1
|
Machuca C, Angulo M, Monreal-Escalante E, Méndez-Martínez Y, Magallón-Servín P, Vázquez-Juárez R, Silva-Jara JM, Angulo C. Effect of diets containing probiotic yeast Cystobasidium benthicum and fruit Cyrtocarpa edulis on growth and immune parameters of Nile tilapia (Oreochromisniloticus). Microb Pathog 2024; 194:106817. [PMID: 39033935 DOI: 10.1016/j.micpath.2024.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
This study investigates Cystobasidium benthicum (Cb) probiotic yeast and Cyrtocarpa edulis (Ce) fruit dietary effects, single (0.5 %) or combined (Cb:Ce, 0.25:0.25 %), on growth performance, humoral immunity in serum and skin mucus, and intestinal morphology of Nile tilapia (Oreochromis niloticus) after 14 and 28 days. The Cb group presented the highest (P < 0.05) specific growth rate, weight gain, and absolute growth rate with respect to the control group. Immunological assays indicated that Cb, Ce and Cb:Ce groups increased serum nitric oxide concentration compared to the control group (P < 0.05). Cb and Cb:Ce groups showed the highest serum myeloperoxidase enzyme activity at day 14 and 28, respectively (P < 0.05); whereas, Cb:Ce group had the highest (P < 0.05) myeloperoxidase activity in skin mucus. The superoxide dismutase enzyme activity was unaffected. On day 28, Cb, Ce, and Cb:Ce groups showed higher and lower (P < 0.05) catalase enzyme activity in serum and skin mucus, respectively, compared with the control group. Only the Cb group had higher (P < 0.05) total protein concentration in serum (day 14) and skin mucus (day 14 and 28) with respect to the control group. The lysozyme activity in serum (day 28) and skin mucus (day 14) was higher (P < 0.05) in the Cb group compared to the control group. Only the skin mucus of Ce group showed bactericidal activity against Aeromonas dhakensis (P < 0.05). Histological studies indicated that Cb and Cb:Ce groups increased microvilli height, and Cb, Ce and Cb:Ce augmented goblet cell area at day 14 compared to the control group (P < 0.05). At day 28, microvilli height was higher in all groups and the number of intraepithelial leukocytes increased in Cb and Ce groups with respect to the control group (P < 0.05). The ex vivo assay revealed that A. dhakensis in leukocytes decreased cell viability similar to the control group (P < 0.05). A principal component analysis (PCA) confirmed the results. In conclusion, C. benthicum in the diet was the best supplement to improve the growth and immunity of Nile tilapia.
Collapse
Affiliation(s)
- Cristian Machuca
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico; CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Yuniel Méndez-Martínez
- Experimental Laboratory Aquaculture, Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo (UTEQ), Av. Quito Km. 11/2 vía Santo Domingo de los Tsáchilas, Quevedo, 120301, Ecuador
| | - Paola Magallón-Servín
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Ricardo Vázquez-Juárez
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Jorge Manuel Silva-Jara
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara, 44430, Jalisco, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico.
| |
Collapse
|
2
|
Todorov SD, Lima JMS, Bucheli JEV, Popov IV, Tiwari SK, Chikindas ML. Probiotics for Aquaculture: Hope, Truth, and Reality. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10290-8. [PMID: 38801620 DOI: 10.1007/s12602-024-10290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The use of microorganisms as beneficial crops for human and animal health has been studied for decades, and these microorganisms have been in practical use for quite some time. Nowadays, in addition to well-known examples of beneficial properties of lactic acid bacteria, bifidobacteria, selected Bacillus spp., and yeasts, there are several other bacteria considered next-generation probiotics that have been proposed to improve host health. Aquaculture is a rapidly growing area that provides sustainable proteins for consumption by humans and other animals. Thus, there is a need to develop new technologies for the production practices associated with cleaner and environment-friendly approaches. It is a well-known fact that proper selection of the optimal probiotics for use in aquaculture is an essential step to ensure effectiveness and safety. In this critical review, we discuss the evaluation of host-specific probiotics in aquaculture, challenges in using probiotics in aquaculture, methods to improve the survival of probiotics under different environmental conditions, technological approach to improving storage, and delivery along with possible negative consequences of using probiotics in aquaculture. A critical analysis of the identified challenges for the use of beneficial microbes in aquaculture will help in sustainable aquafarming, leading to improved agricultural practices with a clear aim to increase protein production.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil.
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - Joao Marcos Scafuro Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Jorge Enrique Vazquez Bucheli
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Bioestadistica y Genetica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, C.P. 04510, Mexico City, Mexico
| | - Igor Vitalievich Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1, Rostov-On-Don 344002, Rostov, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1, Rostov-On-Don 344002, Rostov, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, the State University of New Jersey, RutgersNew Brunswick, NJ 08901, USA
- I. M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| |
Collapse
|
3
|
Cano-Lozano JA, Villamil Diaz LM, Melo Bolivar JF, Hume ME, Ruiz Pardo RY. Probiotics in tilapia (Oreochromis niloticus) culture: Potential probiotic Lactococcus lactis culture conditions. J Biosci Bioeng 2021; 133:187-194. [PMID: 34920949 DOI: 10.1016/j.jbiosc.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Tilapia is one of the most extensively farmed fish on a global scale. Lately, many studies have been carried out to select and produce probiotics for cultured fish. Bacteria from the genera Bacillus, Lactiplantibacillus (synonym: Lactobacillus), and Lactococcus are the most widely studied with respect to their probiotic potential. Among these microorganisms, Lactococcus lactis has outstanding prospects as a probiotic because it is generally recognized as safe (GRAS) and has previously been shown to exert its probiotic potential in aquaculture through different mechanisms, such as competitively excluding pathogenic bacteria, increasing food nutritional value, and enhancing the host immune response against pathogenic microorganisms. However, it is not sufficient to simply select a microorganism with significant probiotic potential for commercial probiotic development. There are additional challenges related to strategies involving the mass production of bacterial cultures, including the selection of production variables that positively influence microorganism metabolism. Over the last ten years, L. lactis production in batch and fed-batch processes has been studied to evaluate the effects of culture temperature and pH on bacterial growth. However, to gain a deeper understanding of the production processes, the effect of hydrodynamic stress on cells in bioreactor production and its influence on the probiotic potential post-manufacturing also need to be determined. This review explores the trends in tilapia culture, the probiotic mechanisms employed by L. lactis in aquaculture, and the essential parameters for the optimal scale-up of this probiotic.
Collapse
Affiliation(s)
- Juan Andrés Cano-Lozano
- School of Engineering, Maestría en diseño y gestión de procesos, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia.
| | - Luisa Marcela Villamil Diaz
- School of Engineering, Doctoral program in Biosciences, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia; Universidad de La Sabana, Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, 140 013, Cundinamarca, Colombia.
| | - Javier Fernando Melo Bolivar
- School of Engineering, Doctoral program in Biosciences, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia; Universidad de La Sabana, Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, 140 013, Cundinamarca, Colombia.
| | - Michael E Hume
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA.
| | - Ruth Yolanda Ruiz Pardo
- School of Engineering, Maestría en diseño y gestión de procesos, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia; Universidad de La Sabana, Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, 140 013, Cundinamarca, Colombia.
| |
Collapse
|
4
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 7: Amphenicols: florfenicol and thiamphenicol. EFSA J 2021; 19:e06859. [PMID: 34729087 PMCID: PMC8546524 DOI: 10.2903/j.efsa.2021.6859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The specific concentrations of florfenicol and thiamphenicol in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for florfenicol was estimated. However, due to the lack of data, the calculation of the FARSC for thiamphenicol was not possible until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for florfenicol, whilst for thiamphenicol no suitable data for the assessment were available. Uncertainties and data gaps associated to the levels reported were addressed. For florfenicol, it was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC, whereas for thiamphenicol, the recommendation was to generate the data required to fill the gaps which prevented the FARSC calculation.
Collapse
|