Ramos LPA, Justino AB, Tavernelli N, Saraiva AL, Franco RR, de Souza AV, Silva HCG, de Moura FBR, Botelho FV, Espindola FS. Antioxidant compounds from Annona crassiflora fruit peel reduce lipid levels and oxidative damage and maintain the glutathione defense in hepatic tissue of Triton WR-1339-induced hyperlipidemic mice.
Biomed Pharmacother 2021;
142:112049. [PMID:
34426250 DOI:
10.1016/j.biopha.2021.112049]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Dyslipidemia is a risk factor for the pathogenesis of several diseases, such as obesity, hypertension, atherosclerosis and cardiovascular diseases. In addition to interfering with serum concentrations of cholesterol and triglycerides, hyperlipidemia is involved in oxidative stress increase and reduction of the endogenous antioxidant defenses. The fruit peel of Annona crassiflora crude extract (CEAc) and its polyphenols-rich fraction (PFAc) were investigated against hypertriglyceridemia, hypercholesterolemia and hepatic oxidative stress in Triton WR-1339-induced hyperlipidemic mice. Lipid parameters in serum, feces and liver, as well as hepatic oxidative status, and enzymatic and non-enzymatic antioxidant defense systems were analyzed. Pre-treatment with CEAc for 12 days decreased hepatic triglycerides and total cholesterol, and similar to PFAc, increased the high-density lipoprotein level. There were reductions in lipid peroxidation and protein carbonylation, as well as restoration of the glutathione defense system and total thiol content in the liver of the hyperlipidemic mice treated with PFAc. The fruit peel of A. crassiflora, a promising natural source of bioactive molecules, showed a potential lipid-lowering action and hepatoprotective activities triggered by reduction of oxidative damage and maintenance of the enzymatic and non-enzymatic antioxidant systems impaired by the hyperlipidemic state.
Collapse