1
|
Jamal A, Brettle H, Jamil DA, Tran V, Diep H, Bobik A, van der Poel C, Vinh A, Drummond GR, Thomas CJ, Jelinic M, Al-Aubaidy HA. Reduced Insulin Resistance and Oxidative Stress in a Mouse Model of Metabolic Syndrome following Twelve Weeks of Citrus Bioflavonoid Hesperidin Supplementation: A Dose-Response Study. Biomolecules 2024; 14:637. [PMID: 38927040 PMCID: PMC11201492 DOI: 10.3390/biom14060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities affecting ~25% of adults and is linked to chronic diseases such as cardiovascular disease, cancer, and neurodegenerative diseases. Oxidative stress and inflammation are key drivers of MetS. Hesperidin, a citrus bioflavonoid, has demonstrated antioxidant and anti-inflammatory properties; however, its effects on MetS are not fully established. We aimed to determine the optimal dose of hesperidin required to improve oxidative stress, systemic inflammation, and glycemic control in a novel mouse model of MetS. Male 5-week-old C57BL/6 mice were fed a high-fat, high-salt, high-sugar diet (HFSS; 42% kcal fat content in food and drinking water with 0.9% saline and 10% high fructose corn syrup) for 16 weeks. After 6 weeks of HFSS, mice were randomly allocated to either the placebo group or low- (70 mg/kg/day), mid- (140 mg/kg/day), or high-dose (280 mg/kg/day) hesperidin supplementation for 12 weeks. The HFSS diet induced significant metabolic disturbances. HFSS + placebo mice gained almost twice the weight of control mice (p < 0.0001). Fasting blood glucose (FBG) increased by 40% (p < 0.0001), plasma insulin by 100% (p < 0.05), and HOMA-IR by 150% (p < 0.0004), indicating insulin resistance. Hesperidin supplementation reduced plasma insulin by 40% at 140 mg/kg/day (p < 0.0001) and 50% at 280 mg/kg/day (p < 0.005). HOMA-IR decreased by 45% at both doses (p < 0.0001). Plasma hesperidin levels significantly increased in all hesperidin groups (p < 0.0001). Oxidative stress, measured by 8-OHdG, was increased by 40% in HFSS diet mice (p < 0.001) and reduced by 20% with all hesperidin doses (p < 0.005). In conclusion, hesperidin supplementation reduced insulin resistance and oxidative stress in HFSS-fed mice, demonstrating its dose-dependent therapeutic potential in MetS.
Collapse
Affiliation(s)
- Abdulsatar Jamal
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Holly Brettle
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Dina A. Jamil
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- NewMed Education Australia, Hamilton, QLD 4007, Australia
| | - Vivian Tran
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Henry Diep
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Alexander Bobik
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- Baker Heart and Diabetes Research Institute, Melbourne, VIC 3004, Australia
| | - Chris van der Poel
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Colleen J. Thomas
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
| | - Hayder A. Al-Aubaidy
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science (LIMS), & Department of Microbiology, Anatomy, Physiology & Pharmacology (MAPP), La Trobe University, Bundoora, VIC 3086, Australia; (A.J.); (H.B.); (D.A.J.); (V.T.); (H.D.); (A.B.); (C.v.d.P.); (A.V.); (G.R.D.); (C.J.T.)
- NewMed Education Australia, Hamilton, QLD 4007, Australia
| |
Collapse
|
2
|
Mirzaei A, Mirzaei A, Najjar Khalilabad S, Askari VR, Baradaran Rahimi V. Promising influences of hesperidin and hesperetin against diabetes and its complications: a systematic review of molecular, cellular, and metabolic effects. EXCLI JOURNAL 2023; 22:1235-1263. [PMID: 38234970 PMCID: PMC10792178 DOI: 10.17179/excli2023-6577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024]
Abstract
Hesperidin and hesperetin, two flavonoids with potential therapeutic value, have been extensively studied in the context of diabetes management. The main objective of this research is to ascertain their potential as therapeutic options for managing diabetes and its complications. The present study utilized a systematic review methodology and comprehensively explored relevant literature from databases, including PubMed, Scopus, and Web of Science, from inception until July 2023. The review summarized the outcomes related to the molecular, cellular, and metabolic effects of hesperidin and hesperetin in diabetes and its complications. Hesperetin exhibits a potential treatment for preventing diabetes and its associated complications through modulation of inflammatory cytokine release and expression via the pathway of signaling through Toll-like receptor/Myeloid differentiation factor 88/Nuclear factor-kappa B. Hesperidin shows promise as a biomolecule for treating diabetic neuropathy, primarily through activation of nuclear factor erythroid 2-related factor 2 (Nrf-2), as an antioxidant-response element signaling, leading to neuroprotective effects. Both compounds demonstrated the ability to normalize blood glucose levels and reduce serum and liver lipid levels, making them potential candidates for managing hypoglycemia and hypolipidemia in diabetes. Hesperidin also showed potential benefits against diabetic nephropathy by suppressing transforming growth factor-β1-integrin-linked kinase-Akt signaling and enhancing renal function. Furthermore, hesperidin's antioxidant, anti-inflammatory, and anti-depressant effects in diabetic conditions expanded its potential therapeutic applications. This systematic review provides substantial evidence supporting the consideration of hesperidin and hesperetin for diabetes and its complications. It offers exciting possibilities for developing novel, cost-effective treatment options to enhance diabetes management and patient outcomes.
Collapse
Affiliation(s)
- Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Morshedzadeh N, Ramezani Ahmadi A, Behrouz V, Mir E. A narrative review on the role of hesperidin on metabolic parameters, liver enzymes, and inflammatory markers in nonalcoholic fatty liver disease. Food Sci Nutr 2023; 11:7523-7533. [PMID: 38107097 PMCID: PMC10724641 DOI: 10.1002/fsn3.3729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 12/19/2023] Open
Abstract
Insulin resistance, oxidative stress, hyperlipidemia, and inflammation play main roles in the development of nonalcoholic fatty liver disease (NAFLD). Some studies have reported that hesperidin can reduce hyperglycemia and hyperlipidemia by inhibiting inflammatory pathways. In the current study, our purpose was to evaluate whether it can influence the primary parameters in NAFLD and improve the treatment effectiveness for future trials. Various studies have found that hesperidin involves multiple signaling pathways such as cell proliferation, lipid and glucose metabolism, insulin resistance, oxidative stress, and inflammation, which can potentially affect NAFLD development and prognosis. Recent findings indicate that hesperidin also regulates key enzymes and may affect the severity of liver fibrosis. Hesperidin inhibits reactive oxygen species production that potentially interferes with the activation of transcription factors like nuclear factor-κB. Appropriate adherence to hesperidin may be a promising approach to modulate inflammatory pathways, metabolic indices, hepatic steatosis, and liver injury.
Collapse
Affiliation(s)
- Nava Morshedzadeh
- Student Research CommitteeKerman University of Medical SciencesKermanIran
- Department of Nutrition, Faculty of Public HealthKerman University of Medical SciencesKermanIran
| | | | - Vahideh Behrouz
- Department of Nutrition, Faculty of Public HealthKerman University of Medical SciencesKermanIran
| | - Elias Mir
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
4
|
Ashry M, Askar H, Obiedallah MM, Elankily AH, Galal El-Sahra D, Zayed G, Mustafa MA, El-Shamy SAEM, Negm SA, El-Beltagy MA, Abdel-Wahhab KG, Ene A. Hormonal and inflammatory modulatory effects of hesperidin in hyperthyroidism-modeled rats. Front Immunol 2023; 14:1087397. [PMID: 37020549 PMCID: PMC10067561 DOI: 10.3389/fimmu.2023.1087397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
The goal of the current study was to investigate the hormonal modulatory efficiency of hesperidin, through its regulatory potential of immunological, inflammatory, and/or antioxidant changes in on hyperthyroidism modeled adult female albino rats. Both normal and hyperthyroidism modeled rats (140-160g) were randomly divided into four groups (10 animals each) as follows: 1) healthy animals were daily ingested with saline for six weeks, and served as control group, 2) healthy animals were intraperitoneally injected with hesperidin (50 mg/kg/day) for a similar period, 3) hyperthyroidism-modeled animals without any treatment acted as positive control, and 4) hyperthyroidism-modeled animals were treated intraperitoneally with hesperidin for a similar period. The findings showed that hesperidin significantly modulated hyperthyroidism deteriorations, this was evidenced by a remarkable decline in serum T4, FT4, T3, FT3, TNF-α, IL1β-, IL4-, IL-6, and IL-10 levels, with a minor increase in TSH and significant raise in CD4+ level. Similarly, valuable improvement was observed in the oxidative status; serum SOD, GPx, CAT, and GSH levels were dramatically enhanced, associated with remarkable drop in MDA and NO levels. Also, hesperidin demonstrated nephro-hepatoprotective and anti-atherogenic potential, this was achieved from the notable reduction in ALAT and ASAT activities as well as urea, creatinine, cholesterol, and triglyceride close to the corresponding values of healthy group. These findings were supported by histological and immunohistochemical ones that showed a notable decrease in the expression of the calcitonin antibody. In conclusion, hesperidin possesses anti-hyperthyroidism, immunoinflammatory regulatory, and antioxidant activities that evidenced from the improvement of physio-architecture of the thyroid gland, reduction of inflammation and restoration of the impaired oxidative stress. This effect might be mechanized through immunological, inflammatory, apoptotic, and/or antioxidant modulatory pathways.
Collapse
Affiliation(s)
- Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
- *Correspondence: Mahmoud Ashry, ; Manar M. Obiedallah, ; Antoaneta Ene,
| | - Hussam Askar
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Manar M. Obiedallah
- Institute of Chemical Technology, Ural Federal University, Ekaterinburg, Russia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- *Correspondence: Mahmoud Ashry, ; Manar M. Obiedallah, ; Antoaneta Ene,
| | | | - Doaa Galal El-Sahra
- Medical Surgical Nursing Department, Faculty of Nursing, Modern University for Technology and Information, Cairo, Egypt
| | - Gamal Zayed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Faculty of Applied Health Sciences, New Assiut Technological University, Assiut, Egypt
| | - Mohamed A. Mustafa
- Basic Centre of Science, Misr University for Science and Technology, Giza, Egypt
| | | | - Somaia A. Negm
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, Egypt
| | - Marwa A. El-Beltagy
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Antoaneta Ene
- INPOLDE Research Center, Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, Galati, Romania
- *Correspondence: Mahmoud Ashry, ; Manar M. Obiedallah, ; Antoaneta Ene,
| |
Collapse
|
5
|
Effects of foetal and breastfeeding exposure to methylmercury (MeHg) and retinol palmitate (Vitamin A) in rats: Redox parameters and susceptibility to DNA damage in liver. Mutat Res 2020; 858-860:503239. [PMID: 33198929 DOI: 10.1016/j.mrgentox.2020.503239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/01/2020] [Accepted: 08/14/2020] [Indexed: 01/01/2023]
Abstract
Methylmercury (MeHg) is known to be a chemical that poses a risk to public health. Exposure to MeHg and vitamin A (VitA) occurs through the ingestion of fish, present in the diet of most pregnant women. The absorption of these elements generates oxidative stress and can generate adaptations for future stressful events. Here, we assessed how exposure to VitA and/or MeHg during the fetal and breastfeeding period modulates the toxicity of MeHg reexposure in adulthood. We focus on redox systems and repairing DNA damage. Male rats (n = 50), were divided into 5 groups. Control received mineral oil; The VitA group received VitA during pregnancy, during breastfeeding and was exposed to MeHg in adulthood; VitA + MeHg received VitA and MeHg during pregnancy and breastfeeding and was exposed to MeHg in adulthood. The single exposure group (SE) was exposed to MeHg only in adulthood; and the MeHg group was pre-exposed to MeHg during pregnancy and breastfeeding and re-exposed to MeHg in adulthood. After treating the animals, we evaluated the redox status and the level of DNA damage in all rats. The results revealed that MeHg significantly decreased the activity of glutathione peroxidase (GPx) and sulfhydryl levels and increased the activity of superoxide dismutase (SOD), glutathione transferase, glutathione and carbonyl in all exposed groups. These results suggest that the second exposure to MeHg directly altered the effects of oxidation and that there were no specific effects associated with exposure during the fetal and breastfeeding periods. In addition, our findings indicate that MDA levels increased in MeHg and SE levels and no differences in MDA levels were observed between the VitA and MeHg + VitA groups. We also observed that animals pretreated exclusively with VitA showed residual damage similar to the control's DNA, while the other groups showed statistically higher levels of damage. In conclusion, low doses of MeHg and VitA during fetal and breastfeeding periods were unable to condition an adaptive response to subsequent exposure to MeHg in adulthood in relation to the observed levels of oxidative damage assessed after exposure.
Collapse
|
6
|
Shams-Rad S, Mohammadi M, Ramezani-Jolfaie N, Zarei S, Mohsenpour M, Salehi-Abargouei A. Hesperidin supplementation has no effect on blood glucose control: A systematic review and meta-analysis of randomized controlled clinical trials. Br J Clin Pharmacol 2019; 86:13-22. [PMID: 31489695 DOI: 10.1111/bcp.14120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/03/2019] [Accepted: 08/18/2019] [Indexed: 12/25/2022] Open
Abstract
AIMS To the best of our knowledge, no study has tried to quantitatively summarize the published evidence regarding the effect of hesperidin supplementation on blood glucose control. The present systematic review and meta-analysis of randomized controlled trials aimed to determine the effectiveness of hesperidin supplementation in improving blood glucose control in adults. METHODS Electronic databases including PubMed, ISI Web of Science, Scopus, and Google Scholar were searched up to February 2019. The risk of bias in individual studies was assessed using the Cochrane collaboration's tool. The overall estimates and their 95% confidence intervals (CIs) were calculated using a random-effects model. RESULTS Six trials with 318 participants were reviewed in the present systematic review. The results showed that hesperidin had no significant effect on serum fasting blood glucose (weighted mean difference [WMD] = -1.10 mg/dL, 95% CI: -3.79, 1.57), plasma insulin (WMD = -0.01 μU/mL, 95% CI: -1.20, 1.19), glycated haemoglobin A1c (WMD = -0.04%, 95% CI: -0.14, 0.04), homeostasis model assessment for insulin resistance (WMD = 0.117, 95% CI: -0.06, 0.29) and quantitative insulin sensitivity check index (WMD = 0.135; 95% CI: -0.13, 0.39), with no significant between-study heterogeneity. Subgroup analyses also indicated that the effects were not different based on the studies' design and duration, or the health status of the participants. CONCLUSION Although several animal studies have proposed that hesperidin supplementation might improve blood glucose control, the present study could not confirm this benefit in humans.
Collapse
Affiliation(s)
- Shamim Shams-Rad
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Mohammadi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nahid Ramezani-Jolfaie
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammadali Mohsenpour
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Xiong H, Wang J, Ran Q, Lou G, Peng C, Gan Q, Hu J, Sun J, Yao R, Huang Q. Hesperidin: A Therapeutic Agent For Obesity. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3855-3866. [PMID: 32009777 PMCID: PMC6859214 DOI: 10.2147/dddt.s227499] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
Obesity is a chronic metabolic disease caused by multiple factors and is considered to be a risk factor for type 2 diabetes, cardiovascular disease, hypertension, stroke and various cancers. Hesperidin, a flavanone glycoside, is a natural phenolic compound with a wide range of biological effects. Mounting evidence has demonstrated that hesperidin possesses inhibitory effect against obesity diseases. Our review discusses mechanisms of hesperidin in the treatment of obesity. Hesperidin regulates lipid metabolism and glucose metabolism by mediating AMPK and PPAR signaling pathways, directly regulates antioxidant index and anti-apoptosis, and indirectly mediates NF-κB signaling pathway to regulate inflammation to play a role in the treatment of obesity. In addition, hesperidin-enriched dietary supplements can significantly improve symptoms such as postprandial hyperglycemia and hyperlipidemia. Further clinical trials are also required for confirming lipid-lowering efficacy of this natural flavonoid and evaluating its safety profile.
Collapse
Affiliation(s)
- Haijun Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Jin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Qian Ran
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Guanhua Lou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chengyi Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Qingxia Gan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Ju Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Jilin Sun
- Sichuan Fuzheng Pharmaceutical Co. Ltd, Sichuan, People's Republic of China
| | - Renchuan Yao
- Sichuan Fermentation Traditional Chinese Medicine Engineering Research Center, Chengdu, People's Republic of China
| | - Qinwan Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|