1
|
Baleivanualala SC, Matanitobua S, Samisoni Y, Soqo V, Smita S, Mailulu J, Nabose I, Lata A, Shayam C, Sharma R, Wilson D, Crump JA, Ussher JE. Environmental contamination with carbapenem resistant Acinetobacter baumannii in healthcare settings in Fiji: a potential source of infection. Front Cell Infect Microbiol 2024; 14:1429443. [PMID: 39376664 PMCID: PMC11456574 DOI: 10.3389/fcimb.2024.1429443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/26/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction There are multiple ongoing outbreaks of carbapenem resistant Acinetobacter baumannii (CRAb) infection in Fiji's hospitals. CRAb is able to colonize and persist on various hospital surfaces for extended periods. We conducted a study to understand the extent of hospital environmental contamination and phylogenetic links with clinical isolates. Methods Swabs were collected from high-touch surfaces at Colonial War Memorial Hospital (CWMH) September 2021 and December 2022; Lautoka Hospital (LTKH) August 2022; and Labasa Hospital (LBSH) November 2022. All bacterial isolates were identified, and antimicrobial susceptibility testing (AST) performed; isolates resistant to carbapenems and producing a carbapenemase underwent whole genome sequencing. Comparison was made to clinical isolates obtained from CWMH in 2016-2017 and 2019-2021 and from LTKH and LBSH from 2020-2021. Results From the 180 environmental samples collected, ten (5.6%) CRAb were isolated; no other carbapenem-resistant gram-negative organisms were isolated. Seven (70%) of the CRAb were isolated from CWMH and three (30%) from LTKH; no CRAb were isolated from LBSH. Of the seven CWMH CRAb, two were sequence type 2 (ST2), three ST25, and two ST499. All LTKH isolates were ST499. The two environmental CRAb ST2 isolates were closely genetically linked to isolates obtained from patients in CWMH, LTKH, and LBSH 2020-2021. Similarly, the three environmental CRAb ST25 isolates were closely genetically linked to isolates obtained from patients admitted to CWMH in 2019-2021 and LBSH in 2020. The environmental CRAb ST499 isolates represented two distinct clones, with clone 1 comprising two genetically identical isolates from CWMH and clone 2 the three isolates from LTKH. Although no genetic linkages were observed when comparing environmental ST499 isolates to those from CWMH patients in 2020-2021, both clone 1 isolates were genetically identical to an isolate obtained from a patient admitted during the sampling period. Conclusion Our study highlights the contamination of high-touch surfaces within Fiji hospitals with CRAb, suggesting that these may serve as important sources for CRAb. Phylogenetic linkages to CRAb isolated from patients since 2019 underscores the persistence of this resistant pathogen in hospital settings and the ongoing risk for hospital-acquired infections.
Collapse
Affiliation(s)
- Sakiusa C. Baleivanualala
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- College of Medicine, Nursing and Health Science, Fiji National University, Suva, Fiji
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Silivia Matanitobua
- Fiji Centre for Disease Control, Ministry of Health and Medical Services, Suva, Fiji
| | - Yvette Samisoni
- Department of Infection Prevention and Control, Aspen Medical, Lautoka Hospital, Lautoka, Fiji
| | - Vika Soqo
- Microbiology Laboratory, Aspen Medical, Lautoka Hospital, Lautoka, Fiji
| | - Shayal Smita
- Microbiology Laboratory, Labasa Hospital, Ministry of Health and Medical Services, Labasa, Fiji
| | | | - Ilisapeci Nabose
- Department of Infection Prevention and Control, Colonial War Memorial Hospital, Ministry of Health and Medical Services, Suva, Fiji
| | - Alvina Lata
- Department of Infection Prevention and Control, Colonial War Memorial Hospital, Ministry of Health and Medical Services, Suva, Fiji
| | - Christina Shayam
- Department of Infection Prevention and Control, Labasa Hospital, Ministry of Health and Medical Services, Labasa, Fiji
| | - Radhika Sharma
- Department of Infection Prevention and Control, Labasa Hospital, Ministry of Health and Medical Services, Labasa, Fiji
| | - Donald Wilson
- College of Medicine, Nursing and Health Science, Fiji National University, Suva, Fiji
| | - John A. Crump
- Centre for International Health, Division of Health Sciences, University of Otago, Dunedin, New Zealand
- Otago Global Health Institute, University of Otago, Dunedin, New Zealand
| | - James E. Ussher
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Microbiology, Awanui Labs, Dunedin Hospital, Dunedin, New Zealand
| |
Collapse
|
2
|
de Oliveira LD, Ribeiro ALM, Dias SDO, da Cruz GM, de Menezes RT, de Carvalho LS, Diamantino MGG, Pereira TC, Marcucci MC, Abu Hasna A. Phytochemical Composition and Antimicrobial and Antibiofilm Effect of Myrciaria cauliflora Hydroethanolic Extract against Staphylococcus aureus and Acinetobacter baumannii. Methods Protoc 2024; 7:60. [PMID: 39195438 DOI: 10.3390/mps7040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Staphylococcus aureus and Acinetobacter baumannii are opportunistic pathogens, and both are involved in different oral infections. This work aimed to analyze the phytochemical composition of Myrciaria cauliflora hydroethanolic extract and to evaluate its antimicrobial and antibiofilm action against Staphylococcus aureus (ATCC 6538) and Acinetobacter baumannii (ATCC 19606; multi-resistant clinical strains 58004, 50098, 566006, and H557). Myrciaria cauliflora hydroethanolic extract was prepared, and the content of soluble solids, flavonoids, and phenols was quantified. High-performance liquid chromatography (HPLC) was performed later. The minimum inhibitory concentration was determined using the broth microdilution method according to the Clinical and Laboratory Standards Institute, standard M7-A6, and subsequently, its minimum bactericidal concentration was determined. Then, the most effective concentrations were analyzed against biofilms. Statistical analysis was performed using the ANOVA method with Tukey's test. The soluble solids content in the prepared hydroethanolic extract of M. cauliflora was 2.22%. Additionally, the total flavonoid content, measured using the quercetin standard curve, was 0.040 mg/mL. Furthermore, the total phenol content, determined using the gallic acid standard curve, was 0.729 mg/mL. HPLC analysis presented peaks of gallic acid (11.80 m), p-coumaric acid (12.09 m), cinnamic acid derivative (19.02 m), and ellagic acid (29.83 m). The extract demonstrated antimicrobial and antibiofilm action against all tested strains. However, the most effective antibacterial concentration against all the tested bacteria was 5.55 mg/mL. Therefore, these chemical components justify that M. cauliflora hydroethanolic extract is effective in reducing biofilm formation in S. aureus (standard strain) and A. baumannii (standard and clinical strains).
Collapse
Affiliation(s)
- Luciane Dias de Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, Campus of São José dos Campos, São Paulo 12245-000, Brazil
| | - Ana Luisa Monteiro Ribeiro
- Campus São José dos Campos, Universidade Paulista-UNIP, Highway Presidente Dutra, km 157.5, South Lane, São José dos Campos, São Paulo 12240-420, Brazil
| | - Sthéfani de Oliveira Dias
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, Campus of São José dos Campos, São Paulo 12245-000, Brazil
| | - Geovani Moreira da Cruz
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, Campus of São José dos Campos, São Paulo 12245-000, Brazil
| | - Raquel Teles de Menezes
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, Campus of São José dos Campos, São Paulo 12245-000, Brazil
| | - Lara Steffany de Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, Campus of São José dos Campos, São Paulo 12245-000, Brazil
| | - Mariana Gadelho Gimenez Diamantino
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University, Campus of São José dos Campos, São Paulo 12245-000, Brazil
| | - Thaís Cristine Pereira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, Campus of São José dos Campos, São Paulo 12245-000, Brazil
| | - Maria Cristina Marcucci
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, Campus of São José dos Campos, São Paulo 12245-000, Brazil
| | - Amjad Abu Hasna
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University, Campus of São José dos Campos, São Paulo 12245-000, Brazil
- School of Dentistry, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| |
Collapse
|
3
|
Firdose A, Maeda T, Sukri MAM, Yasin NHM, Sabturani N, Aqma WS. Antibacterial mechanism of Pseudomonas aeruginosa UKMP14T rhamnolipids against multidrug resistant Acinetobacter baumannii. Microb Pathog 2024; 193:106743. [PMID: 38879138 DOI: 10.1016/j.micpath.2024.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Rhamnolipids, a major category of glycolipid biosurfactant, have recently gained enormous attention in medical field because of their relevance as effective antibacterial agents against a wide variety of pathogenic bacteria. Our previous studies have shown that rhamnolipids from an environmental isolate of Pseudomonas aeruginosa UKMP14T possess antibacterial, anti-adhesive and anti-biofilm activity against multidrug-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) pathogens. However, the mechanism of their antibacterial action remains unclear. Thus, this study aimed to elucidate the mechanism of the antibacterial action of P. aeruginosa UKMP14T rhamnolipids by studying the changes in cells of one of the ESKAPE pathogens, Acinetobacter baumannii, which is the most difficult strain to kill. Results revealed that rhamnolipid treatment rendered A. baumannii cells more hydrophobic as evaluated through contact angle measurements. It also induced the release of cellular proteins measuring 510 μg/mL at a rhamnolipid concentration of 1000 μg/mL. In addition, rhamnolipids were found to be bactericidal in their action as they could permeate the inner membranes, leading to a leak-out of nucleotides. More than 50 % of the cells were found to be killed upon 1000 μg/mL rhamnolipid treatment as observed through fluorescence microscopy. Other cellular changes such as irregular shape and size, membrane perturbations, clumping, shrinkage and physical damage were clearly visible in SEM, FESEM and laser micrographs. Furthermore, rhamnolipid treatment inhibited the levels of acyl-homoserine lactones (AHLs) in A. baumannii, which are vital for their biofilm formation and virulence. The obtained results indicate that P. aeruginosa UKMP14T rhamnolipids target outer and inner bacterial membranes through permeation, including physical damage to the cells, leading to cell leakage. Furthermore, AHL inhibition appears to be the mechanism behind their anti-biofilm action. All these observations can be correlated to rhamnolipids' antibacterial effect against A. baumannii.
Collapse
Affiliation(s)
- Ayesha Firdose
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia.
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Mohd Asif Mohd Sukri
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia
| | - Noramiza Sabturani
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia
| | - Wan Syaidatul Aqma
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia.
| |
Collapse
|
4
|
Sivarajan K, Ravindhiran R, Sekar JN, Murugesan R, Chidambaram K, Dhandapani K. Deciphering the impact of Acinetobacter baumannii on human health, and exploration of natural compounds as efflux pump inhibitors to treat multidrug resistance. J Med Microbiol 2024; 73. [PMID: 39212030 DOI: 10.1099/jmm.0.001867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii is an ESKAPE pathogen and threatens human health by generating infections with high fatality rates. A. baumannii leads to a spectrum of infections such as skin and wound infections, endocarditis, meningitis pneumonia, septicaemia and urinary tract infections. Recently, strains of A. baumannii have emerged as multidrug-resistant (MDR), meaning they are resistant to at least three different classes of antibiotics. MDR development is primarily intensified by widespread antibiotic misuse and inadequate stewardship. The World Health Organization (WHO) declared A. baumannii a precarious MDR species. A. baumannii maintains the MDR phenotype via a diverse array of antimicrobial metabolite-hydrolysing enzymes, efflux of antibiotics, impermeability and antibiotic target modification, thereby complicating treatment. Hence, a deeper understanding of the resistance mechanisms employed by MDR A. baumannii can give possible approaches to treat antimicrobial resistance. Resistance-nodulation-cell division (RND) efflux pumps have been identified as the key contributors to MDR determinants, owing to their capacity to force a broad spectrum of chemical substances out of the bacterial cell. Though synthetic inhibitors have been reported previously, their efficacy and safety are of debate. As resistance-modifying agents, phytochemicals are ideal choices. These natural compounds could eliminate the bacteria or interact with pathogenicity events and reduce the bacteria's ability to evolve resistance. This review aims to highlight the mechanism behind the multidrug resistance in A. baumannii and elucidate the utility of natural compounds as efflux pump inhibitors to deal with the infections caused by A. baumannii.
Collapse
Affiliation(s)
- Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Jothi Nayaki Sekar
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, School of Pharmacy, King Khalid University, Abha 652529, Saudi Arabia
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| |
Collapse
|
5
|
Cheewapat R, Redkimned J, Lekuthai S, Kitti T, Tasanapak K, Thanwisai A, Sitthisak S, Sornda T, Impheng H, Onsurathum S, Leungtongkam U, Lamlertthon S, Kucharoenphaibul S, Wongwigkarn J, Singkum P, Chanchaithong P, Thummeepak R. Genomic Landscape Reveals Chromosomally-Mediated Antimicrobial Resistome and Virulome of a High-Risk International Clone II Acinetobacter baumannii AB073 from Thailand. Glob Health Epidemiol Genom 2024; 2024:8872463. [PMID: 38716477 PMCID: PMC11074871 DOI: 10.1155/2024/8872463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/14/2024] [Accepted: 04/18/2024] [Indexed: 07/28/2024] Open
Abstract
This study utilized integrative bioinformatics' tools together with phenotypic assays to understand the whole-genome features of a carbapenem-resistant international clone II Acinetobacter baumannii AB073. Overall, we found the isolate to be resistant to seven antibiotic classes, penicillins, β-lactam/β-lactamase inhibitor combinations, cephalosporins, carbapenems, aminoglycosides, fluoroquinolones, and folate pathway antagonists. These resistance phenotypes are related to various chromosomal-located antibiotic resistance determinants involved in different mechanisms such as reduced permeability, antibiotic target protection, antibiotic target alteration, antibiotic inactivation, and antibiotic efflux. IC2 A. baumannii AB073 could not transfer antibiotic resistance by conjugation experiments. Likewise, mobilome analysis found that AB073 did not carry genetic determinants involving horizontal gene transfer. Moreover, this isolate also carried multiple genes associated with the ability of iron uptake, biofilm formation, immune invasion, virulence regulations, and serum resistance. In addition, the genomic epidemiological study showed that AB073-like strains were successful pathogens widespread in various geographic locations and clinical sources. In conclusion, the comprehensive analysis demonstrated that AB073 contained multiple genomic determinants which were important characteristics to classify this isolate as a successful international clone II obtained from Thailand.
Collapse
Affiliation(s)
- Rattiya Cheewapat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jadsadaporn Redkimned
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sirikran Lekuthai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Thawatchai Kitti
- Department of Oriental Medicine, Chiang Rai College, Chiang Rai 57000, Thailand
| | - Kannipa Tasanapak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Thanet Sornda
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Hathaichanok Impheng
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sudarat Onsurathum
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Udomluk Leungtongkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Supaporn Lamlertthon
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Siriwat Kucharoenphaibul
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jintana Wongwigkarn
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pantira Singkum
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Salaya 10400, Thailand
| | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rapee Thummeepak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
6
|
Jian X, Li Y, Wang H, Li C, Li F, Li J, Dong J, Du T, Jiang L. A comparative study of genotyping and antimicrobial resistance between carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii isolates at a tertiary pediatric hospital in China. Front Cell Infect Microbiol 2024; 14:1298202. [PMID: 38524181 PMCID: PMC10960357 DOI: 10.3389/fcimb.2024.1298202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 03/26/2024] Open
Abstract
Background Carbapenem-resistant Klebsiella pneumoniae (CRKP) clinical isolations have rapidly increased in pediatric patients. To investigate a possible health care-associated infections of CRKP in a tertiary pediatric hospital, the circulating clones and carbapenem-resistant pattern between CRKP and carbapenem-resistant Acinetobacter baumannii (CRAB) isolates were compared to classify their epidemiological characteristics. The results will help to identify the epidemic pattern of the CRKP transmission in the hospital. Methods Ninety-six CRKP and forty-eight CRAB isolates were collected in Kunming Children's Hospital from 2019 through 2022. These isolates were genotyped using repetitive extragenic palindromic-PCR (REP-PCR). Carbapenemase phenotypic and genetic characterization were investigated using a disk diffusion test and singleplex PCR, respectively. In addition, these characteristics of the two pathogens were compared. Results The rates of CRKP and CRAB ranged from 15.8% to 37.0% at the hospital. Forty-nine and sixteen REP genotypes were identified among the 96 and 48 CRKP and CRAB isolates tested, respectively. The CRKP isolates showed more genetic diversity than the CRAB isolates. Of the 96 CRKP isolates, 69 (72%) produced Class B carbapenemases. However, all 48 CRAB isolates produced Class D carbapenemase or extended-spectrum β-lactamases (ESBL) combined with the downregulation of membrane pore proteins. Furthermore, the carbapenemase genes bla KPC, bla IMP, and bla NDM were detected in CRKP isolates. However, CRAB isolates were all positive for the bla VIM, bla OXA-23, and bla OXA-51 genes. Conclusions These CRKP isolates exhibited different biological and genetic characteristics with dynamic changes, suggesting widespread communities. Continuous epidemiological surveillance and multicenter research should be carried out to strengthen the prevention and control of infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Jiang
- Kunming Children’s Hospital (Kunming Medical University Affiliated), Kunming, Yunnan, China
| |
Collapse
|
7
|
Nayak S, Aanice D, Andria D, Pai A, Maiti B. Polymerase chain reaction-based typing methods and protein profiling analysis of Acinetobacter baumannii isolated from environmental and clinical sources from South India. Can J Microbiol 2023; 69:449-462. [PMID: 37364377 DOI: 10.1139/cjm-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Acinetobacter baumannii is an opportunistic pathogen known for causing hospital-acquired infections. The natural habitat includes soil, water, sewage, and drains, but it is also detected in infected individuals' blood, pus, and respiratory pathways. Due to its resilient nature, it is known to be a causative agent for outbreaks. Therefore, it is crucial to understand the genetic similarity between clinical and environmental isolates. The study aimed to find the genetic relationships between clinical and environmental isolates using PCR-based typing methods such as enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), random amplified polymorphic DNA (RAPD), and repetitive extragenic palindromic sequence-based PCR (Rep-PCR). Additionally, outer membrane protein (OMP) and whole cell protein (WCP) profiles were also used. The PCR-based methods, ERIC-PCR and Rep-PCR, showed decreased genetic similarity between clinical and environmental isolates (66% and 58%, respectively). However, RAPD showed relatively higher genetic similarity (91%). The OMP and WCP profiles showed varied banding patterns between the clinical and environmental isolates in the 29-43 kDa region. The PCR-based methods proved to be a reliable and reproducible technique. The OMP and WCP profiles, though not as discriminatory as the molecular typing methods, could help identify the most and least commonly occurring protein bands and thus help in typing clinical and environmental A. baumannii isolates.
Collapse
Affiliation(s)
- Srajana Nayak
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| | - D'Almeida Aanice
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| | - Dsouza Andria
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| | - Archana Pai
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka 575018, India
| |
Collapse
|
8
|
Abdollahi S, Raoufi Z. A novel vaccine candidate against A. baumannii based on a new OmpW family protein (OmpW2); structural characterization, antigenicity and epitope investigation, and in-vivo analysis. Microb Pathog 2023; 183:106317. [PMID: 37611777 DOI: 10.1016/j.micpath.2023.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
A. baumannii is an MDR pathogen whose SARS-CoV-2 has recently increased its mortality rate in hospitalized patients. So, the virulence factors investigation and design of a vaccine against this bacterium seem to be critical. In this regard, the OmpW2 protein was structurally characterized by this study, and its B-T cell epitopes were mapped by bioinformatic tools. In-vivo analyses were employed to verify the immunogenicity of this protein and its selected epitopes. The results indicated that OmpW2 is a conserved virulent antigen, not toxic for the host, and not similar to the human or mouse proteome. A putative interaction between OmpW2 and a Fe-S-cluster redox enzyme was detected. Based on the results, OmpW2 belongs to the OmpW superfamily and eight beta sheets have been predicted in its tight beta-barrel structure. Several exposed epitopes were detected in the OmpW2 sequence and structure, and a sub-unit potential vaccine was generated based on the epitopes. The ELISA results indicated that after the second booster vaccination of BALB/c mice with the whole OmpW2 protein or its sub-unit fragment, the IgG titer significantly raised (p < 0.05). The mortality rate and the bacterial burden in the lung, liver, kidney, and spleen in both passive and active immunized mice were significantly decreased (p ≤ 0.001). In-vivo experiments confirmed that the OmpW2 whole protein and its sub-unit fragment induce the host immune system and can be applied to design a commercial vaccine or diagnostic kit.
Collapse
Affiliation(s)
- Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
9
|
Dettori S, Portunato F, Vena A, Giacobbe DR, Bassetti M. Severe infections caused by difficult-to-treat Gram-negative bacteria. Curr Opin Crit Care 2023; 29:438-445. [PMID: 37641512 PMCID: PMC10919274 DOI: 10.1097/mcc.0000000000001074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Antimicrobial resistance (AMR) in Gram-negative bacteria (GNB) poses a significant global health concern, contributing to increased infections, mortality rates, and healthcare costs. This review discusses the main clinical manifestations, therapeutic options, and recent findings in managing antibiotic-resistant GNB, with a focus on difficult-to-treat infections. RECENT FINDINGS Difficult-to-treat resistance (DTR) is a novel classification that identifies GNB exhibiting intermediate or resistant phenotypes to first-line agents in the carbapenem, beta-lactam, and fluoroquinolone categories. The main pathogens implicated in severe infections include DTR Enterobacterales, DTR Pseudomonas aeruginosa , and DTR Acinetobacter baumannii. Although the clinical implications of DTR strains are still under investigation, certain studies have linked them to prolonged hospital stays and poor patient outcomes. SUMMARY Severe infections caused by DTR-GNB pose a formidable challenge for healthcare providers and represent a growing global health issue. The proper administration and optimization of novel antibiotics at our disposal are of paramount importance for combating bacterial resistance and improving patient prognosis.
Collapse
Affiliation(s)
- Silvia Dettori
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
| | - Federica Portunato
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Fatmawati NND, Suwardana GNR, Dharmika IAGW, Tarini NMA, Sujaya IN, Suranadi IW. Early detection of a possible multidrug-resistant Acinetobacter baumannii outbreak in the local hospital setting by using random amplified polymorphism DNA-polymerase chain reaction (RAPD-PCR), oxacillinase gene profiles, and antibiograms. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:642-653. [PMID: 37941878 PMCID: PMC10628083 DOI: 10.18502/ijm.v15i5.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Background and Objectives Detecting the source of a potential outbreak of multidrug resistant (MDR) Acinetobacter baumannii is necessary to be investigated. This study aimed to detect the possibility of A. baumannii outbreak in a hospital setting using a combination of random amplified polymorphism DNA-polymerase chain reaction (RAPD-PCR), antibiograms, and the presence of oxacillinase genes. Materials and Methods The antibiogram of 31 clinical isolates and six environmental isolates of A. baumannii were determined by Vitek® 2 Compact. Oxacillinase genes (OXA-23, -24, -51, and -58) were detected by PCR, and RAPD-PCR was conducted using DAF-4 and ERIC-2 primers. The Similarity Index and dendrogram were generated using GelJ v2.3 software. Results The antibiograms showed that all MDR A. baumannii isolates has very limited susceptibility to cephalosporins, but mostly susceptible to tigecycline. All isolates were positive for bla OXA-51-like gene, thirty-two of 37 total isolates (86.5%) were positive for bla OXA-23-like gene, and none were positive for bla OXA-24-like and bla OXA-58-like genes. RAPD-PCR showed that the DAF-4 primer on average had more band visualization and lower Similarity Index's variation compared to the ERIC-2. The discriminatory power of DAF-4 was 0.906. There was a significant correlation between the DAF-4 dendrogram pattern with the antibiogram (r=0.494, p<0.001) and the presence of bla OXA-23-like gene (r=0.634, p<0.001) from all ICU A isolates. Six out of fourteen ICU A isolates belonged to the same cluster with >95% Similarity Index, while one clinical isolate having an identical dendrogram and antibiogram pattern with an environmental isolate within this cluster. Conclusion There is a high probability of MDR A. baumannii outbreak within ICU A detected by multiple analysis of RAPD-PCR, antibiogram and the bla OXA-23-like gene profiles. This combinatorial approach is conceivable to mitigate possible outbreak situations of A. baumannii in the local hospital without sophisticated microbiology laboratory.
Collapse
Affiliation(s)
- Ni Nengah Dwi Fatmawati
- Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Bali, Indonesia
| | | | | | - Ni Made Adi Tarini
- Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Bali, Indonesia
| | - I Nengah Sujaya
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Udayana University, Bali, Indonesia
| | - I Wayan Suranadi
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Udayana University, Bali, Indonesia
| |
Collapse
|
11
|
Liu X, Chang Y, Xu Q, Zhang W, Huang Z, Zhang L, Weng S, Leptihn S, Jiang Y, Yu Y, Hua X. Mutation in the two-component regulator BaeSR mediates cefiderocol resistance and enhances virulence in Acinetobacter baumannii. mSystems 2023; 8:e0129122. [PMID: 37345941 PMCID: PMC10469669 DOI: 10.1128/msystems.01291-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Acinetobacter baumannii has become one of the most challenging pathogens in many countries with limited treatment options available. Cefiderocol, a novel siderophore-conjugated cephalosporin, shows potent in vitro activity against A. baumannii, including isolates resistant to carbapenems. To date, few reports on the mechanisms of cefiderocol resistance are available. In order to investigate potential mechanisms of cefiderocol resistance in A. baumannii, we performed in vitro evolution experiments at sub-lethal concentrations of the antibiotic. All four cefiderocol-resistant strains obtained harbored mutations in two-component system BaeS-BaeR. When we engineered the mutations of BaeS (D89V) and BaeR (S104N) into the genome of ATCC 17978, these mutations increased cefiderocol minimum inhibitory concentrations (MICs) by 8-fold to 16-fold. Transcriptome analyses showed that the expression of MacAB-TolC and MFS transporters was up-regulated in BaeSR mutants. Strains over-expressing MFS transporter and MacAB-TolC displayed higher MICs and higher median inhibition concentration (IC50) values, while MICs and IC50 decreased when efflux pump genes were knocked out. In a BaeR mutant with up-regulated csu operon, we observed a higher number of pili, enhanced surface motility, and increased biofilm formation compared to wild-type ATCC 17978. Using the Galleria mellonella infection model, we found that the BaeS mutant in which paa operon was up-regulated exhibited increased virulence. In conclusion, the mutations in BaeSR decreased cefiderocol susceptibility of A. baumannii through up-regulating efflux pumps gene expression. BaeS or BaeR also controls the expression of csu and paa, influencing biofilm formation, surface motility, and virulence in A. baumannii. IMPORTANCE The widespread prevalence of multi-drug-resistant A. baumannii (MDRAB) poses a significant therapeutic challenge. Cefiderocol is considered a promising antibiotic for the treatment of MDRAB infections. Therefore, it is necessary to study the potential resistance mechanisms of cefiderocol to delay the development of bacterial resistance. Here, we demonstrated that mutations in baeS and baeR reduced the susceptibility of A. baumannii to cefiderocol by up-regulating the expression of the MFS family efflux pump and MacAB-TolC efflux pump. We propose that BaeS mutants increase bacterial virulence by up-regulating the expression of the paa operon. This also reports the regulatory effect of BaeSR on csu operon for the first time. This study provides further insights into the role of BaeSR in developing cefiderocol resistance and virulence in A. baumannii.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunjie Chang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingye Xu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wang Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Huang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shanshan Weng
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang, China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Massarine NCM, de Souza GHDA, Nunes IB, Salomé TM, Barbosa MDS, Faccin I, Rossato L, Simionatto S. How Did COVID-19 Impact the Antimicrobial Consumption and Bacterial Resistance Profiles in Brazil? Antibiotics (Basel) 2023; 12:1374. [PMID: 37760671 PMCID: PMC10526034 DOI: 10.3390/antibiotics12091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The indiscriminate use of antibiotics has favored the selective pressure of multidrug resistance among microorganisms. This research evaluated the pattern of antibiotic prescriptions among the Brazilian population between January 2018 and December 2021. Additionally, the study sought to analyze the incidence rates of central line-associated bloodstream infection (CLABSI) and examine the profiles of antibiotic resistance. We assessed the hospital and community antimicrobial consumption from the National Health Surveillance Agency Database and correlated it to microorganisms. The consumption of antimicrobials in the hospital environment increased by 26% in 2021, highlighting polymyxin B, which increased by 204%. In 2021, 244,266 cases of CLABSI were reported, indicating a nosocomial infection rate of 7.9%. The rate of resistance to polymyxin B was higher in Pseudomonas aeruginosa (1400%) and Klebsiella pneumoniae (514%). Azithromycin emerged as the predominant antibiotic utilized within the community setting, accounting for 24% of the overall consumption. Pearson's correlation analysis revealed a significant and positive correlation (r = 0.71) between the elevated usage of azithromycin and the incidence of COVID-19. Our results indicate an increase in antimicrobial consumption during the COVID-19 pandemic and reinforce the fact that the misuse of antimicrobials may lead to an expansion in antimicrobial resistance.
Collapse
|
13
|
Sánchez-Urtaza S, Ocampo-Sosa A, Molins-Bengoetxea A, Rodríguez-Grande J, El-Kholy MA, Hernandez M, Abad D, Shawky SM, Alkorta I, Gallego L. Co-Existence of blaNDM-1, blaOXA-23, blaOXA-64, blaPER-7 and blaADC-57 in a Clinical Isolate of Acinetobacter baumannii from Alexandria, Egypt. Int J Mol Sci 2023; 24:12515. [PMID: 37569889 PMCID: PMC10419532 DOI: 10.3390/ijms241512515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing rates of antimicrobial resistance among carbapenem-resistant Acinetobacter baumannii in the Middle East and North Africa are one of the major concerns for healthcare settings. We characterised the first A. baumannii isolate harbouring five β-lactamases identified in Egypt. The isolate Ale25 was obtained from an ICU patient of a hospital from Alexandria. The isolate was phenotypically and genotypically screened for carbapenemase genes. The isolate was resistant to carbapenems, aminoglycosides, fluoroquinolones and cefiderocol. Whole-Genome Sequencing identified five β-lactamase genes, blaNDM-1, blaOXA-23, blaOXA-64, blaPER-7 and blaADC-57, together with other antibiotic resistance genes, conferring resistance to sulfonamides, macrolides, tetracyclines, rifamycin and chloramphenicol. Virulome analysis showed the presence of genes involved in adhesion and biofilm production, type II and VI secretion systems, exotoxins, etc. Multi-Locus Sequence Typing analysis identified the isolate as Sequence Types 113Pas and 2246Oxf, belonging to International Clone 7. Sequencing experiments revealed the presence of four plasmids of 2.7, 22.3, 70.4 and 240.8 Kb. All the β-lactamase genes were located in the chromosome, except the blaPER-7, gene which was found within the plasmid of 240.8 Kb. This study highlights the threat of the emergence and dissemination of these types of isolates.
Collapse
Affiliation(s)
- Sandra Sánchez-Urtaza
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain; (S.S.-U.); (A.M.-B.)
| | - Alain Ocampo-Sosa
- Microbiology Service, Health Research Institute (IDIVAL), University Hospital Marqués de Valdecilla, 39008 Santander, Spain;
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ainhoa Molins-Bengoetxea
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain; (S.S.-U.); (A.M.-B.)
| | - Jorge Rodríguez-Grande
- Microbiology Service, Health Research Institute (IDIVAL), University Hospital Marqués de Valdecilla, 39008 Santander, Spain;
| | - Mohammed A. El-Kholy
- Division of Clinical and Biological Sciences, Department of Microbiology and Biotechnology, College of Pharmacy, Arab Academy for Science, Technology & Maritime Transport (AASTMT), Alexandria P.O. Box 1029, Egypt;
| | - Marta Hernandez
- Laboratory of Molecular Biology and Microbiology, One Health, Agrarian Technological Institute of Castile and Leon (ITACyL), 47009 Valladolid, Spain; (M.H.); (D.A.)
| | - David Abad
- Laboratory of Molecular Biology and Microbiology, One Health, Agrarian Technological Institute of Castile and Leon (ITACyL), 47009 Valladolid, Spain; (M.H.); (D.A.)
| | - Sherine M. Shawky
- Medical Research Institute, Alexandria University, Alexandria 5422031, Egypt;
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain;
| | - Lucia Gallego
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Spain; (S.S.-U.); (A.M.-B.)
| |
Collapse
|
14
|
Sánchez-Urtaza S, Ocampo-Sosa A, Molins-Bengoetxea A, El-Kholy MA, Hernandez M, Abad D, Shawky SM, Alkorta I, Gallego L. Molecular characterization of multidrug resistant Acinetobacter baumannii clinical isolates from Alexandria, Egypt. Front Cell Infect Microbiol 2023; 13:1208046. [PMID: 37545857 PMCID: PMC10399577 DOI: 10.3389/fcimb.2023.1208046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Carbapenem resistant Acinetobacter baumannii is a major global concern, especially in countries of the Middle East and North Africa, where the antibiotic resistance rates are on the rise. The aim of this study was to study the genomic characteristics and antimicrobial susceptibility profile of thirty-six multidrug resistant A. baumannii clinical isolates obtained in hospitals from Alexandria, Egypt. Antibiotic resistance rates were estimated by determination of Minimum Inhibitory Concentrations. Carbapenemase genes, other antibiotic resistance genes and virulence factors were then screened by the use of Whole Genome Sequencing. Isolates were also subjected to Multi Locus Sequence Typing (MLST) using the Pasteur Scheme and to core genome MLST to study their clonal relatedness. In addition, plasmid analysis was performed by the use of a commercial kit and S1- Pulsed Field Gel Electrophoresis, and Hybridization experiments with DIG-labeled DNA probes for bla NDM-1, blaPER-7 and bla GES-like were performed to locate these genes. The majority of isolates were resistant to β-lactams (including carbapenems), fluoroquinolones, aminoglycosides and trimethoprim; and some showed resistance to cefiderocol and minocycline. We identified 8 different bla OXA-51-like variants including bla OXA-51, bla OXA-64, bla OXA-65, bla OXA-66, bla OXA-68, bla OXA-91, bla OXA-94 and bla OXA-336; bla OXA-23, bla NDM-1, bla PER-7, bla GES-like and bla ADC-like and other antibiotic resistance genes, some of these genes were within transposons or class 1 integrons. Multiple virulence factors responsible for adherence, biofilm production, type II and type VI secretion systems, exotoxins, exoenzymes, immune modulation and iron uptake were observed and 34 out of 36 isolates showed motility. Thirty-five out of 36 isolates clustered with International Clones 2, 4, 5, 7, 8 and 9; and 9 STs were identified including ST570, ST2, ST600, ST15, ST113, ST613, ST85, ST158, ST164. Plasmids ranging in size from 1.7 to 70 kb were found; bla NDM-1 and blaPER-7 genes were located in the chromosome and bla GES-like genes were simultaneously located in the chromosome and in a plasmid of 70kb. In conclusion, this study revealed a wide spectrum of antibiotic resistance genes and a variety of lineages among A. baumannii isolated in hospitals from Alexandria, and highlights the importance of investigating the molecular epidemiology to control the spread of multi-drug resistant isolates.
Collapse
Affiliation(s)
- Sandra Sánchez-Urtaza
- Laboratory of Antibiotics and Molecular Bacteriology, Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Alain Ocampo-Sosa
- Microbiology Service, University Hospital Marqués de Valdecilla, Health Research Institute (Instituto de Investigación Valdecilla), Santander, Spain and CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Ainhoa Molins-Bengoetxea
- Laboratory of Antibiotics and Molecular Bacteriology, Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Mohammed A. El-Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology & Maritime Transport (AASTMT), Alexandria, Egypt
| | - Marta Hernandez
- Laboratory of Molecular Biology and Microbiology, One Health, Agricultural Technological, Institute of Castile and Leon (ITACyL), Valladolid, Spain
| | - David Abad
- Laboratory of Molecular Biology and Microbiology, One Health, Agricultural Technological, Institute of Castile and Leon (ITACyL), Valladolid, Spain
| | - Sherine M. Shawky
- Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Lucia Gallego
- Laboratory of Antibiotics and Molecular Bacteriology, Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| |
Collapse
|
15
|
Chen D, Cao L, Li W. Etiological and clinical characteristics of severe pneumonia in pediatric intensive care unit (PICU). BMC Pediatr 2023; 23:362. [PMID: 37454044 PMCID: PMC10349420 DOI: 10.1186/s12887-023-04175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVE To analyze the etiological distribution characteristics of pediatric patients with severe pneumonia admitted to the Pediatric Intensive Care Unit (PICU), in order to provide a reference for the rational use of clinical antimicrobial drugs. METHODS A retrospective analysis of pediatric patients admitted to PICU with a diagnosis of severe pneumonia from January 2018 to December 2021 was performed and statistical analysis of pathogenic characteristics was performed. RESULTS A total of 649 pathogens were detected in 515 children, with a positive detection rate of 77.48%. Bacteria were detected at the highest rate (40.52%), followed by viruses (34.35%), atypical pathogens (19.72%) and fungal (4.31%). Gram-positive infections were dominated by Staphylococcus aureus (39.56%) and Streptococcus pneumoniae (32.97%), and Gram-negative infections were dominated by Acinetobacter Bahmani (16.28%) and Haemophilus influenzae (15.12%), followed by Klebsiella pneumoniae (13.95%) and Pseudomonas aeruginosa (12.21%). Viral infections were dominated by respiratory syncytial virus (25.65%) and EB virus (20.43%), fungal infections were dominated by Candida albicans (50.0%). The proportion of children infected with single pathogen (49.62%) was comparable to that of those with mixed infections (50.38%). There were statistically significant differences in the distribution of children with single pathogen infection by gender (P < 0.05). The age distribution of children with single bacterial, single viral and single fungal infections was statistically different (P < 0.05). There was no significant difference in the distribution of onset season in children with single pathogen infections (P > 0.05), but the number of children with single viral infections was significantly higher in winter and spring than that in summer and autumn, and the difference was statistically significant (P < 0.05). A mixture of 2 pathogens (77.61%) accounted for the majority of mixed infections, there were statistical differences in the distribution of bacterial + viral infection in terms of gender, age, and onset season (P < 0.05), children with viral + mycoplasma infection in terms of gender and age (P < 0.05), and children with viral + fungal infection in terms of gender (P < 0.05), and children with bacterial + mycoplasma infection in terms of age and onset season (P < 0.05). Among the children infected with 3 pathogens, there were statistically significant differences in the distribution of bacterial + viral + fungal and viral + mycoplasma + fungal infections in terms of gender (P < 0.05), and children with bacterial + viral + mycoplasma infection in terms of age (P < 0.05), while there was no significant difference in the distribution of onset season (P > 0.05). There were no significant differences in the distribution of children infected with 4 pathogens in terms of gender, age and onset season (P > 0.05). CONCLUSION The pathogens of pediatric patients with severe pneumonia in PICU commonly involves bacteria and viruses. As the age of children grows, the detection rate of bacteria shows a decreasing trend, and the pathogenic spectrum gradually changes from bacteria to mycoplasma and viruses, and the number of mixed infections gradually increase. Rational selection of antimicrobial drugs needs to consider pathogenic characteristics of different age, gender, and onset season in clinical practice.
Collapse
Affiliation(s)
- Dongmei Chen
- Department of Emergency, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Cao
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjing Li
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Larkin K, Toloza AC, Gabrie JA, Rodríguez CA, Rueda MM, Matamoros G, Palacio O, Jamani S, Fontecha G, Sanchez AL. First Detection of Acinetobacter baumannii in Pediculus humanus capitis from Latin America. Trop Med Infect Dis 2023; 8:345. [PMID: 37505641 PMCID: PMC10386172 DOI: 10.3390/tropicalmed8070345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Several studies have documented the presence of Acinetobacter baumannii, a known multi-drug-resistant pathogen, in the human head louse, Pediculus humanus capitis. Since no reports from countries in Latin America have been published, the aim of the present study was to determine whether A. baumannii was present in head lice specimens collected in this geographic region. Head lice specimens from Argentina, Colombia, and Honduras were analyzed. PCR assays were performed to confirm the specimens' species and to investigate whether the DNA of A. baumannii was present. The products of the latter were sequenced to confirm bacterial identity. Altogether, 122 pools of head lice were analyzed, of which two (1.64%) were positive for A. baumannii's DNA. The positive head lice had been collected at the poorest study site in Honduras. The remaining specimens were negative. This study is the first to report the presence of A. baumannii in human head lice from Latin America. Further investigations are required to elucidate whether these ectoparasites can serve as natural reservoirs or even effectively transmit A. baumannii to humans.
Collapse
Affiliation(s)
- Kelsey Larkin
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Ariel Ceferino Toloza
- Centro de Investigaciones de Plagas e Insecticidas (CONICET-UNIDEF), Villa Martelli, Buenos Aires 1603, Argentina
| | - Jose Antonio Gabrie
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Carol A Rodríguez
- Department of Parasitology, Universidad Nacional Autónoma de Honduras, Boulevard Suyapa, Tegucigalpa 11101, Honduras
| | - Maria Mercedes Rueda
- Department of Parasitology, Universidad Nacional Autónoma de Honduras, Boulevard Suyapa, Tegucigalpa 11101, Honduras
| | - Gabriela Matamoros
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Boulevard Suyapa, Tegucigalpa 11101, Honduras
| | - Oscar Palacio
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Shabana Jamani
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Gustavo Fontecha
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Boulevard Suyapa, Tegucigalpa 11101, Honduras
| | - Ana L Sanchez
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
17
|
Roshini J, Patro LPP, Sundaresan S, Rathinavelan T. Structural diversity among Acinetobacter baumannii K-antigens and its implication in the in silico serotyping. Front Microbiol 2023; 14:1191542. [PMID: 37415807 PMCID: PMC10320297 DOI: 10.3389/fmicb.2023.1191542] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Acinetobacter baumannii is an emerging opportunistic pathogen. It exhibits multi-, extreme-, and pan-drug resistance against several classes of antibiotics. Capsular polysaccharide (CPS or K-antigen) is one of the major virulence factors which aids A. baumannii in evading the host immune system. K-antigens of A. baumannii exploit the Wzx/Wzy-dependent pathway that involves 13 different proteins for its assembly and transport onto the outer membrane. A total of 64 (out of 237 K-locus(KL) types) known K-antigen sugar repeating structures are discussed here and are classified into seven groups based on their initial sugars, QuiNAc4NAc, GalNAc, GlcNAc, Gal, QuiNAc/FucNAc, FucNAc, and GlcNAc along with Leg5Ac7Ac/Leg5Ac7R. Thus, the corresponding seven initializing glycosyltransferases (ItrA1, ItrA2, ItrA3, ItrA4, ItrB1, ItrB3, and ItrA3 along with ItrB2) exhibit serotype specificity. The modeled 3D-structural repository of the 64 K-antigens can be accessed at https://project.iith.ac.in/ABSD/k_antigen.html. The topology of K-antigens further reveals the presence of 2-6 and 0-4 sugar monomers in the main and side chains, respectively. The presence of negatively (predominant) or neutrally charged K-antigens is observed in A. baumannii. Such diversity in the K-antigen sugar composition provides the K-typing specificity (viz., 18-69% in terms of reliability) for Wza, Wzb, Wzc, Wzx, and Wzy proteins involved in the Wzx/Wzy-dependent pathway. Interestingly, the degree of uniqueness of these proteins among different K-types is estimated to be 76.79%, considering the 237 reference sequences. This article summarizes the A. baumannii K-antigen structural diversity and creation of a K-antigen digital repository and provides a systematic analysis of the K-antigen assembly and transportation marker proteins.
Collapse
|
18
|
Ferreira PFA, Xavier JF, Nunes JF, Fonseca IP, de Mattos de Oliveira Coelho S, Soares de Souza MM, da Silva Coelho I. Bacteria and antimicrobial resistance profile during the composting process of wastes from animal production. Braz J Microbiol 2023; 54:1157-1167. [PMID: 36757538 PMCID: PMC10235383 DOI: 10.1007/s42770-023-00912-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Livestock waste is widely used in agriculture. Although they provide benefits to the soil, and consequently to plants, they have the potential to contaminate the environment, as they contain pathogenic microorganisms and determinants of antimicrobial resistance, if not properly managed. Therefore, this study aims to evaluate the effect of composting horse bedding and poultry litter in organic and conventional production systems on the occurrence of bacteria in the Enterobacteriales order and to identify their antimicrobial resistance profiles. Bacterial strains were isolated from Salmonella-Shigella and eosin methylene blue solid media from animal waste during the composting process that was conducted for 125 days. After isolation, the strains were identified by the MALDI-TOF technique; the disk diffusion test was then performed for phenotypic detection of antimicrobial resistance. A total of 158 bacterial strains were isolated during composting of three wastes. The Enterobacteriaceae family was the most abundant, whereas Proteus mirabilis and Escherichia coli were the species with the highest percentage in the wastes, which also exhibited a multi-resistance profile. Poultry litter showed a greater abundance of resistant bacteria than horse bedding did. Similarly, a greater number of resistant bacteria was detected in conventional poultry litter than in organic poultry litter. The results obtained reinforce that animal wastes are reservoirs of pathogenic bacteria that are resistant to antimicrobials and highlight the importance of developing management strategies that aim to reduce and/or eliminate these contaminants to guarantee their safe use in agriculture.
Collapse
Affiliation(s)
- Paula Fernanda Alves Ferreira
- Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil
| | - Júlia Ferreira Xavier
- Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil
| | - Juliana Ferreira Nunes
- Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil
| | - Isabela Pinto Fonseca
- Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil
| | - Shana de Mattos de Oliveira Coelho
- Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil
| | - Miliane Moreira Soares de Souza
- Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil
| | - Irene da Silva Coelho
- Department of Veterinary Microbiology and Immunology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-970, Brazil.
| |
Collapse
|
19
|
Li T, Wang Z, Guo J, de la Fuente-Nunez C, Wang J, Han B, Tao H, Liu J, Wang X. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160461. [PMID: 36435256 PMCID: PMC11537282 DOI: 10.1016/j.scitotenv.2022.160461] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The spread of bacterial drug resistance has posed a severe threat to public health globally. Here, we cover bacterial resistance to current antibacterial drugs, including traditional herbal medicines, conventional antibiotics, and antimicrobial peptides. We summarize the influence of bacterial drug resistance on global health and its economic burden while highlighting the resistance mechanisms developed by bacteria. Based on the One Health concept, we propose 4A strategies to combat bacterial resistance, including prudent Application of antibacterial agents, Administration, Assays, and Alternatives to antibiotics. Finally, we identify several opportunities and unsolved questions warranting future exploration for combating bacterial resistance, such as predicting genetic bacterial resistance through the use of more effective techniques, surveying both genetic determinants of bacterial resistance and the transmission dynamics of antibiotic resistance genes (ARGs).
Collapse
Affiliation(s)
- Ting Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing 100071, PR China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jie Liu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
20
|
Shayea RH, Ali MR. Whole-genome Study of Carbapenem-resistant Acinetobacter baumannii Virulence and Resistance. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2023. [DOI: 10.30699/ijmm.17.1.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
21
|
Fimbres-García JO, Flores-Sauceda M, Othon-Díaz ED, García-Galaz A, Tapia-Rodríguez MR, Silva-Espinoza BA, Ayala-Zavala JF. Facing Resistant Bacteria with Plant Essential Oils: Reviewing the Oregano Case. Antibiotics (Basel) 2022; 11:antibiotics11121777. [PMID: 36551436 PMCID: PMC9774595 DOI: 10.3390/antibiotics11121777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance is a serious global threat, and the misuse of antibiotics is considered its main cause. It is characterized by the expression of bacterial defense mechanisms, e.g., β-lactamases, expulsion pumps, and biofilm development. Acinetobacter baumannii and Pseudomonas aeruginosa are antibiotic-resistant species that cause high morbidity and mortality. Several alternatives are proposed to defeat antibiotic resistance, including antimicrobial peptides, bacteriophages, and plant compounds. Terpenes from different plant essential oils have proven antimicrobial action against pathogenic bacteria, and evidence is being generated about their effect against antibiotic-resistant species. That is the case for oregano essential oil (Lippia graveolens), whose antibacterial effect is widely attributed to carvacrol, its main component; however, minor constituents could have an important contribution. The analyzed evidence reveals that most antibacterial evaluations have been performed on single species; however, it is necessary to analyze their activity against multispecies systems. Hence, another alternative is using plant compounds to inactivate hydrolytic enzymes and biofilms to potentiate antibiotics' effects. Despite the promising results of plant terpenes, more extensive and deep mechanistic studies are needed involving antibiotic-resistant multispecies to understand their full potential against this problem.
Collapse
Affiliation(s)
- Jorge O. Fimbres-García
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico
| | - Marcela Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico
| | - Elsa Daniela Othon-Díaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico
| | - Alfonso García-Galaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico
| | - Melvin R. Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón 85000, Mexico
| | - Brenda A. Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico
| | - Jesus F. Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico
- Correspondence: ; Tel.: +52-6622892400 (ext. 430)
| |
Collapse
|
22
|
Aziz S, Rasheed F, Akhter TS, Zahra R, König S. Microbial Proteins in Stomach Biopsies Associated with Gastritis, Ulcer, and Gastric Cancer. Molecules 2022; 27:molecules27175410. [PMID: 36080177 PMCID: PMC9458002 DOI: 10.3390/molecules27175410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Gastric cancer (GC) is the fourth leading cause of cancer-related deaths worldwide. Helicobacter pylori infection is a major risk factor, but other microbial species may also be involved. In the context of an earlier proteomics study of serum and biopsies of patients with gastroduodenal diseases, we explored here a simplified microbiome in these biopsies (H. pylori, Acinetobacter baumannii, Escherichia coli, Fusobacterium nucleatum, Bacteroides fragilis) on the protein level. (2) Methods: A cohort of 75 patients was divided into groups with respect to the findings of the normal gastric mucosa (NGM) and gastroduodenal disorders such as gastritis, ulcer, and gastric cancer (GC). The H. pylori infection status was determined. The protein expression analysis of the biopsy samples was carried out using high-definition mass spectrometry of the tryptic digest (label-free data-independent quantification and statistical analysis). (3) Results: The total of 304 bacterial protein matches were detected based on two or more peptide hits. Significantly regulated microbial proteins like virulence factor type IV secretion system protein CagE from H. pylori were found with more abundance in gastritis than in GC or NGM. This finding could reflect the increased microbial involvement in mucosa inflammation in line with current hypotheses. Abundant proteins across species were heat shock proteins and elongation factors. (4) Conclusions: Next to the bulk of human proteins, a number of species-specific bacterial proteins were detected in stomach biopsies of patients with gastroduodenal diseases, some of which, like those expressed by the cag pathogenicity island, may provide gateways to disease prevention without antibacterial intervention in order to reduce antibiotic resistance.
Collapse
Affiliation(s)
- Shahid Aziz
- Patients Diagnostic Lab, Isotope Application Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 44000, Pakistan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
- Correspondence: or
| | - Faisal Rasheed
- Patients Diagnostic Lab, Isotope Application Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 44000, Pakistan
| | - Tayyab Saeed Akhter
- The Centre for Liver and Digestive Diseases, Holy Family Hospital, Rawalpindi 46300, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Simone König
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
| |
Collapse
|
23
|
Insights into mucoid Acinetobacter baumannii: A review of microbiological characteristics, virulence, and pathogenic mechanisms in a threatening nosocomial pathogen. Microbiol Res 2022; 261:127057. [DOI: 10.1016/j.micres.2022.127057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023]
|
24
|
Kanj SS, Bassetti M, Kiratisin P, Rodrigues C, Villegas MV, Yu Y, van Duin D. Clinical data from studies involving novel antibiotics to treat multidrug-resistant Gram-negative bacterial infections. Int J Antimicrob Agents 2022; 60:106633. [PMID: 35787918 DOI: 10.1016/j.ijantimicag.2022.106633] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
Multidrug-resistant (MDR) Gram-negative bacteria (GNB) are a critical threat to healthcare worldwide, worsening outcomes and increasing mortality among infected patients. Carbapenemase- and extended-spectrum β-lactamase-producing Enterobacterales, as well as carbapenemase-producing Pseudomonas and Acinetobacter spp., are common MDR pathogens. To address this threat, new antibiotics and combinations have been developed. Clinical trial findings support several combinations, notably ceftazidime-avibactam (CZA, a cephalosporin-β-lactamase inhibitor combination) which is effective in treating complicated urinary tract infections (cUTI), complicated intra-abdominal infections and hospital-acquired and ventilator-associated pneumonia caused by GNBs. Other clinically effective combinations include meropenem-vaborbactam (MVB), ceftolozane-tazobactam (C/T) and imipenem- relebactam (I-R). Cefiderocol is a recent siderophore β-lactam antibiotic that is useful against cUTIs caused by carbapenem-resistant Enterobacterales (CRE) and is stable against many β-lactamases. CRE are a genetically heterogeneous group that vary in different world regions and are a substantial cause of infections, among which Klebsiella pneumoniae are the most common. Susceptible CRE infections can be treated with fluoroquinolones, aminoglycosides or fosfomycin, but alternatives include CZA, MVB, I-R, cefiderocol, tigecycline and eravacycline. MDR Acinetobacter baumannii and Pseudomonas aeruginosa are increasingly common pathogens producing a range of different carbapenemases, and infections are challenging to treat, often requiring novel antibiotics or combinations. Currently, no single agent can treat all MDR-GNB infections, but new β-lactam-β-lactamase inhibitor combinations are often effective for different infection sites, and, when used appropriately, have the potential to improve outcomes. This article reviews clinical studies investigating novel β-lactam approaches for treatment of MDR-GNB infections.
Collapse
Key Words
- Antibiotic resistance
- BAT, best available treatment
- BL, β-lactamase
- BL–BLI, β-lactam-β-lactamase inhibitor
- BSI, bloodstream infection
- C/T, ceftolozane–tazobactam
- CAZ, ceftazidime
- CDC, Centers for Disease Control and Prevention
- CRAB, carbapenem-resistant Acinetobacter baumannii
- CRE, carbapenem-resistant Enterobacterales
- CRKP, carbapenem-resistant K. pneumoniae
- CRPA, carbapenem-resistant Pseudomonas aeruginosa
- CZA, ceftazidime–avibactam
- Clinical trial
- DBO, diazabicyclooctane
- ESBL, extended-spectrum β-lactamase
- FDA, US Food and Drug Administration
- GNB, Gram-negative bacteria
- Gram-negative bacteria Abbreviations: AVI, avibactam
- HAP, hospital-acquired pneumonia
- IAI, intra-abdominal infection
- ICU, intensive care unit
- IDSA, Infectious Diseases Society of America
- IPM, imipenem
- I–R, imipenem–relebactam
- KPC, Klebsiella pneumoniae carbapenemase
- MBL, metallo-β-lactamase
- MDR, multidrug-resistant
- MEM, meropenem
- MIC, minimum inhibitory concentration
- MVB, meropenem–vaborbactam
- NDM, New Delhi metallo-β-lactamase
- OXA, oxacillinase
- REL, relebactam
- US, United States
- UTI, urinary tract infection
- VAB, vaborbactam
- VAP, ventilator-associated pneumonia
- VIM, Verona integron-encoded metallo-β-lactamase
- XDR, extensively drug-resistant
- cIAI, complicated intra-abdominal infection
- cUTI, complicated urinary tract infection
- β-lactam-β-lactamase inhibitor
Collapse
Affiliation(s)
- Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Matteo Bassetti
- Department of Health Science, University of Genoa, Italy; Infectious Diseases Clinic, Ospedale Policlinico San Martino Hospital - IRCCS, Genoa, Italy
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Camilla Rodrigues
- Department of Microbiology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - María Virginia Villegas
- Grupo de Investigaciones en Resistencia Antimicrobiana y Epidemiología Hospitalaria (RAEH), Universidad El Bosque, Bogotá D.C., Colombia
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
25
|
Acinetobacter baumannii regulates its stress responses via the BfmRS two-component regulatory system. J Bacteriol 2021; 204:e0049421. [PMID: 34871031 DOI: 10.1128/jb.00494-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is a common nosocomial pathogen that utilizes numerous mechanisms to aid its survival in both the environment and in the host. Coordination of such mechanisms requires an intricate regulatory network. We report here that A. baumannii can directly regulate several stress-related pathways via the two-component regulatory system, BfmRS. Similar to previous studies, results from transcriptomic analysis showed that mutation of the BfmR response regulator causes dysregulation of genes required for the oxidative stress response, the osmotic stress response, the misfolded protein/heat shock response, Csu pili/fimbriae production, and capsular polysaccharide biosynthesis. We also found that the BfmRS system is involved in controlling siderophore biosynthesis and transport, and type IV pili production. We provide evidence that BfmR binds to various stress-related promoter regions and show that BfmR alone can directly activate transcription of some stress-related genes. Additionally, we show that the BfmS sensor kinase acts as a BfmR phosphatase to negatively regulate BfmR activity. This work highlights the importance of the BfmRS system in promoting survival of A. baumannii. Importance Acinetobacter baumannii is a nosocomial pathogen that has extremely high rates of multidrug resistance. This organism's ability to endure stressful conditions is a key part of its ability to spread in the hospital environment and cause infections. Unlike other members of the γ-proteobacteria, A. baumannii does not encode a homolog of the RpoS sigma factor to coordinate its stress response. Here, we demonstrate that the BfmRS two-component system directly controls the expression of multiple stress resistance genes. Our findings suggest that BfmRS is central to a unique scheme of general stress response regulation by A. baumannii.
Collapse
|
26
|
Pilch HE, Steinberger AJ, Sockett DC, Aulik N, Suen G, Czuprynski CJ. Assessing the microbiota of recycled bedding sand on a Wisconsin dairy farm. J Anim Sci Biotechnol 2021; 12:114. [PMID: 34758888 PMCID: PMC8582206 DOI: 10.1186/s40104-021-00635-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sand is often considered the preferred bedding material for dairy cows as it is thought to have lower bacterial counts than organic bedding materials and cows bedded on sand experience fewer cases of lameness and disease. Sand can also be efficiently recycled and reused, making it cost-effective. However, some studies have suggested that the residual organic material present in recycled sand can serve as a reservoir for commensal and pathogenic bacteria, although no studies have yet characterized the total bacterial community composition. Here we sought to characterize the bacterial community composition of a Wisconsin dairy farm bedding sand recycling system and its dynamics across several stages of the recycling process during both summer and winter using 16S rRNA gene amplicon sequencing. RESULTS Bacterial community compositions of the sand recycling system differed by both seasons and stage. Summer samples had higher richness and distinct community compositions, relative to winter samples. In both summer and winter samples, the diversity of recycled sand decreased with time drying in the recycling room. Compositionally, summer sand 14 d post-recycling was enriched in operational taxonomic units (OTUs) belonging to the genera Acinetobacter and Pseudomonas, relative to freshly washed sand and sand from cow pens. In contrast, no OTUs were found to be enriched in winter sand. The sand recycling system contained an overall core microbiota of 141 OTUs representing 68.45% ± 10.33% SD of the total bacterial relative abundance at each sampled stage. The 4 most abundant genera in this core microbiota included Acinetobacter, Psychrobacter, Corynebacterium, and Pseudomonas. Acinetobacter was present in greater abundance in summer samples, whereas Psychrobacter and Corynebacterium had higher relative abundances in winter samples. Pseudomonas had consistent relative abundances across both seasons. CONCLUSIONS These findings highlight the potential of recycled bedding sand as a bacterial reservoir that warrants further study.
Collapse
Affiliation(s)
- Hannah E. Pilch
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| | - Andrew J. Steinberger
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706 USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, 53706 USA
| | - Donald C. Sockett
- Wisconsin Veterinary Diagnostic Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| | - Nicole Aulik
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
- Wisconsin Veterinary Diagnostic Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706 USA
| | - Charles J. Czuprynski
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| |
Collapse
|
27
|
CsrA Coordinates Compatible Solute Synthesis in Acinetobacter baumannii and Facilitates Growth in Human Urine. Microbiol Spectr 2021; 9:e0129621. [PMID: 34730379 PMCID: PMC8567240 DOI: 10.1128/spectrum.01296-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CsrA is a global regulator widespread in bacteria and known to be involved in different physiological processes, including pathogenicity. Deletion of csrA of Acinetobacter baumannii strain ATCC 19606 resulted in a mutant that was unable to utilize a broad range of carbon and energy sources, including amino acids. This defect in amino acid metabolism was most likely responsible for the growth inhibition of the ΔcsrA mutant in human urine, where amino acids are the most abundant carbon source for A. baumannii. Recent studies revealed that deletion of csrA in the A. baumannii strains AB09-003 and ATCC 17961 resulted in an increase in hyperosmotic stress resistance. However, the molecular basis for this observation remained unknown. This study aimed to investigate the role of CsrA in compatible solute synthesis. We observed striking differences in the ability of different A. baumannii strains to cope with hyperosmotic stress. Strains AB09-003 and ATCC 17961 were strongly impaired in hyperosmotic stress resistance in comparison to strain ATCC 19606. These differences were abolished by deletion of csrA and are in line with the ability to synthesize compatible solutes. In the salt-sensitive strains AB09-003 and ATCC 17961, compatible solute synthesis was repressed by CsrA. This impairment is mediated via CsrA and could be overcome by deletion of csrA from the genome. IMPORTANCE The opportunistic human pathogen Acinetobacter baumannii has become one of the leading causes of nosocomial infections around the world due to the increasing prevalence of multidrug-resistant strains and their optimal adaptation to clinical environments and the human host. Recently, it was found that CsrA, a global mRNA binding posttranscriptional regulator, plays a role in osmotic stress adaptation, virulence, and growth on amino acids of A. baumannii AB09-003 and ATCC 17961. Here, we report that this is also the case for A. baumannii ATCC 19606. However, we observed significant differences in the ΔcsrA mutants with respect to osmostress resistance, such as the AB09-003 and 17961 mutants being enhanced in osmostress resistance whereas the ATCC 19606 mutant was not. This suggests that the role of CsrA in osmotic stress adaptation is strain specific. Furthermore, we provide clear evidence that CsrA is essential for growth in human urine and at high temperatures.
Collapse
|
28
|
Lin HL, Chiang CE, Lin MC, Kau ML, Lin YT, Chen CS. Aerosolized Hypertonic Saline Hinders Biofilm Formation to Enhance Antibiotic Susceptibility of Multidrug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2021; 10:antibiotics10091115. [PMID: 34572697 PMCID: PMC8465634 DOI: 10.3390/antibiotics10091115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 01/13/2023] Open
Abstract
Limited therapeutic options are available for multidrug-resistant Acinetobacter baumannii (MDR-AB), and the development of effective treatments is urgently needed. The efficacy of four aerosolized antibiotics (gentamicin, amikacin, imipenem, and meropenem) on three different MDR-AB strains was evaluated using hypertonic saline (HS, 7 g/100 mL) as the aerosol carrier. HS aerosol effectively hindered biofilm formation by specific MDR-AB strains. It could also interrupt the swarming dynamics of MDR-AB and the production of extracellular polymeric substances, which are essential for biofilm progression. Biofilms protect the microorganisms from antibiotics. The use of HS aerosol as a carrier resulted in a decreased tolerance to gentamicin and amikacin in the biofilm-rich MDR-AB. Moreover, we tested the aerosol characteristics of antibiotics mixed with HS and saline, and results showed that HS enhanced the inhaled delivery dose with a smaller particle size distribution of the four antibiotics. Our findings demonstrate the potential of using “old” antibiotics with our “new” aerosol carrier, and potentiate an alternative therapeutic strategy to eliminate MDR-AB infections from a biofilm-disruption perspective.
Collapse
Affiliation(s)
- Hui-Ling Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (H.-L.L.); (Y.-T.L.)
- Department of Respiratory Therapy, Chang Gung University, Taoyuan 33323, Taiwan;
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Chen-En Chiang
- Department of Respiratory Therapy, Chang Gung University, Taoyuan 33323, Taiwan;
| | - Mei-Chun Lin
- Department of Respiratory Therapy, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (M.-C.L.); (M.-L.K.)
| | - Mei-Lan Kau
- Department of Respiratory Therapy, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (M.-C.L.); (M.-L.K.)
| | - Yun-Tzu Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (H.-L.L.); (Y.-T.L.)
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (H.-L.L.); (Y.-T.L.)
- Correspondence: ; Tel.: +886-3-574-2680; Fax: +886-3-571-8649
| |
Collapse
|
29
|
Sood G, Perl TM. Outbreaks in Health Care Settings. Infect Dis Clin North Am 2021; 35:631-666. [PMID: 34362537 DOI: 10.1016/j.idc.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Outbreaks and pseudo-outbreaks in health care settings are complex and should be evaluated systematically using epidemiologic and molecular tools. Outbreaks result from failures of infection prevention practices, inadequate staffing, and undertrained or overcommitted health care personnel. Contaminated hands, equipment, supplies, water, ventilation systems, and environment may also contribute. Neonatal intensive care, endoscopy, oncology, and transplant units are areas at particular risk. Procedures, such as bronchoscopy and endoscopy, are sources of infection when cleaning and disinfection processes are inadequate. New types of equipment can be introduced and lead to contamination or equipment and medications can be contaminated at the manufacturing source.
Collapse
Affiliation(s)
- Geeta Sood
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Johns Hopkins Bayview Medical Center, Mason F. Lord Building, Center Tower, 3rd Floor, 5200 Eastern Avenue, Baltimore, MD 21224, USA.
| | - Trish M Perl
- Division of Infectious Diseases and Geographic Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Y7;302, Dallas, TX 75390, USA
| |
Collapse
|
30
|
Drug Resistance Mechanism among Acinetobacter Species. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter species cause infections that are difficult to control due to multi-drug resistance and are noted for their intrinsic resistance to antibiotics and for their ability to acquire genes encoding resistance for the production of beta-lactamases and Aminoglycoside-modifying enzymes. MBLs are molecular class B and functional group 3 beta-lactamases which have the capability of hydrolyzing all β-lactams except the Monobactam, Aztreonam. Of several MBLs, only IMP, VIM and SIM types have been detected in these species. To analyze the antibiotic resistance patterns among Acinetobacter isolates and to detect Carbapenemase and MBL among MDR Acinetobacter isolates. The descriptive study of all phenotypically identified strains and multidrug-resistant strains of Acinetobacter species was conducted. A total of 303 isolates were isolated from various samples. They were processed and identified by standard Microbiological procedures. The antibiotics susceptibility testing was performed by Kirby- Bauer disc diffusion method using CLSI guidelines. Carbapenemase production was detected by employing 3 phenotypic test methods (MHT, CDM and DDST). Of 6355 samples processed, 303 were found to be Acinetobacter species, among those 50 were multidrug-resistant strains. The highest isolation of MDR Acinetobacter was from endotracheal tube tip (42%) and pus sample (32%). The majority of MDR Acinetobacter infection was found in male patients 36 (72%) compared to female patients 14 (28%). The majority of the strains were isolated from patients >/ 60 years of age group (%). A number of these isolates were more from ICU wards (30%) followed by Surgery wards (24%). Higher resistance for the Piperacillin/tazobactam ((82%), followed by Ceftazidime (80%), Imipenem (76%) etc. and the most susceptible drug was found to be the Tigecycline (82%) followed by Colistin (80%). Carbapenemase production was detected by MHT and 24 (48%) isolates were MHT positive. MBL production was detected by CDM and 34 (68%) isolates were CDM positive and by DDST 30 (60%) isolates were positive. Acinetobacter species are increasingly important nosocomial pathogens and are capable of rapid adaptation to the hospital environment. The variety of potential source of contamination or infection with these species in the hospital environment makes control of outbreaks caused by these difficult.
Collapse
|
31
|
Luo X, Ye X, Ding L, Zhu W, Zhao Z, Luo D, Liu N, Sun L, Chen Z. Identification of the scorpion venom-derived antimicrobial peptide Hp1404 as a new antimicrobial agent against carbapenem-resistant Acinetobacter baumannii. Microb Pathog 2021; 157:104960. [PMID: 34022355 DOI: 10.1016/j.micpath.2021.104960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/02/2023]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is becoming a troublesome issue worldwide, and anti-CRAB drug research and development is urgently needed. To identify new anti-CRAB drug leads, we investigated seven scorpion venom-derived α-helical peptides that differ in their sequence composition and length. Three peptides, Hp1404, ctriporin and Im5, showed antimicrobial activities against Acinetobacter baumannii. Further antimicrobial assays revealed that Hp1404 exhibited the best cell selectivity with high anti-CRAB and low hemolytic activities. Fluorescence assays demonstrated that Hp1404 can induce dose-dependent disruptions of the bacterial cell membrane, implying a membrane-lytic mode of action. Taken together, our work sheds light on the potential of the scorpion venom-derived peptide Hp1404 for the development of novel antimicrobial agents against CRAB infections.
Collapse
Affiliation(s)
- Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhiwen Zhao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Dan Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Na Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Luyue Sun
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
32
|
Jayathilaka EHTT, Rajapaksha DC, Nikapitiya C, De Zoysa M, Whang I. Antimicrobial and Anti-Biofilm Peptide Octominin for Controlling Multidrug-Resistant Acinetobacter baumannii. Int J Mol Sci 2021; 22:ijms22105353. [PMID: 34069596 PMCID: PMC8161146 DOI: 10.3390/ijms22105353] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is a serious nosocomial pathogen with multiple drug resistance (MDR), the control of which has become challenging due to the currently used antibiotics. Our main objective in this study is to determine the antibacterial and antibiofilm activities of the antimicrobial peptide, Octominin, against MDR A. baumannii and derive its possible modes of actions. Octominin showed significant bactericidal effects at a low minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of 5 and 10 µg/mL, respectively. Time-kill kinetic analysis and bacterial viability tests revealed that Octominin showed a concentration-dependent antibacterial activity. Field-emission scanning electron microscopy (FE-SEM) analysis revealed that Octominin treatment altered the morphology and membrane structure of A. baumannii. Propidium iodide (PI) and reactive oxygen species (ROS) generation assays showed that Octominin increased the membrane permeability and ROS generation in A. baumannii, thereby causing bacterial cell death. Further, a lipopolysaccharides (LPS) binding assay showed an Octominin concentration-dependent LPS neutralization ability. Biofilm formation inhibition and eradication assays further revealed that Octominin inhibited biofilm formation and showed a high biofilm eradication activity against A. baumannii. Furthermore, up to a concentration of 100 µg/mL, Octominin caused no hemolysis and cell viability changes in mammalian cells. An in vivo study in zebrafish showed that the Octominin-treated group had a significantly higher relative percentage survival (54.1%) than the untreated group (16.6%). Additionally, a reduced bacterial load and fewer alterations in histological analysis confirmed the successful control of A. baumannii by Octominin in vivo. Collectively, these data suggest that Octominin exhibits significant antibacterial and antibiofilm activities against the multidrug-resistant A. baumannii, and this AMP can be developed further as a potent AMP for the control of antibiotic resistance.
Collapse
Affiliation(s)
- E. H. T. Thulshan Jayathilaka
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea; (E.H.T.T.J.); (D.C.R.); (C.N.)
| | - Dinusha C. Rajapaksha
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea; (E.H.T.T.J.); (D.C.R.); (C.N.)
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea; (E.H.T.T.J.); (D.C.R.); (C.N.)
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea; (E.H.T.T.J.); (D.C.R.); (C.N.)
- Correspondence: (M.D.Z.); (I.W.)
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), 75, Jangsan-ro 101 beon-gil, Janghang-eup, Seochun-gun, Chungchungnam-do 33662, Korea
- Correspondence: (M.D.Z.); (I.W.)
| |
Collapse
|
33
|
WGS-Based Analysis of Carbapenem-Resistant Acinetobacter baumannii in Vietnam and Molecular Characterization of Antimicrobial Determinants and MLST in Southeast Asia. Antibiotics (Basel) 2021; 10:antibiotics10050563. [PMID: 34064958 PMCID: PMC8150915 DOI: 10.3390/antibiotics10050563] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (A. baumannii, CRAb) is an emerging global threat for healthcare systems, particularly in Southeast Asia. Next-generation sequencing (NGS) technology was employed to map genes associated with antimicrobial resistance (AMR) and to identify multilocus sequence types (MLST). Eleven strains isolated from humans in Vietnam were sequenced, and their AMR genes and MLST were compared to published genomes of strains originating from Southeast Asia, i.e., Thailand (n = 49), Myanmar (n = 38), Malaysia (n = 11), Singapore (n = 4) and Taiwan (n = 1). Ten out of eleven Vietnamese strains were CRAb and were susceptible only to colistin. All strains harbored ant(3")-IIa, armA, aph(6)-Id and aph(3") genes conferring resistance to aminoglycosides, and blaOXA-51 variants and blaADC-25 conferring resistance to ß-lactams. More than half of the strains harbored genes that confer resistance to tetracyclines, sulfonamides and macrolides. The strains showed high diversity, where six were assigned to sequence type (ST)/2, and two were allocated to two new STs (ST/1411-1412). MLST analyses of 108 strains from Southeast Asia identified 19 sequence types (ST), and ST/2 was the most prevalent found in 62 strains. A broad range of AMR genes was identified mediating resistance to ß-lactams, including cephalosporins and carbapenems (e.g., blaOXA-51-like, blaOXA-23, blaADC-25, blaADC-73, blaTEM-1, blaNDM-1), aminoglycosides (e.g., ant(3")-IIa, aph(3")-Ib, aph(6)-Id, armA and aph(3')-Ia), phenicoles (e.g., catB8), tetracyclines (e.g., tet.B and tet.39), sulfonamides (e.g., sul.1 and sul.2), macrolides and lincosamide (e.g., mph.E, msr.E and abaF). MLST and core genome MLST (cgMLST) showed an extreme diversity among the strains. Several strains isolated from different countries clustered together by cgMLST; however, different clusters shared the same ST. Developing an action plan on AMR, increasing awareness and prohibiting the selling of antibiotics without prescription must be mandatory for this region. Such efforts are critical for enforcing targeted policies on the rational use of carbapenem compounds and controlling AMR dissemination and emergence in general.
Collapse
|
34
|
Liu J, Yan Y, Zhang F. Risk Factors for Tigecycline-Associated Hypofibrinogenemia. Ther Clin Risk Manag 2021; 17:325-332. [PMID: 33888987 PMCID: PMC8057826 DOI: 10.2147/tcrm.s302850] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/23/2021] [Indexed: 01/13/2023] Open
Abstract
Background With the widespread use of tigecycline, especially in elderly people infected with multidrug-resistant bacteria, the associated coagulation disorders are attracting the attention of clinicians. The risk factors of tigecycline-associated hypofibrinogenemia are still controversial. Purpose The aims of our study were to explore the related factors of hypofibrinogenemia caused by tigecycline, and to establish the risk assessment criteria for tigecycline-associated hypofibrinogenemia. Patients and Methods This was an observational retrospective cohort study of patients treated for at least 3 days with tigecycline. Hypofibrinogenemia was defined as plasma fibrinogen <2.0 g/L. Risk factors were determined using logistic regression analysis, and the risk assessment criteria were identified by using receiver operating characteristic curves. Results In total, 148 patients were included in the analysis, mean age was 77.09±15.11 years old. Ninety patients who developed hypofibrinogenemia during tigecycline treatment with mean plasma fibrinogen of 1.42 g/L were included in the hypofibrinogenemia group, the other 58 patients with mean plasma fibrinogen of 2.68 g/L were included in the normal group. In the multivariate analysis, age (p = 0.035), tigecycline treatment duration (p = 0.044), and baseline fibrinogen level (p = 0.002) were independently associated with hypofibrinogenemia. An age of ≥82 years, ≥9 days of medication, and a baseline fibrinogen level of ≤3.5 g/L were selected for predicting hypofibrinogenemia. Hypofibrinogenemia was independently associated with bleeding (OR 8.96, 95% CI [1.132–70.946], p = 0.038). Conclusion Hypofibrinogenemia is a common adverse effect of tigecycline in our study. Elderly patients are more prone to developing hypofibrinogenemia after the administration of tigecycline. It is independently associated with bleeding but not death. The risk assessment criteria can help in the identification of patients with high risk of hypofibrinogenemia.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yingying Yan
- Department of Pharmacy, Peking University Third Hospital, Beijing, People's Republic of China
| | - Fan Zhang
- Department of Geriatrics, Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
35
|
Grisold AJ, Luxner J, Bedenić B, Diab-Elschahawi M, Berktold M, Wechsler-Fördös A, Zarfel GE. Diversity of Oxacillinases and Sequence Types in Carbapenem-Resistant Acinetobacter baumannii from Austria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042171. [PMID: 33672170 PMCID: PMC7926329 DOI: 10.3390/ijerph18042171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022]
Abstract
Carbapenem-resistant Acinetobacter baumannii is a significant health problem worldwide. A multicenter study on A. baumannii was performed to investigate the molecular epidemiology and genetic background of carbapenem resistance of A. baumannii isolates collected from 2014–2017 in Austria. In total, 117 non-repetitive Acinetobacter spp. assigned to A. baumannii (n = 114) and A. pittii (n = 3) were collected from four centers in Austria. The isolates were uniformly resistant to piperacillin/tazobactam, ceftazidime, and carbapenems, and resistance to imipenem and meropenem was 97.4% and 98.2%, respectively. The most prominent OXA-types were OXA-58-like (46.5%) and OXA-23-like (41.2%), followed by OXA-24-like (10.5%), with notable regional differences. Carbapenem-hydrolyzing class D carbapenemases (CHDLs) were the only carbapenemases found in A.baumannii isolates in Austria since no metallo-β-lactamases (MBLs) nor KPC or GES carbapenemases were detected in any of the isolates. One-third of the isolates harbored multiple CHDLs. The population structure of A. baumannii isolates from Austria was found to be very diverse, while a total of twenty-three different sequence types (STs) were identified. The most frequent was ST195 found in 15.8%, followed by ST218 and ST231 equally found in 11.4% of isolates. Two new ST types, ST2025 and ST2026, were detected. In one A. pittii isolate, blaOXA-143-like was detected for the first time in Austria.
Collapse
Affiliation(s)
- Andrea J. Grisold
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstrasse 6, A-8010 Graz, Austria; (J.L.); (G.E.Z.)
- Correspondence: ; Tel.: +43-316-385-73630
| | - Josefa Luxner
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstrasse 6, A-8010 Graz, Austria; (J.L.); (G.E.Z.)
| | - Branka Bedenić
- Department of Microbiology, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
| | - Magda Diab-Elschahawi
- Department of Infection Control and Hospital Epidemiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael Berktold
- Institute of Hygiene and Microbiology, Medical University Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria;
| | | | - Gernot E. Zarfel
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstrasse 6, A-8010 Graz, Austria; (J.L.); (G.E.Z.)
| |
Collapse
|