1
|
Tikhonova IV, Dyukina AR, Grinevich AA, Shaykhutdinova ER, Safronova VG. Changed regulation of granulocyte NADPH oxidase activity in the mouse model of obesity-induced type 2 diabetes mellitus. Free Radic Biol Med 2024; 216:33-45. [PMID: 38479632 DOI: 10.1016/j.freeradbiomed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
NADPH oxidase is a target of hyperglycemia in type 2 diabetes mellitus (T2DM), which causes dysregulation of enzyme. Alterations in regulation of NADPH oxidase activity mediated receptor and non-receptor signaling in bone marrow granulocytes of mice with obesity-induced T2DM were studied. The animals fed high fat diet (516 kcal/100 g) for 16 weeks. NADPH oxidase-related generation of reactive species (RS) at normo- and hyperthermia was estimated using chemiluminescent analysis. The redox status of the cells was assessed by Redox Sensor Red CC-1. Baseline biochemical indicators in blood (glucose, cholesterol, HDL and LDL levels) were significant higher in T2DM mice versus controls. Using specific inhibitors, signaling mediated by formyl peptide receptors (FPRs) to NADPH oxidase was shown to involve PLC, PKC, cytochrome p450 in both control and T2DM groups and PLA2 in controls. In T2DM regulation of NADPH oxidase activity via mFpr1, a high-affinity receptors, occurred with a significant increase of the role of PKC isoforms and suppression of PLA2 participation. Significant differences between this regulation via mFpr2, low-affinity receptors, were not found. Non-receptor activation of NADPH oxidase with ionomycin (Ca2+ ionophore) or phorbol ester (direct activator of PKC isoforms) did not revealed differences in the kinetic parameters between groups at 37 °C and 40 °C. When these agents were used together (synergistic effect), lower sensitivity of cells to ionophore was observed in T2DM at both temperatures. Redox status in responses to opsonized zymosan was higher in T2DM mice at 37 °C and similar to control levels at 40 °C. ROC-analysis identified Tmax, RS production and effect of opsonized zymosan as the most significant predictors for discriminating between groups. It was concluded that Ca2+-dependent/PKC-mediated regulation of NADPH oxidase activity was altered in BM granulocytes from diabetic mice.
Collapse
Affiliation(s)
- Irina V Tikhonova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia.
| | - Alsu R Dyukina
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| | - Andrei A Grinevich
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| | - Elvira R Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Prospect Nauki, 6, Pushchino, 142290, Russia
| | - Valentina G Safronova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| |
Collapse
|
2
|
Vilela WR, Bellozi PMQ, Picolo VL, Cavadas BN, Marques KVS, Pereira LTG, Guirao ARDY, Amato AA, Magalhães KG, Mortari MR, Medei EH, Goulart JT, de Bem AF. Early-life metabolic dysfunction impairs cognition and mitochondrial function in mice. J Nutr Biochem 2023; 117:109352. [PMID: 37061011 DOI: 10.1016/j.jnutbio.2023.109352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
The impact of overnutrition early in life is not restricted to the onset of cardiovascular and metabolic diseases, but also affects critical brain functions related to cognition. This study aimed to evaluate the relationship between peripheral metabolic and bioenergetic changes induced by a two-hit protocol and their impact on cognitive function in juvenile mice. Three-week-old male C57BL/6 mice received a high-fat diet (HFD) or control diet for 7 weeks, associated with 2 low doses of streptozotocin (STZ) or vehicle. Despite the absence of obesity, HFD+STZ impaired glucose metabolism and induced a trend towards cholesterol increase. The two-hit protocol impaired recognition and spatial memories in juvenile mice, without inducing a depressive-like behavior. HFD+STZ mice presented increased immunoreactivity for GFAP and a trend towards a decrease in NeuN in the hippocampus. The treatment caused a bioenergetic impairment in the hippocampus, characterized by a decrease in both O2 consumption related to ATP production and in the maximum respiratory capacity. The thermogenic capacity of brown adipose tissue was impaired by the two-hit protocol, here verified through the absence of a decrease in O2 consumption after uncoupled protein-1 inhibition and an increase in the reserve respiratory capacity. Impaired mitochondrial function was also observed in the liver of HFD+STZ juvenile mice, but not in their heart. These results indicate that exposure to HFD+STZ early in life has a detrimental impact on the bioenergetic and mitochondrial function of tissues with metabolic and thermogenic activities, which is likely related to hippocampal metabolic changes and cognitive impairment.
Collapse
Affiliation(s)
- Wembley Rodrigues Vilela
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | - Paula Maria Quaglio Bellozi
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | - Victor Luna Picolo
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | - Bruna Neves Cavadas
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | - Keila Valentina Silva Marques
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | | | - Ainhoa Rodriguez de Yurre Guirao
- Laboratory of Cardioimunology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | - Emiliano Horacio Medei
- Laboratory of Cardioimunology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jair Trapé Goulart
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil.
| | - Andreza Fabro de Bem
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil; Center of Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden.
| |
Collapse
|
3
|
Mao S, Chen P, Pan W, Gao L, Zhang M. Exacerbated post-infarct pathological myocardial remodelling in diabetes is associated with impaired autophagy and aggravated NLRP3 inflammasome activation. ESC Heart Fail 2021; 9:303-317. [PMID: 34964299 PMCID: PMC8787965 DOI: 10.1002/ehf2.13754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
Background Diabetes mellitus (DM) patients surviving myocardial infarction (MI) have substantially higher mortality due to the more frequent development of subsequent pathological myocardial remodelling and concomitant functional deterioration. This study investigates the molecular pathways underlying accelerated cardiac remodelling in a well‐established mouse model of diabetes exposed to MI. Methods and results Myocardial infarction in DM mice was established by ligating the left anterior descending coronary artery. Cardiac function was assessed by echocardiography. Myocardial hypertrophy and cardiac fibrosis were determined histologically 6 weeks post‐MI or sham operation. Autophagy, the NLRP3 inflammasome, and caspase‐1 were evaluated by western blotting or immunofluorescence. Echocardiographic imaging revealed significantly increased left ventricular dilation in parallel with increased mortality after MI in DM mice (53.33%) compared with control mice (26.67%, P < 0.05). Immunoblotting, electron microscopy, and immunofluorescence staining for LC3 and p62 indicated impaired autophagy in DM + MI mice compared with control mice (P < 0.05). Furthermore, defective autophagy was associated with increased NLRP3 inflammasome and caspase‐1 hyperactivation in DM + MI mouse cardiomyocytes (P < 0.05). Consistent with NLRP3 inflammasome and caspase‐I hyperactivation, cardiomyocyte death and IL‐1β and IL‐18 secretion were increased in DM + MI mice (P < 0.05). Importantly, the autophagy inducer and the NLRP3 inhibitor attenuated the cardiac remodelling of DM mice after MI. Conclusion In summary, our results indicate that DM aggravates cardiac remodelling after MI through defective autophagy and associated exaggerated NLRP3 inflammasome activation, proinflammatory cytokine secretion, suggesting that restoring autophagy and inhibiting NLRP3 inflammasome activation may serve as novel targets for the prevention and treatment of post‐infarct remodelling in DM.
Collapse
Affiliation(s)
- Shuai Mao
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.,Guangdong Provincial Branch of National Clinical Research Centre for Chinese Medicine Cardiology, Guangzhou, China
| | - Peipei Chen
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Wenjun Pan
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Lei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Minzhou Zhang
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.,Guangdong Provincial Branch of National Clinical Research Centre for Chinese Medicine Cardiology, Guangzhou, China
| |
Collapse
|