1
|
Vilar-Pereira G, Gibaldi D, Castaño-Barrios L, da Silva AA, Resende Pereira I, Cruz Moreira O, Britto C, Mata dos Santos HA, de Oliveira Lopes R, Wanderley Tinoco L, Oliveira W, Lannes-Vieira J. The beneficial effect of fluoxetine on behavioral and cognitive changes in chronic experimental Chagas disease unveils the role of serotonin fueling astrocyte infection by Trypanosoma cruzi. PLoS Negl Trop Dis 2024; 18:e0012199. [PMID: 38776344 PMCID: PMC11149870 DOI: 10.1371/journal.pntd.0012199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/04/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND In Chagas disease (CD), a neglected tropical disease caused by the parasite Trypanosoma cruzi, the development of mental disorders such as anxiety, depression, and memory loss may be underpinned by social, psychological, and biological stressors. Here, we investigated biological factors underlying behavioral changes in a preclinical model of CD. METHODOLOGY/PRINCIPAL FINDINGS In T. cruzi-infected C57BL/6 mice, a kinetic study (5 to 150 days postinfection, dpi) using standardized methods revealed a sequential onset of behavioral changes: reduced innate compulsive behavior, followed by anxiety and depressive-like behavior, ending with progressive memory impairments. Hence, T. cruzi-infected mice were treated (120 to 150 dpi) with 10 mg/Kg/day of the selective serotonin reuptake inhibitor fluoxetine (Fx), an antidepressant that favors neuroplasticity. Fx therapy reversed the innate compulsive behavior loss, anxiety, and depressive-like behavior while preventing or reversing memory deficits. Biochemical, histological, and parasitological analyses of the brain tissue showed increased levels of the neurotransmitters GABA/glutamate and lipid peroxidation products and decreased expression of brain-derived neurotrophic factor in the absence of neuroinflammation at 150 dpi. Fx therapy ameliorated the neurochemical changes and reduced parasite load in the brain tissue. Next, using the human U-87 MG astroglioma cell line, we found no direct effect of Fx on parasite load. Crucially, serotonin/5-HT (Ser/5-HT) promoted parasite uptake, an effect increased by prior stimulation with IFNγ and TNF but abrogated by Fx. Also, Fx blocked the cytokine-driven Ser/5-HT-promoted increase of nitric oxide and glutamate levels in infected cells. CONCLUSION/SIGNIFICANCE We bring the first evidence of a sequential onset of behavioral changes in T. cruzi-infected mice. Fx therapy improves behavioral and biological changes and parasite control in the brain tissue. Moreover, in the central nervous system, cytokine-driven Ser/5-HT consumption may favor parasite persistence, disrupting neurotransmitter balance and promoting a neurotoxic environment likely contributing to behavioral and cognitive disorders.
Collapse
Affiliation(s)
- Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Leda Castaño-Barrios
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Andrea Alice da Silva
- Laboratório Multidisciplinar de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Brazil
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Otacílio Cruz Moreira
- Laboratório de Virologia e Parasitologia Molecular, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Hílton Antônio Mata dos Santos
- Escola de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Análise e Desenvolvimento de Inibidores Enzimáticos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel de Oliveira Lopes
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório Multiusuário de Análises por Ressonância Magnética Nuclear (LAMAR), Instituto de Pesquisas de Produtos Naturais (IPPN), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luzineide Wanderley Tinoco
- Laboratório Multiusuário de Análises por Ressonância Magnética Nuclear (LAMAR), Instituto de Pesquisas de Produtos Naturais (IPPN), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wilson Oliveira
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca, Pronto Socorro Cardiológico de Pernambuco (PROCAPE)/Universidade de Pernambuco, Recife, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Li X, Sun B, Li J, Ye W, Li M, Guan F, Wu S, Luo X, Feng J, Jia J, Liu X, Li T, Liu L. SEPSIS LEADS TO IMPAIRED MITOCHONDRIAL CALCIUM UPTAKE AND SKELETAL MUSCLE WEAKNESS BY REDUCING THE MICU1:MCU PROTEIN RATIO. Shock 2023; 60:698-706. [PMID: 37695737 PMCID: PMC10662578 DOI: 10.1097/shk.0000000000002221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
ABSTRACT Purpose: Intensive care unit-acquired weakness (ICUAW) is a severe neuromuscular complication that frequently occurs in patients with sepsis. The precise molecular pathophysiology of mitochondrial calcium uptake 1 (MICU1) and mitochondrial calcium uniporter (MCU) in ICUAW has not been fully elucidated. Here, we speculate that ICUAW is associated with MICU1:MCU protein ratio-mediated mitochondrial calcium ([Ca 2+ ] m ) uptake dysfunction. Methods: Cecal ligation and perforation (CLP) was performed on C57BL/6J mice to induce sepsis. Sham-operated animals were used as controls. Lipopolysaccharide (LPS) (5 μg/mL) was used to induce inflammation in differentiated C2C12 myoblasts. Compound muscle action potential (CMAP) was detected using a biological signal acquisition system. Grip strength was measured using a grip-strength meter. Skeletal muscle inflammatory factors were detected using ELISA kits. The cross-sectional area (CSA) of the tibialis anterior (TA) muscle was detected by hematoxylin and eosin staining. Cytosolic calcium ([Ca 2+ ] c ) levels were measured using Fluo-4 AM. Adeno-associated virus (AAV) was injected into TA muscles for 4 weeks to overexpress MICU1 prophylactically. A lentivirus was used to infect C2C12 cells to increase MICU1 expression prophylactically. Findings: The results suggest that sepsis induces [Ca 2+ ] m uptake disorder by reducing the MICU1:MCU protein ratio, resulting in skeletal muscle weakness and muscle fiber atrophy. However, MICU1 prophylactic overexpression reversed these effects by increasing the MICU1:MCU protein ratio. Conclusions: ICUAW is associated with impaired [Ca 2+ ] m uptake caused by a decreased MICU1:MCU protein ratio. MICU1 overexpression improves sepsis-induced skeletal muscle weakness and atrophy by ameliorating the [Ca 2+ ] m uptake disorder.
Collapse
Affiliation(s)
- Xuexin Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Bowen Sun
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jie Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wanlin Ye
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Mingjuan Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Fasheng Guan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Songlin Wu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xuerong Luo
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xueru Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao Li
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
3
|
Cipriani DS, Borges GK, Povaluk AP, Stipp MC, Casagrande RA, Vogel CIG, Miletti LC, Bastos-Pereira AL. Experimental Trypanosoma evansi infection induces pain along with oxidative stress, prevented by COX-2 inhibition. Exp Parasitol 2023; 247:108477. [PMID: 36720379 DOI: 10.1016/j.exppara.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/04/2022] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Affiliation(s)
- Daniel Sérgio Cipriani
- Santa Catarina State University, Biochemistry and Molecular Biology Multicentric Postgraduation Program, Lages, Santa Catarina, Brazil
| | - Gabriela Kaiser Borges
- Santa Catarina State University, Biochemistry and Molecular Biology Multicentric Postgraduation Program, Lages, Santa Catarina, Brazil
| | - Ana Paula Povaluk
- Santa Catarina State University, Biochemistry and Molecular Biology Multicentric Postgraduation Program, Lages, Santa Catarina, Brazil
| | - Maria Carolina Stipp
- Federal University of Paraná, Department of Pharmacology, Curitiba, Paraná, Brazil
| | - Renata Assis Casagrande
- Santa Catarina State University, Animal Science Postgraduation Program, Lages, Santa Catarina, Brazil
| | - Carla Ivane Ganz Vogel
- Santa Catarina State University, Biochemistry and Molecular Biology Multicentric Postgraduation Program, Lages, Santa Catarina, Brazil
| | - Luiz Claudio Miletti
- Santa Catarina State University, Biochemistry and Molecular Biology Multicentric Postgraduation Program, Lages, Santa Catarina, Brazil
| | - Amanda Leite Bastos-Pereira
- Santa Catarina State University, Biochemistry and Molecular Biology Multicentric Postgraduation Program, Lages, Santa Catarina, Brazil.
| |
Collapse
|
4
|
Lannes-Vieira J, Vilar-Pereira G, Barrios LC, Silva AA. Anxiety, depression, and memory loss in Chagas disease: a puzzle far beyond neuroinflammation to be unpicked and solved. Mem Inst Oswaldo Cruz 2023; 118:e220287. [PMID: 37018799 PMCID: PMC10072003 DOI: 10.1590/0074-02760220287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 04/07/2023] Open
Abstract
Mental disorders such as anxiety, depression, and memory loss have been described in patients with chronic Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Social, psychological, and biological stressors may take part in these processes. There is a consensus on the recognition of an acute nervous form of CD. In chronic CD patients, a neurological form is associated with immunosuppression and neurobehavioural changes as sequelae of stroke. The chronic nervous form of CD has been refuted, based on the absence of histopathological lesions and neuroinflammation; however, computed tomography shows brain atrophy. Overall, in preclinical models of chronic T. cruzi infection in the absence of neuroinflammation, behavioural disorders such as anxiety and depression, and memory loss are related to brain atrophy, parasite persistence, oxidative stress, and cytokine production in the central nervous system. Interferon-gamma (IFNγ)-bearing microglial cells are colocalised with astrocytes carrying T. cruzi amastigote forms. In vitro studies suggest that IFNγ fuels astrocyte infection by T. cruzi and implicate IFNγ-stimulated infected astrocytes as sources of TNF and nitric oxide, which may also contribute to parasite persistence in the brain tissue and promote behavioural and neurocognitive changes. Preclinical trials in chronically infected mice targeting the TNF pathway or the parasite opened paths for therapeutic approaches with a beneficial impact on depression and memory loss. Despite the path taken, replicating aspects of the chronic CD and testing therapeutic schemes in preclinical models, these findings may get lost in translation as the chronic nervous form of CD does not fulfil biomedical model requirements, as the presence of neuroinflammation, to be recognised. It is hoped that brain atrophy and behavioural and neurocognitive changes are sufficient traits to bring the attention of researchers to study the biological and molecular basis of the central nervous system commitment in chronic CD.
Collapse
Affiliation(s)
- Joseli Lannes-Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia das Interações, Rio de Janeiro, RJ, Brasil
| | - Glaucia Vilar-Pereira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia das Interações, Rio de Janeiro, RJ, Brasil
| | - Leda Castaño Barrios
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia das Interações, Rio de Janeiro, RJ, Brasil
| | - Andrea Alice Silva
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, Laboratório Multidisciplinar de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Niterói, RJ, Brasil
| |
Collapse
|
5
|
Useche Y, Pérez AR, de Meis J, Bonomo A, Savino W. Central nervous system commitment in Chagas disease. Front Immunol 2022; 13:975106. [PMID: 36439149 PMCID: PMC9685529 DOI: 10.3389/fimmu.2022.975106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/21/2022] [Indexed: 10/28/2023] Open
Abstract
The involvement of the central nervous system (CNS) during human acute and chronic Chagas disease (CD) has been largely reported. Meningoencephalitis is a frequent finding during the acute infection, while during chronic phase the CNS involvement is often accompanied by behavioral and cognitive impairments. In the same vein, several studies have shown that rodents infected with Trypanosoma cruzi (T. cruzi) display behavior abnormalities, accompanied by brain inflammation, in situ production of pro-inflammatory cytokines and parasitism in diverse cerebral areas, with involvement of microglia, macrophages, astrocytes, and neurons. However, the mechanisms used by the parasite to reach the brain remain now largely unknown. Herein we discuss the evidence unravelling the CNS involvement and complexity of neuroimmune interactions that take place in acute and chronic CD. Also, we provide some clues to hypothesize brain infections routes in human and experimental acute CD following oral infection by T. cruzi, an infection route that became a major CD related public health issue in Brazil.
Collapse
Affiliation(s)
- Yerly Useche
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Rosa Pérez
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET UNR), Rosario, Argentina
- Center for Research and Production of Biological Reagents (CIPReB), Faculty of Medical Sciences National University of Rosario, Rosario, Argentina
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Sharawy N, Imam AAA, Aboulhoda BE, Khalifa MM, Morcos GNB, Abd Algaleel WA, Moustafa PE, Abdelbaset MA, Shoukry T. Iron dyshomeostasis and time-course changes in iron-uptake systems and ferritin level in relation to pro-inflammatory microglia polarization in sepsis-induced encephalopathy. Front Physiol 2022; 13:953206. [PMID: 36035473 PMCID: PMC9413069 DOI: 10.3389/fphys.2022.953206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Encephalopathy is a frequent and lethal consequence of sepsis. Recently, a growing body of evidence has provided important insights into the role of iron dyshomeostasis in the context of inflammation. The molecular mechanisms underlying iron dyshomeostasis and its relationship with macrophage phenotypes are largely unknown. Here, we aimed to characterize the changes in iron-transporter and storage proteins and the microglia phenotype that occur during the course of sepsis, as well as their relationship with sepsis-induced encephalopathy. We used a cecal ligation and puncture (CLP) murine model that closely resembles sepsis-induced encephalopathy. Rats were subjected to CLP or sham laparotomy, then were neurologically assessed at 6 h, 24 h, and 3 days after sepsis induction. The serum and brain were collected for subsequent biochemical, histological, and immunohistochemical assessment. Here, an iron excess was observed at time points that followed the pro-inflammatory macrophage polarization in CLP-induced encephalopathy. Our results revealed that the upregulation of non-transferrin-bound iron uptake (NTBI) and ferritin reduction appeared to be partially responsible for the excess free iron detected within the brain tissues. We further demonstrated that the microglia were shifted toward the pro-inflammatory phenotype, leading to persistent neuro-inflammation and neuronal damage after CLP. Taken together, these findings led us to conclude that sepsis increased the susceptibility of the brain to the iron burden via the upregulation of NTBI and the reduction of ferritin, which was concomitantly and correlatively associated with dominance of pro-inflammatory microglia and could explain the neurological dysfunction observed during sepsis.
Collapse
Affiliation(s)
- Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmad Abdel-Aliem Imam
- Preclinical Sciences, College of Osteopathic Medicine, William Carey University, Hattiesburg, MS, United States
- Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Ahmad Abdel-Aliem Imam, ; Basma Emad Aboulhoda,
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Ahmad Abdel-Aliem Imam, ; Basma Emad Aboulhoda,
| | - Mohamed Mansour Khalifa
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Human Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - George N. B. Morcos
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Basic Medical Sciences, Faculty of Medicine, King Salman International University, El-Tor, Egypt
| | | | | | | | - Tarek Shoukry
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Adebiyi OE, Omobowale TO, Abatan MO. Neurocognitive domains and neuropathological changes in experimental infection with Trypanosoma brucei brucei in Wistar rats. Heliyon 2021; 7:e08260. [PMID: 34765779 PMCID: PMC8571699 DOI: 10.1016/j.heliyon.2021.e08260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/29/2021] [Accepted: 10/22/2021] [Indexed: 01/05/2023] Open
Abstract
Trypanosoma brucei brucei causes animal trypanosomiasis in several vertebrates and human African trypanosomiasis. Previous studies have only explored the incidence, clinical symptoms, haematology and biochemical changes associated with the disease. The behavioral manipulation hypothesis posits that parasites alter the behavior of host to increase the reproductive abilities of such parasites. Hence, the present study was carried out to investigate changes in behavior and cognition following experimental infection of T. brucei brucei in rat model. This study involved two groups of animals (uninfected control and T. brucei infected) with 8 rats per group. After confirmation of parasitaemia in the infected rats both groups were assessed to investigate if infection led to behavioral alterations and neuropathological changes using the open field, social interaction and forelimb suspension tests. Immunohistochemistry was performed on brain tissues using glial fibrillary acidic protein and anticalbindin-D28k, antibodies. We demonstrated that T. brucei infection triggered a significant decrease in exploratory activity, anxiety-like behavior, altered recognition of social novelty and reduced hanging latency in the hanging wire test. Immunohistochemistry revealed significant astrocytosis, loss of dendritic spines and reduction of Purkinje cell layer of the cerebellum. These results demonstrate that T. brucei infection induce signs of anxiety, impaired motor co-ordination with degeneration and loss of Purkinje cells.
Collapse
Affiliation(s)
| | | | - Mathew Oluwole Abatan
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
The Association Between Physical Performance and Health-Related Quality of Life Based on the EuroQol 5-Dimensional Questionnaire in Patients With Chagas Disease. Value Health Reg Issues 2021; 26:191-196. [PMID: 34757310 DOI: 10.1016/j.vhri.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Chagas disease (CD) is a chronic disease to millions worldwide, and many patients develop heart disease. In addition, they are part of an aging population. These characteristics can be associated with a reduction in physical performance and health-related quality of life (HRQoL). This study evaluated HRQoL, and the relationship between physical performance and HRQoL in patients with chronic CD. METHODS We used the 3-level version of EuroQol 5-dimensional questionnaire (EQ-5D-3L), with the visual analog scale (VAS). Physical performance was measured with 30-s chair-stand test (30sCST) and timed up and go test (TUGT). RESULTS Sixty-three patients were evaluated. The majority were women (68.2%) aged 67.7 ± 9.7 years. Overall EQ-5D-3L utility index was 0.65 ± 0.28, and VAS score was 68.4 ± 25.1. Most patients with intermediate and high performance in 30sCST referred no problems in the domains "mobility," "usual activities," and "pain/feeling ill" (P < .001, P = .01, and P = .025, respectively). In a similar way, most patients with intermediate and high performance in TUGT referred no problems in "mobility" (P < .0001) and "usual activities" (P = .001). Higher performance in both tests was associated with higher overall EQ-5D-3L utility and VAS scores. HRQoL measured by EQ-5D-3L was associated with physical status in a cohort of patients with chronic CD. The results underscore the contribution of physical performance, measured by 2 inexpensive and safe physical tests, to HRQoL in these patients. CONCLUSION Strategies aiming the improvement of HRQoL in patients with CD may focus on mobility skills and force. Future studies evaluating interventions in physical performance should be a priority in these patients.
Collapse
|
9
|
Almeida Lins WM, Tura BR, Kasal DA. The Association Between Physical Performance and Health-Related Quality of Life Based on the EuroQol 5-Dimensional Questionnaire in Patients With Chagas Disease. Value Health Reg Issues 2021; 25:112-117. [PMID: 33873130 DOI: 10.1016/j.vhri.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/30/2020] [Accepted: 01/16/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Chagas disease (CD) is a chronic disease to millions worldwide, and many patients develop heart disease. In addition, they are part of an aging population. These characteristics can be associated with a reduction in physical performance and health-related quality of life (HRQoL). This study evaluated HRQoL, and the relationship between physical performance and HRQoL in patients with chronic CD. METHODS We used the 3-level version of EuroQol 5-dimensional questionnaire (EQ-5D-3L), with the visual analog scale (VAS). Physical performance was measured with 30-s chair-stand test (30sCST) and timed up and go test (TUGT). RESULTS Sixty-three patients were evaluated. The majority were women (68.2%) aged 67.7 ± 9.7 years. Overall EQ-5D-3L utility index was 0.65 ± 0.28, and VAS score was 68.4 ± 25.1. Most patients with intermediate and high performance in 30sCST referred no problems in the domains "mobility," "usual activities," and "pain/feeling ill" (P < .001, P = .01, and P = .025, respectively). In a similar way, most patients with intermediate and high performance in TUGT referred no problems in "mobility" (P < .0001) and "usual activities" (P = .001). Higher performance in both tests was associated with higher overall EQ-5D-3L utility and VAS scores. HRQoL measured by EQ-5D-3L was associated with physical status in a cohort of patients with chronic CD. The results underscore the contribution of physical performance, measured by 2 inexpensive and safe physical tests, to HRQoL in these patients. CONCLUSION Strategies aiming the improvement of HRQoL in patients with CD may focus on mobility skills and force. Future studies evaluating interventions in physical performance should be a priority in these patients.
Collapse
Affiliation(s)
| | - Bernardo Rangel Tura
- Research Division, National Institute of Cardiology, Ministry of Health, Rio de Janeiro, Brazil
| | - Daniel Arthur Kasal
- Research Division, National Institute of Cardiology, Ministry of Health, Rio de Janeiro, Brazil; State University of Rio de Janeiro, Internal Medicine Department, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Participation of Central Muscarinic Receptors on the Nervous Form of Chagas Disease in Mice Infected via Intracerebroventricular with Colombian Trypanosoma cruzi Strain. Pathogens 2021; 10:pathogens10020121. [PMID: 33503848 PMCID: PMC7922850 DOI: 10.3390/pathogens10020121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 11/30/2022] Open
Abstract
Acute chagasic encephalitis is a clinically severe central nervous system (CNS) manifestation. However, the knowledge of the nervous form of Chagas disease is incomplete. The role of the muscarinic acetylcholine receptor (mAChR) on mice behavior and brain lesions induced by Trypanosoma cruzi (Colombian strain) was herein investigated in mice treated with the mAChR agonist and antagonist (carbachol and atropine), respectively. Immunosuppressed or non-immunosuppressed mice were intracerebroventricularly (icv) or intraperitoneally (ip) infected. All groups were evaluated 15 d.p.i. (days post infection). Intraperitoneally infected animals had subpatent parasitemia. Patent parasitemia occurred only in icv infected mice. The blockade of mAChR increased the parasitemia, parasitism and lesions compared to its activation. Infected not treated (INT ip) mice did not present meningitis and encephalitis, regardless of immunosuppression. INT icv brains presented higher cellularity, discrete signs of cellular degeneration, frequent presence of parasites and focal meningitis. The immunosuppressed atropine + icv mice presented increased intracellular parasitism associated with degenerative parenchymal changes, while carbachol + icv mice presented discrete meningitis, preservation of the cortex and absence of relevant parasitism. Cholinergic receptor blockage increased impairment of coordination vs. receptor activation. Muscarinic cholinergic pathway seems to be involved in immune mediated cell invasion events while its blockade favored infection evolution, brain lesions, and behavioral alterations.
Collapse
|
11
|
Vilar-Pereira G, Castaño Barrios L, da Silva AA, Martins Batista A, Resende Pereira I, Cruz Moreira O, Britto C, Mata dos Santos HA, Lannes-Vieira J. Memory impairment in chronic experimental Chagas disease: Benznidazole therapy reversed cognitive deficit in association with reduction of parasite load and oxidative stress in the nervous tissue. PLoS One 2021; 16:e0244710. [PMID: 33400707 PMCID: PMC7785227 DOI: 10.1371/journal.pone.0244710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Memory impairment has been associated with chronic Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In degenerative diseases, memory loss has been associated with increased oxidative stress, revealed as enhanced lipid peroxidation, in the cerebral cortex. Benznidazole (Bz), a trypanocidal drug efficient to reduce blood parasite load in the acute and chronic phases of infection, showed controversial effects on heart disease progression, the main clinical manifestation of CD. Here, we evaluated whether C57BL/6 mice infected with the Colombian type I T. cruzi strain present memory deficit assessed by (i) the novel object recognition task, (ii) the open field test and (iii) the aversive shock evoked test, at 120 days post infection (dpi). Next, we tested the effects of Bz therapy (25mg/Kg/day, for 30 consecutive days) on memory evocation, and tried to establish a relation between memory loss, parasite load and oxidative stress in the central nervous system (CNS). At 120 dpi, T. cruzi-infected mice showed memory impairment, compared with age-matched non-infected controls. Bz therapy (from 120 to 150 dpi) hampered the progression of habituation and aversive memory loss and, moreover, reversed memory impairment in object recognition. In vehicle-administered infected mice, neuroinflammation was absent albeit rare perivascular mononuclear cells were found in meninges and choroid plexus. Bz therapy abrogated the infiltration of the CNS by inflammatory cells, and reduced parasite load in hippocampus and cerebral cortex. At 120 and 150 dpi, lipid peroxidation was increased in the hippocampus and cortex tissue extracts. Notably, Bz therapy reduced levels of lipid peroxidation in the cerebral cortex. Therefore, in experimental chronic T. cruzi infection Bz therapy improved memory loss, in association with reduction of parasite load and oxidative stress in the CNS, providing a new perspective to improve the quality of life of Chagas disease patients.
Collapse
Affiliation(s)
- Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Leda Castaño Barrios
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andrea Alice da Silva
- Laboratório Multiusuário de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Angelica Martins Batista
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Otacílio Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Hílton Antônio Mata dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Análise e Desenvolvimento de Inibidores Enzimáticos e Laboratório Multiusuário de Análises por RMN, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Duarte-Silva E, Morais LH, Clarke G, Savino W, Peixoto C. Targeting the Gut Microbiota in Chagas Disease: What Do We Know so Far? Front Microbiol 2020; 11:585857. [PMID: 33362735 PMCID: PMC7758234 DOI: 10.3389/fmicb.2020.585857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Chagas disease (CD) is a tropical and still neglected disease caused by Trypanosoma cruzi that affects >8 million of people worldwide. Although limited, emerging data suggest that gut microbiota dysfunction may be a new mechanism underlying CD pathogenesis. T. cruzi infection leads to changes in the gut microbiota composition of vector insects, mice, and humans. Alterations in insect and mice microbiota due to T. cruzi have been associated with a decreased immune response against the parasite, influencing the establishment and progression of infection. Further, changes in the gut microbiota are linked with inflammatory and neuropsychiatric disorders, comorbid conditions in CD. Therefore, this review article critically analyses the current data on CD and the gut microbiota of insects, mice, and humans and discusses its importance for CD pathogenesis. An enhanced understanding of host microbiota will be critical for the development of alternative therapeutic approaches to target CD, such as gut microbiota-directed interventions.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Aggeu Magalhães Institute (IAM), Recife, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, Brazil
| | - Livia H. Morais
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wilson Savino
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Christina Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Duarte-Silva E, Maes M, Macedo D, Savino W, Peixoto CA. Shared neuroimmune and oxidative pathways underpinning Chagas disease and major depressive disorder. Transl Psychiatry 2020; 10:419. [PMID: 33268766 PMCID: PMC7710744 DOI: 10.1038/s41398-020-01105-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/24/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
The cellular and molecular basis to understand the relationship between Chagas disease (CD), a infection caused by Trypanosoma cruzi, and depression, a common psychiatric comorbidity in CD patients, is largely unknown. Clinical studies show an association between CD and depression and preclinical evidence suggests that depressive-like behaviors in T. cruzi infected mice are due, at least partially, to immune dysregulation. However, mechanistic studies regarding this issue are still lacking. Herein, we present and discuss the state of art of data on CD and depression, and revise the mechanisms that may explain the development of depression in CD. We also discuss how the knowledge generated by current and future data may contribute to the discovery of new mechanisms underlying depressive symptoms associated with CD and, hence, to the identification of new therapeutic targets, which ultimately may change the way we see and treat CD and its psychiatric comorbidities.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure. Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil.
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, Brazil.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- National Institute of Science and Technology on Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure. Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Rijal S, Changdar N, Kinra M, Kumar A, Nampoothiri M, Arora D, Shenoy RR, Ranganath Pai KS, Joseph A, Mudgal J. Neuromodulatory potential of phenylpropanoids; para-methoxycinnamic acid and ethyl-p-methoxycinnamate on aluminum-induced memory deficit in rats. Toxicol Mech Methods 2019; 29:334-343. [PMID: 30588862 DOI: 10.1080/15376516.2018.1561779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Para-methoxycinnamic acid (PMCA) and Ethyl-p-methoxycinnamate (EPMC) are reported to possess neuroprotective effect in reversing an acute memory deficit. However, there is a dearth of evidence for their therapeutic effect in chronic memory deficit. Thus, there is a scope to study these derivatives against the chronic model of cognitive dysfunction. The present study was aimed to determine the cognitive enhancing activity of PMCA and EPMC in aluminum-induced chronic dementia. Cognitive enhancing property of PMCA and EPMC was assessed using Morris water maze by analyzing spatial memory parameters such as escape latency, D-quadrant latency, and island entries. To find a possible mechanism, the effect of test compounds on altered acetylcholinesterase (AChE) activity and oxidative stress was determined in the hippocampus and frontal cortex of rats. Docking interaction of these derivatives with acetylcholinesterase enzyme and glutamate receptors was also studied. Treatment with PMCA and EPMC showed a significant improvement in spatial memory markers and altered hippocampal AChE activity in rats with cognitive dysfunction. The implication of hippocampal and cortical oxidative stress in memory impairment was confirmed with decreased catalase/increased thiobarbituric acid reactive substances (TBARS) in rats. PMCA and EPMC reversed the oxidative stress in the brain by negatively affecting TBARS levels. Against depleted catalase levels, PMCA was more effective than EPMC in raising the depleted catalase levels. In silico analysis revealed poor affinity of EPMC and PMCA with AChE enzyme and glutamate receptor. To conclude, PMCA and EPMC exerted cognitive enhancing property independent of direct AChE and glutamate receptor inhibition.
Collapse
Affiliation(s)
- Samita Rijal
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - Nilanjan Changdar
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - Manas Kinra
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - Ayush Kumar
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - Madhavan Nampoothiri
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - Devinder Arora
- b School of Pharmacy and Pharmacology , QUM, MHIQ, Griffith University , Queensland , Australia
| | - Rekha R Shenoy
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - K Sreedhara Ranganath Pai
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - Alex Joseph
- c Department of Pharmaceutical Chemistry , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , India
| | - Jayesh Mudgal
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| |
Collapse
|
15
|
Baldissera MD, Souza CF, Carmo GM, Monteiro SG, Mendes RE, Stefani LM, da Silva AS. Relation between acetylcholinesterase and Na +, K +-ATPase activities with impaired memory of mice experimentally infected by Trypanosoma cruzi. Microb Pathog 2017; 111:75-80. [PMID: 28823791 DOI: 10.1016/j.micpath.2017.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022]
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and causes severe cardiac and brain damage, leading to behavioral alterations in humans and animals. However, the mechanisms involved in memory impairment during T. cruzi infection remain unknown. It has long been recognized that the enzymatic activities of acetylcholinesterase (AChE) and Na+, K+-ATPase are linked with memory dysfunction during other trypanosomiasis. Thus, the aim of this study was to evaluate the involvement of cerebral AChE and Na+, K+-ATPase activities in the memory impairment during T. cruzi (Colombian strain) infection. A significant decrease on latency time during the inhibitory avoidance task was observed in animals infected by T. cruzi compared to uninfected animals, findings compatible to memory dysfunction. Moreover, the cerebral AChE activity increased, while the Na+, K+-ATPase decreased in T. cruzi infected compared to uninfected animals. Histopathology revealed mild to moderate multifocal gliosis in the cerebral cortex and light focal meningeal lymphoplasmacytic infiltrate, which may have contributed to memory loss. Based on these evidences, we can conclude that T. cruzi (Colombian strain) causes memory impairment in mice experimentally infected. Moreover, the changes in AChE and Na+, K+-ATPase activities may be considered a mechanism involved in disease pathogenesis.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Guilherme M Carmo
- Graduate Program in Toxicological Biochemistry (UFSM), Santa Maria, RS, Brazil
| | - Silvia G Monteiro
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ricardo E Mendes
- Laboratory of Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil
| | - Lenita M Stefani
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Aleksandro S da Silva
- Graduate Program in Toxicological Biochemistry (UFSM), Santa Maria, RS, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil.
| |
Collapse
|
16
|
Portes A, Giestal-de-Araujo E, Fagundes A, Pandolfo P, de Sá Geraldo A, Lira MLF, Amaral VF, Lagrota-Candido J. Leishmania amazonensis infection induces behavioral alterations and modulates cytokine and neurotrophin production in the murine cerebral cortex. J Neuroimmunol 2016; 301:65-73. [DOI: 10.1016/j.jneuroim.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
|
17
|
Abstract
Human infections with foodborne pathogenic organisms are relatively well described in terms of their overt physical symptoms, such as diarrhea, abdominal cramps, vomiting, fever, and associated sequelae. Indeed, some of these are key for diagnosis and treatment, although it should be noted that, for some foodborne pathogens, the physical symptoms might be more diffuse, particularly those associated with some of the foodborne parasites. In contrast, the impact of these pathogens on mental health is less well described, and symptoms such as depression, anxiety, and general malaise are usually ignored when foodborne infections are recorded. Despite this, it is generally accepted that there are several psychiatric disorders of unknown etiology that may be associated with microbial pathogens. Depression, autism, hypochondriasis and anxiety, schizophrenia, and Tourette syndrome probably have multiple contributing causes, among which foodborne pathogens may play a decisive or contributory role, possibly sharing pathophysiological pathways with other environmental triggers. This review focuses on foodborne parasites and bacterial pathogens. Some foodborne parasites, such as metacestodes of Taenia solium and tissue cysts (bradyzoites) of Toxoplasma gondii , may affect mental health by directly infecting the brain. In contrast, bacterial infections and other parasitic infections may contribute to mental illness via the immune system and/or by influencing neurotransmission pathways. Thus, cytokines, for example, have been associated with depression and schizophrenia. However, infectious disease models for psychiatry require a more complete understanding of the relationship between psychiatric disorders and microbial triggers. This article reviews the current state of knowledge on the role of foodborne parasitic and bacterial pathogens in mental illness and identifies some of the gaps that should be addressed to improve diagnosis and treatment of mental health issues that are not solely related to psychiatric factors.
Collapse
Affiliation(s)
- Declan J Bolton
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Lucy J Robertson
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences (NMBU), 0454 Oslo, Norway
| |
Collapse
|