1
|
Furlan JPR, da Silva Rosa R, Ramos MS, Dos Santos LDR, Savazzi EA, Stehling EG. Genomic features of an extensively drug-resistant and NDM-1-positive Klebsiella pneumoniae ST340 isolated from river water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114678-114684. [PMID: 37845596 DOI: 10.1007/s11356-023-30374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
The environmental contamination plays a significant role in the emergence of antimicrobial resistance. In this study, we report a genomic analysis of an extensively drug-resistant and blaNDM-1-producing Klebsiella pneumoniae (EW807) strain recovered from a surface water sample. Strain EW807 belonged to sequence type (ST) 340 and serotype O4:KL15, a high-risk clone of the clonal group 258. This strain carried a broad resistome, including blaNDM-1 and blaCTX-M-15. The core genome multilocus sequence typing phylogenetic analysis revealed that the EW807 strain was most related to strains from Brazil and the USA. An IncX3 plasmid was identified harboring the blaNDM-1 gene, while an IncFIB(K) plasmid was detected carrying the blaCTX-M-15 in addition to multidrug resistance and multimetal tolerance regions. IncX3 and IncFIB(K) plasmids shared high similarity with plasmids from a human in China and a dog in Brazil, respectively. The regions harboring the blaNDM-1 and blaCTX-M-15 genes contained sequences from the Tn3 family. These findings suggest that IncX3 plasmid could play a role in the spread of NDM-1 in a post-pandemic scenario. To the best of our knowledge, this is the first report of blaNDM-1-producing K. pneumoniae ST340 O4:KL15 strain in the environment. Therefore, the presence of high-risk clones of K. pneumoniae carrying carbapenemases in the environment requires strict surveillance.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | | | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
2
|
Meletis G, Tychala A, Mantzana P, Skoura L, Protonotariou E. False positive NDM and OXA-48 results of the lateral flow carbapenem-resistant K.N.I.V.O. Detection K-set in Stenotrophomonas maltophilia: Time for official performance evaluation of LFAs? Rev Argent Microbiol 2023; 55:395-396. [PMID: 37385832 DOI: 10.1016/j.ram.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/31/2023] [Accepted: 04/03/2023] [Indexed: 07/01/2023] Open
Affiliation(s)
- Georgios Meletis
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Greece.
| | - Areti Tychala
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Paraskevi Mantzana
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Efthymia Protonotariou
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
3
|
Chauviat A, Meyer T, Favre-Bonté S. Versatility of Stenotrophomonas maltophilia: Ecological roles of RND efflux pumps. Heliyon 2023; 9:e14639. [PMID: 37089375 PMCID: PMC10113797 DOI: 10.1016/j.heliyon.2023.e14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
S. maltophilia is a widely distributed bacterium found in natural, anthropized and clinical environments. The genome of this opportunistic pathogen of environmental origin includes a large number of genes encoding RND efflux pumps independently of the clinical or environmental origin of the strains. These pumps have been historically associated with the uptake of antibiotics and clinically relevant molecules because they confer resistance to many antibiotics. However, considering the environmental origin of S. maltophilia, the ecological role of these pumps needs to be clarified. RND efflux systems are highly conserved within bacteria and encountered both in pathogenic and non-pathogenic species. Moreover, their evolutionary origin, conservation and multiple copies in bacterial genomes suggest a primordial role in cellular functions and environmental adaptation. This review is aimed at elucidating the ecological role of S. maltophilia RND efflux pumps in the environmental context and providing an exhaustive description of the environmental niches of S. maltophilia. By looking at the substrates and functions of the pumps, we propose different involvements and roles according to the adaptation of the bacterium to various niches. We highlight that i°) regulatory mechanisms and inducer molecules help to understand the conditions leading to their expression, and ii°) association and functional redundancy of RND pumps and other efflux systems demonstrate their complex role within S. maltophilia cells. These observations emphasize that RND efflux pumps play a role in the versatility of S. maltophilia.
Collapse
|
4
|
Yi X, Liang JL, Su JQ, Jia P, Lu JL, Zheng J, Wang Z, Feng SW, Luo ZH, Ai HX, Liao B, Shu WS, Li JT, Zhu YG. Globally distributed mining-impacted environments are underexplored hotspots of multidrug resistance genes. THE ISME JOURNAL 2022; 16:2099-2113. [PMID: 35688988 PMCID: PMC9381775 DOI: 10.1038/s41396-022-01258-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 04/18/2023]
Abstract
Mining is among the human activities with widest environmental impacts, and mining-impacted environments are characterized by high levels of metals that can co-select for antibiotic resistance genes (ARGs) in microorganisms. However, ARGs in mining-impacted environments are still poorly understood. Here, we conducted a comprehensive study of ARGs in such environments worldwide, taking advantage of 272 metagenomes generated from a global-scale data collection and two national sampling efforts in China. The average total abundance of the ARGs in globally distributed studied mine sites was 1572 times per gigabase, being rivaling that of urban sewage but much higher than that of freshwater sediments. Multidrug resistance genes accounted for 40% of the total ARG abundance, tended to co-occur with multimetal resistance genes, and were highly mobile (e.g. on average 16% occurring on plasmids). Among the 1848 high-quality metagenome-assembled genomes (MAGs), 85% carried at least one multidrug resistance gene plus one multimetal resistance gene. These high-quality ARG-carrying MAGs considerably expanded the phylogenetic diversity of ARG hosts, providing the first representatives of ARG-carrying MAGs for the Archaea domain and three bacterial phyla. Moreover, 54 high-quality ARG-carrying MAGs were identified as potential pathogens. Our findings suggest that mining-impacted environments worldwide are underexplored hotspots of multidrug resistance genes.
Collapse
Affiliation(s)
- Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jin Zheng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhang Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhen-Hao Luo
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Hong-Xia Ai
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
- Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou, 510006, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| |
Collapse
|
5
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
6
|
NDM-1-encoding plasmid in Acinetobacter chengduensis isolated from coastal water. INFECTION GENETICS AND EVOLUTION 2021; 93:104926. [PMID: 34020069 DOI: 10.1016/j.meegid.2021.104926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/03/2021] [Accepted: 05/15/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Acinetobacter spp. may cause difficult-to-treat nosocomial infections due to acquisition of carbapenemases, including New Delhi metallo-β-lactamase (NDM). This genus has been pointed out as a possible actor in the early dissemination of blaNDM, and this gene has been documented in a variety of species. OBJECTIVE Here we describe an Acinetobacter chengduensis (isolate FL51) carrying blaNDM recovered from coastal water in Brazil. METHODS In vitro techniques included antimicrobial susceptibility and minimum inhibitory concentration tests, PCR, plasmid profile and matting-out/transformation assays. In silico approaches comprised comparative genomic analyses using appropriate databases. RESULTS FL51 grew at room temperature in a variety of culture media, excluding MacConkey. It showed resistance to all beta-lactams tested and to ciprofloxacin. blaNDM-1 was identified, and a single replicon was observed in plasmid profile. In silico DNA hybridization revealed Acinetobacter FL51 as being Acinetobacter chengduensis. blaNDM-1 was flanked upstream by ISAba14-aphA6-ISAba125 and downstream by bleMBL-trpF-Δtat, inserted in a 41,068 bp non typeable plasmid named pNDM-FL51. This replicon showed high coverage and identity with other sequences present in plasmids deposited on the GenBank database, recovered almost exclusively from Acinetobacter spp., associated with hospital settings and animal sources. CONCLUSION We described a recently described environmental Acinetobacter species carrying a plasmid-borne blaNDM associated with a Tn125-like structure. Our findings suggest that replicon may play an important role in blaNDM dissemination among distinct settings within this genus and may support the theory of blaNDM emergence from an environmental Acinetobacter.
Collapse
|
7
|
Mançano SMCN, Campana EH, Felix TP, Barrueto LRL, Pereira PS, Picão RC. Frequency and diversity of Stenotrophomonas spp. carrying bla KPC in recreational coastal waters. WATER RESEARCH 2020; 185:116210. [PMID: 32731079 DOI: 10.1016/j.watres.2020.116210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Stenotrophomonas can survive in a wide range of environments and is considered an opportunistic pathogen. Because of its intrinsic resistance to beta-lactams, this genus is considered irrelevant in studies addressing the environmental spread of antimicrobial resistance genes of medical importance. Consequently, studies on environmental Stenotrophomonas carrying acquired carbapenemase-encoding genes are scarce, though not inexistent. Here, we investigated the frequency and diversity of Stenotrophomonas spp. carrying genes encoding carbapenemases of medical relevance in coastal waters with distinct pollution degrees over one year. Among 319 isolates recovered, 220 (68.9%) showed blaKPC. The frequency of blaKPC-positive Stenotrophomonas spp. was not correlated with thermotolerant counts in coastal waters evaluated. All isolates were susceptible to minocycline, levofloxacin, and trimethoprim-sulfamethoxazole. PFGE typing of 101 blaKPC-positive isolates revealed 55 pulsotypes with 5 subtypes, all of which carried the blaKPC-2 variant. Interspecies differentiation of pulsotypes' representatives revealed 55 isolates belonging to the S. maltophilia complex (91.7%) and 5 S. acidaminiphila (8.3%). The blaKPC-2 gene was more frequently harbored on transposable elements found in enterobacteria of clinical origin, especially Tn4401b. Even though beta-lactams are no therapeutic options to treat Stenotrophomonas infections, the occurrence of a highly relevant antimicrobial resistance determinant harbored on mobile genetic elements in a diverse collection of these ubiquitous microorganisms is noteworthy. Therefore, Stenotrophomonas may act as acceptor, stable reservoirs, and potential vectors of antimicrobial resistance in environmental settings, especially aquatic matrices, and should not be neglected.
Collapse
Affiliation(s)
- Stella Maria Casas Novas Mançano
- Laboratório de Investigação em Microbiologia Médica - Instituto de Microbiologia Paulo de Góes - Centro de Ciência da Saúde - Universidade Federal do Rio de Janeiro - Rio de Janeiro, Brazil
| | - Eloiza Helena Campana
- Laboratório de Investigação em Microbiologia Médica - Instituto de Microbiologia Paulo de Góes - Centro de Ciência da Saúde - Universidade Federal do Rio de Janeiro - Rio de Janeiro, Brazil; Laboratório de Microbiologia Clínica - Departamento de Ciências Farmacêuticas - Centro de Ciência da Saúde - Universidade Federal da Paraíba - João Pessoa, Brazil
| | - Thais Pessanha Felix
- Laboratório de Investigação em Microbiologia Médica - Instituto de Microbiologia Paulo de Góes - Centro de Ciência da Saúde - Universidade Federal do Rio de Janeiro - Rio de Janeiro, Brazil
| | - Lina Rachel Leite Barrueto
- Laboratório de Investigação em Microbiologia Médica - Instituto de Microbiologia Paulo de Góes - Centro de Ciência da Saúde - Universidade Federal do Rio de Janeiro - Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciência e Biotecnologia (PPBI) - Instituto de Biologia - Universidade Federal Fluminense - Niterói, Rio de Janeiro, Brazil
| | - Polyana Silva Pereira
- Laboratório de Investigação em Microbiologia Médica - Instituto de Microbiologia Paulo de Góes - Centro de Ciência da Saúde - Universidade Federal do Rio de Janeiro - Rio de Janeiro, Brazil
| | - Renata Cristina Picão
- Laboratório de Investigação em Microbiologia Médica - Instituto de Microbiologia Paulo de Góes - Centro de Ciência da Saúde - Universidade Federal do Rio de Janeiro - Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty SCB, Massa S. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit Rev Microbiol 2020; 46:578-599. [PMID: 32954887 DOI: 10.1080/1040841x.2020.1813687] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article).
Collapse
Affiliation(s)
- Syeda Fatima Nadeem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Syed Fahad Tahir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | | | - Pikunthong Nukthamna
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,College of Research Methodology and Cognitive Science, Burapha University, Chonburi, Thailand
| | - Ali Muhammed Moula Ali
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Salvatore Massa
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
9
|
Elufisan TO, Luna ICR, Oyedara OO, Varela AS, García VB, Oluyide BO, Treviño SF, López MAV, Guo X. Antimicrobial susceptibility pattern of Stenotrophomonas species isolated from Mexico. Afr Health Sci 2020; 20:168-181. [PMID: 33402905 PMCID: PMC7750080 DOI: 10.4314/ahs.v20i1.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Stenotrophomonas species are multi-resistant bacteria with ability to cause opportunistic infections. OBJECTIVE We isolated 45 Stenotrophomonas species from soil, sewage and the clinic with the aim of investigating their susceptibility to commonly used antimicrobial agents. METHODOLOGY The identities of isolates were confirmed with 16S rRNA gene sequence and MALDI-TOF analysis. Anti-microbial resistance, biofilm production and clonal diversity were also evaluated. The minimum inhibitory concentration technique as described by Clinical & Laboratory Standards Institute: CLSI Guidelines (CLSI) was employed for the evaluation of isolate susceptibility to antibiotics. RESULT Forty-five Stenotrophomonas species which include 36 environmental strains and 9 clinical strains of S. maltophilia were considered in this study. 32 (88.9 %) environmental strains were identified to be S. maltophilia, 2 (5.6 %) were Stenotrophomonas nitritireducens, and 2 (5.6 %) cluster as Stenotrophomonas spp. Stenotrophomonas isolates were resistant to at least six of the antibiotics tested, including Trimethoprim/Sulfamethoxazole (SXT). CONCLUSION Environmental isolates from this study were resistant to SXT which is commonly used for the treatment of S. maltophilia infections. This informs the need for good public hygiene as the environment could be a reservoir of multi-resistant bacteria. It also buttresses the importance of surveillance study in the management of bacterial resistance.
Collapse
Affiliation(s)
- Temidayo O Elufisan
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa, Tamaulipas 88710, México
- National Center for Technology Management (An agency of the Federal Ministry of Science and Technology (FMST), Nigeria, Obafemi Awolowo University, Ile-Ife)
| | | | - Omotayo O Oyedara
- Department of Biological Sciences, College of Science, Engineering and Technology, Faculty of Basic and Applied Science, Osun State University, Osogbo, Osun State, Nigeria
| | - Alejandro Sanchez Varela
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa, Tamaulipas 88710, México
| | | | - Busayo O Oluyide
- Ekiti State College of Science and Health Technology, Ijero Ekiti, Ekiti State, Nigeria
| | - Samantha Flores Treviño
- Departamento de Medicina, Autonomous University of Nuevo León (UANL), Interna San Nicolás de los Garza, Mexico
| | - Miguel Angel Villalobos López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tepetitla, Tlaxcala 90700, México
| | - Xianwu Guo
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa, Tamaulipas 88710, México
| |
Collapse
|
10
|
Yang F, Gu Y, Zhou J, Zhang K. Swine waste: A reservoir of high-risk bla NDM and mcr-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:308-316. [PMID: 31132710 DOI: 10.1016/j.scitotenv.2019.05.251] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Multidrug resistance associated with pigs not only affects pig production but also threatens human health by influencing the farm surrounding and contaminating the food chain. This paper focused on the occurrence and prevalence of high-risk resistance genes (using blaNDM and mcr-1 as marker genes) in two Chinese swine farms, and investigated their fate and seasonal changes in piggery wastewater treatment systems (PWWTSs). Results revealed that blaNDM and mcr-1 were prevalent in both confined swine farms, and even prevailed through various processing stages of PWWTSs. Moreover, the abundance of blaNDM and mcr-1 in winter was higher than that in summer, with 0.01-1.01 logs variation in piggery wastewater. Of concern is that considerable amounts of blaNDM and mcr-1 were present in final effluent that is applied to farmland (up to 102-104copies/mL), raising the risk of propagation to indigenous bacteria. Worse still, those pig-derived isolates harboring the blaNDM/mcr-1 gene were confirmed to spread multidrug resistance to other bacteria, which further increased their dissemination potential in agricultural environment. This study highlights the prevalence of blaNDM and mcr-1 in swine farms, meanwhile, also emphasizes the necessary to mitigate the release and propagation of these high-risk genes from swine farms following land fertilization and wastewater usage.
Collapse
Affiliation(s)
- Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
| | - Yanru Gu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150036, China
| | - Jing Zhou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150036, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| |
Collapse
|
11
|
NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev 2019; 32:32/2/e00115-18. [PMID: 30700432 DOI: 10.1128/cmr.00115-18] [Citation(s) in RCA: 385] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM) is a metallo-β-lactamase able to hydrolyze almost all β-lactams. Twenty-four NDM variants have been identified in >60 species of 11 bacterial families, and several variants have enhanced carbapenemase activity. Klebsiella pneumoniae and Escherichia coli are the predominant carriers of bla NDM, with certain sequence types (STs) (for K. pneumoniae, ST11, ST14, ST15, or ST147; for E. coli, ST167, ST410, or ST617) being the most prevalent. NDM-positive strains have been identified worldwide, with the highest prevalence in the Indian subcontinent, the Middle East, and the Balkans. Most bla NDM-carrying plasmids belong to limited replicon types (IncX3, IncFII, or IncC). Commonly used phenotypic tests cannot specifically identify NDM. Lateral flow immunoassays specifically detect NDM, and molecular approaches remain the reference methods for detecting bla NDM Polymyxins combined with other agents remain the mainstream options of antimicrobial treatment. Compounds able to inhibit NDM have been found, but none have been approved for clinical use. Outbreaks caused by NDM-positive strains have been reported worldwide, attributable to sources such as contaminated devices. Evidence-based guidelines on prevention and control of carbapenem-resistant Gram-negative bacteria are available, although none are specific for NDM-positive strains. NDM will remain a severe challenge in health care settings, and more studies on appropriate countermeasures are required.
Collapse
|
12
|
da Silva IR, Aires CAM, Conceição-Neto OC, de Oliveira Santos IC, Ferreira Pereira N, Moreno Senna JP, Carvalho-Assef APD, Asensi MD, Rocha-de-Souza CM. Distribution of Clinical NDM-1-Producing Gram-Negative Bacteria in Brazil. Microb Drug Resist 2019; 25:394-399. [PMID: 30676240 DOI: 10.1089/mdr.2018.0240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM)-producing bacteria have been identified at a worrying rate in Brazil since 2013. Owing to the need to understand the extent of their spread, this study reports the dissemination of blaNDM in different species of Gram-negative bacilli in different regions and states of Brazil. A total of 81 isolates from nine states were studied, including 11 species. All isolates carried blaNDM-1 variant and were considered multidrug resistant. Colistin and amikacin were the agents with higher activity compared with the other drugs tested. The findings indicate that the NDM-1 enzyme is already widespread in the country.
Collapse
Affiliation(s)
- Isadora Rodrigues da Silva
- 1 Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brasil
| | - Caio Augusto Martins Aires
- 1 Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brasil.,2 Departamento de Ciências da Saúde, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, Brasil
| | | | | | - Natacha Ferreira Pereira
- 1 Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brasil
| | - José Procópio Moreno Senna
- 3 Laboratório de Tecnologia Recombinante (LATER), Instituto de Tecnologia de Imunobiológicos-Fiocruz, Rio de Janeiro, Brasil
| | | | - Marise Dutra Asensi
- 1 Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brasil
| | | |
Collapse
|
13
|
Sanchez DG, de Melo FM, Savazzi EA, Stehling EG. Detection of different β-lactamases encoding genes, including bla NDM, and plasmid-mediated quinolone resistance genes in different water sources from Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:407. [PMID: 29909525 DOI: 10.1007/s10661-018-6801-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Bacterial resistance occurs by spontaneous mutations or horizontal gene transfer mediated by mobile genetic elements, which represents a great concern. Resistance to β-lactam antibiotics is mainly due to the production of β-lactamases, and an important mechanism of fluoroquinolone resistance is the acquisition plasmid determinants. The aim of this study was to verify the presence of β-lactamase-encoding genes and plasmid-mediated quinolone resistance genes in different water samples obtained from São Paulo state, Brazil. A high level of these resistance genes was detected, being the blaSHV, blaGES, and qnr the most prevalent. Besides that, the blaNDM gene, which codify an important and hazardous metallo-β-lactamase, was detected.
Collapse
Affiliation(s)
- Danilo Garcia Sanchez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fernanda Maciel de Melo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|