miller AN, Hernández-Restrepo M. Phylogenetic Reassessment, Taxonomy, and Biogeography of Codinaea and Similar Fungi. J Fungi (Basel) 2021; 7:1097. [PMID: 34947079 PMCID: PMC8704094 DOI: 10.3390/jof7121097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
The genus Codinaea is a phialidic, dematiaceous hyphomycete known for its intriguing morphology and turbulent taxonomic history. This polyphasic study represents a new, comprehensive view on the taxonomy, systematics, and biogeography of Codinaea and its relatives. Phylogenetic analyses of three nuclear loci confirmed that Codinaea is polyphyletic. The generic concept was emended; it includes four morphotypes that contribute to its morphological complexity. Ancestral inference showed that the evolution of some traits is correlated and that these traits previously used to delimit taxa at the generic level occur in species that were shown to be congeneric. Five lineages of Codinaea-like fungi were recognized and introduced as new genera: Codinaeella, Nimesporella, Stilbochaeta, Tainosphaeriella, and Xyladelphia. Dual DNA barcoding facilitated identification at the species level. Codinaea and its segregates thrive on decaying plants, rarely occurring as endophytes or plant pathogens. Environmental ITS sequences indicate that they are common in bulk soil. The geographic distribution found using GlobalFungi database was consistent with known data. Most species are distributed in either the Holarctic realm or tropical geographic regions. The ancestral climatic zone was temperate, followed by transitions to the tropics; these fungi evolved primarily in Eurasia and Americas, with subsequent transitions to Africa and Australasia.
Collapse
Affiliation(s)
- Martina Réblová
- Department of Taxonomy, Institute of Botany, The Czech Academy of Sciences, 252 43 Průhonice, Czech Republic; (K.R.); (F.S.)
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, The Czech Academy of Sciences, 142 20 Prague, Czech Republic;
| | - Jana Nekvindová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic;
| | - Kamila Réblová
- Department of Taxonomy, Institute of Botany, The Czech Academy of Sciences, 252 43 Průhonice, Czech Republic; (K.R.); (F.S.)
- CEITEC—Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - František Sklenář
- Department of Taxonomy, Institute of Botany, The Czech Academy of Sciences, 252 43 Průhonice, Czech Republic; (K.R.); (F.S.)
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, The Czech Academy of Sciences, 142 20 Prague, Czech Republic;
| | - Andrew N. Miller
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA;
| | | |
Collapse
|
6
|
Diversity of saprotrophic filamentous fungi on Araucaria angustifolia (Bertol.) Kuntze (Brazilian pine). Braz J Microbiol 2021; 52:1489-1501. [PMID: 34115307 DOI: 10.1007/s42770-021-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
The biodiversity of filamentous fungi and their ecological relationships in the context of decaying Araucaria angustifolia (an endangered conifer) substrates are still mostly unknown. The present study aimed to investigate the diversity of saprotrophic filamentous fungi, based on morphological identification, associated with A. angustifolia, in addition to assessing possible saprobic/plant affinity relationship, and verifying whether the study areas and substrates affect the composition of the mycobiota. A total of 5000 substrates (decaying needles and twigs) were collected during five expeditions (2014/2015) to two areas: São Francisco de Paula National Forest (FLONA-SFP) and São Joaquim National Park (PARNA-SJ), Brazil. A total of 135 species distributed among 85 genera, 40 families, nine classes, 24 orders, three subphyla, and two phyla were identified. One new genus and five new species that were previously described, and six rare species and five species with affinity for A. angustifolia were also recorded. The twigs showed a community of fungi with greater richness and dominance. Conversely, the values of abundance, Simpson's diversity index, and evenness were lower than those determined for needles. In terms of the study areas, FLONA-SFP showed higher values of richness, abundance, Simpson's diversity index, and evenness than PARNA-SJ. Principal coordinate analysis and similarity percentage analysis showed the influence of both substrate factors and areas in the composition of the fungal communities. The presence of new, rare, and affinity-related species reinforces the study of fungi in the context of the conservation of this conifer, as these species are threatened by co-extinction.
Collapse
|
7
|
Phylogeny, Global Biogeography and Pleomorphism of Zanclospora. Microorganisms 2021; 9:microorganisms9040706. [PMID: 33805574 PMCID: PMC8066784 DOI: 10.3390/microorganisms9040706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Zanclospora (Chaetosphaeriaceae) is a neglected, phialidic dematiaceous hyphomycete with striking phenotypic heterogeneity among its species. Little is known about its global biogeography due to its extreme scarcity and lack of records verified by molecular data. Phylogenetic analyses of six nuclear loci, supported by phenotypic data, revealed Zanclospora as highly polyphyletic, with species distributed among three distantly related lineages in Sordariomycetes. Zanclospora is a pleomorphic genus with multiple anamorphic stages, of which phaeostalagmus-like and stanjehughesia-like are newly discovered. The associated teleomorphs were previously classified in Chaetosphaeria. The generic concept is emended, and 17 species are accepted, 12 of which have been verified with DNA sequence data. Zanclospora thrives on decaying plant matter, but it also occurs in soil or as root endophytes. Its global diversity is inferred from metabarcoding data and published records based on field observations. Phylogenies of the environmental ITS1 and ITS2 sequences derived from soil, dead wood and root samples revealed seven and 15 phylotypes. The field records verified by DNA data indicate two main diversity centres in Australasia and Caribbean/Central America. In addition, environmental ITS data have shown that Southeast Asia represents a third hotspot of Zanclospora diversity. Our data confirm that Zanclospora is a rare genus.
Collapse
|