1
|
Yao Y, Yang Y, Pan Y, Liu Z, Hou X, Li Y, Zhang H, Wang C, Liao W. Crucial roles of trehalose and 5-azacytidine in alleviating salt stress in tomato: Both synergistically and independently. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108075. [PMID: 37801738 DOI: 10.1016/j.plaphy.2023.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Trehalose may improve plant stress tolerance by regulating gene expression under different abiotic stresses. DNA methylation is involved in plant growth and development, but also in response to abiotic stresses. 5-azacytidine is a widely used inhibitor of DNA methylation. In this study, tomato (Solanum lycopersicum L. 'Ailsa Craig') was used as experimental material to explore the effects of trehalose and DNA methylation on the growth and development in tomato seedlings under salt stress. 10 mM trehalose, 50 μM 5-azacytidine, and their combined treatments could significantly increase growth parameters in tomato under salt stress, indicating trehalose and 5-azacytidine might play crucial roles in alleviating salt stress both synergistically and independently. Additionally, trehalose significantly down-regulated the expression of DNA methylase genes (SlDRM5, SlDRM1L1, SlCMT3 and SlCMT2) and up-regulated the expression of DNA demethylases genes under salt stress, suggesting that trehalose might regulate DNA methylation under salt stress condition. Under salt stress, trehalose and 5-azacytidine treatments enhanced antioxidant enzyme activity and induced antioxidant enzyme gene expression in tomato seedlings. Meanwhile, trehalose and 5-azacytidine increased ABA content by regulating the expression of ABA metabolism-related genes, thereby enhancing salt tolerance in tomato. Altogether, these results suggest that trehalose conferred salt tolerance in tomato seedlings probably by DNA demethylation and enhancing antioxidant capability and ABA accumulation.
Collapse
Affiliation(s)
- Yandong Yao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yan Yang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Ying Pan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zesheng Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Hongsheng Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Kumar T, Tiwari N, Bharadwaj C, Roorkiwal M, Reddy SPP, Patil BS, Kumar S, Hamwieh A, Vinutha T, Bindra S, Singh I, Alam A, Chaturvedi SK, Kumar Y, Nimmy MS, Siddique KHM, Varshney RK. A comprehensive analysis of Trehalose-6-phosphate synthase (TPS) gene for salinity tolerance in chickpea (Cicer arietinum L.). Sci Rep 2022; 12:16315. [PMID: 36175531 PMCID: PMC9523030 DOI: 10.1038/s41598-022-20771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Soil salinity affects various crop cultivation but legumes are the most sensitive to salinity. Osmotic stress is the first stage of salinity stress caused by excess salts in the soil on plants which adversely affects the growth instantly. The Trehalose-6-phosphate synthase (TPS) genes play a key role in the regulation of abiotic stresses resistance from the high expression of different isoform. Selected genotypes were evaluated to estimate for salt tolerance as well as genetic variability at morphological and molecular level. Allelic variations were identified in some of the selected genotypes for the TPS gene. A comprehensive analysis of the TPS gene from selected genotypes was conducted. Presence of significant genetic variability among the genotypes was found for salinity tolerance. This is the first report of allelic variation of TPS gene from chickpea and results indicates that the SNPs present in these conserved regions may contribute largely to functional distinction. The nucleotide sequence analysis suggests that the TPS gene sequences were found to be conserved among the genotypes. Some selected genotypes were evaluated to estimate for salt tolerance as well as for comparative analysis of physiological, molecular and allelic variability for salt responsive gene Trehalose-6-Phosphate Synthase through sequence similarity. Allelic variations were identified in some selected genotypes for the TPS gene. It is found that Pusa362, Pusa1103, and IG5856 are the most salt-tolerant lines and the results indicates that the identified genotypes can be used as a reliable donor for the chickpea improvement programs for salinity tolerance.
Collapse
Affiliation(s)
- Tapan Kumar
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India.,International Centre for Agricultural Research in the Dry Areas, Amlaha, Madhya Pradesh, 466113, India
| | - Neha Tiwari
- International Centre for Agricultural Research in the Dry Areas, Amlaha, Madhya Pradesh, 466113, India
| | - C Bharadwaj
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India.
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sneha Priya Pappula Reddy
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India.,The UWA Institute of Agriculture, UWA, Perth, WA, Australia
| | - B S Patil
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Sudhir Kumar
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Aladdin Hamwieh
- International Centre for Agricultural Research in the Dry Areas, 2 Port Said, Victoria Square, Maadi, Cairo, Egypt
| | - T Vinutha
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | | | | | - Afroz Alam
- Banathali Vidyapith, Banasthali, Rajasthan, India
| | | | | | | | - K H M Siddique
- The UWA Institute of Agriculture, UWA, Perth, WA, Australia
| | - Rajeev K Varshney
- International Chair in Agriculture & Food Security, State Agricultural Biotechnology Center, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Perth, Australia
| |
Collapse
|