1
|
Letafati A, Taghiabadi Z, Zafarian N, Tajdini R, Mondeali M, Aboofazeli A, Chichiarelli S, Saso L, Jazayeri SM. Emerging paradigms: unmasking the role of oxidative stress in HPV-induced carcinogenesis. Infect Agent Cancer 2024; 19:30. [PMID: 38956668 PMCID: PMC11218399 DOI: 10.1186/s13027-024-00581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 07/04/2024] Open
Abstract
The contribution of the human papillomavirus (HPV) to cancer is significant but not exclusive, as carcinogenesis involves complex mechanisms, notably oxidative stress. Oxidative stress and HPV can independently cause genome instability and DNA damage, contributing to tumorigenesis. Oxidative stress-induced DNA damage, especially double-strand breaks, aids in the integration of HPV into the host genome and promotes the overexpression of two viral proteins, E6 and E7. Lifestyle factors, including diet, smoking, alcohol, and psychological stress, along with genetic and epigenetic modifications, and viral oncoproteins may influence oxidative stress, impacting the progression of HPV-related cancers. This review highlights various mechanisms in oxidative-induced HPV-mediated carcinogenesis, including altered mitochondrial morphology and function leading to elevated ROS levels, modulation of antioxidant enzymes like Superoxide Dismutase (SOD), Glutathione (GSH), and Glutathione Peroxidase (GPx), induction of chronic inflammatory environments, and activation of specific cell signaling pathways like the Phosphoinositide 3-kinase, Protein kinase B, Mammalian target of rapamycin (PI3K/AKT/mTOR) and the Extracellular signal-regulated kinase (ERK) signaling pathway. The study highlights the significance of comprehending and controlling oxidative stress in preventing and treating cancer. We suggested that incorporating dietary antioxidants and targeting cancer cells through mechanisms involving ROS could be potential interventions to mitigate the impact of oxidative stress on HPV-related malignancies.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Taghiabadi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Negar Zafarian
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Roxana Tajdini
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mozhgan Mondeali
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Amir Aboofazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology, Vittorio Erspamer", Sapienza University, Rome, Italy.
| | - Seyed Mohammad Jazayeri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
2
|
Hochmann J, Millán M, Hernández P, Lafon-Hughes L, Aiuto ND, Silva A, Llaguno J, Alonso J, Fernández A, Pereira-Prado V, Sotelo-Silveira J, Bologna-Molina R, Arocena M. Contributions of viral oncogenes of HPV-18 and hypoxia to oxidative stress and genetic damage in human keratinocytes. Sci Rep 2023; 13:17734. [PMID: 37853061 PMCID: PMC10584980 DOI: 10.1038/s41598-023-44880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Infection with high-risk human papillomaviruses like HPV-16 and HPV-18 is highly associated with the development of cervical and other cancers. Malignant transformation requires viral oncoproteins E5, E6 and E7, which promote cell proliferation and increase DNA damage. Oxidative stress and hypoxia are also key factors in cervical malignant transformation. Increased levels of reactive species of oxygen (ROS) and nitrogen (RNS) are found in the hypoxic tumor microenvironment, promoting genetic instability and invasiveness. In this work, we studied the combined effect of E5, E6 and E7 and hypoxia in increasing oxidative stress and promoting DNA damage and nuclear architecture alterations. HaCaT cells containing HPV-18 viral oncogenes (HaCaT E5/E6/E7-18) showed higher ROS levels in normoxia and higher levels of RNS in hypoxia compared to HaCaT parental cells, as well as higher genetic damage in hypoxia as measured by γH2AX and comet assays. In hypoxia, HaCaT E5/E6/E7-18 increased its nuclear dry mass and both cell types displayed marked heterogeneity in nuclear dry mass distribution and increased nuclear foci. Our results show contributions of both viral oncogenes and hypoxia to oxidative stress, DNA damage and altered nuclear architecture, exemplifying how an altered microenvironment combines with oncogenic transformation to promote tumor progression.
Collapse
Affiliation(s)
- Jimena Hochmann
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
- Departamento de Diagnóstico en Patología y Medicina Bucal, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay.
| | - Magdalena Millán
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Paola Hernández
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte -Sede Salto, Universidad de la República (CENUR LN, UdelaR), Montevideo, Uruguay
| | - Natali D' Aiuto
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Biología Odontológica, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay
| | - Alejandro Silva
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Juan Llaguno
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Julia Alonso
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Ariel Fernández
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Vanesa Pereira-Prado
- Departamento de Diagnóstico en Patología y Medicina Bucal, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ronell Bologna-Molina
- Departamento de Diagnóstico en Patología y Medicina Bucal, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay
| | - Miguel Arocena
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
- Departamento de Biología Odontológica, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay.
| |
Collapse
|
3
|
Ye J, Zheng L, He Y, Qi X. Human papillomavirus associated cervical lesion: pathogenesis and therapeutic interventions. MedComm (Beijing) 2023; 4:e368. [PMID: 37719443 PMCID: PMC10501338 DOI: 10.1002/mco2.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Human papillomavirus (HPV) is the most prevalent sexually transmitted virus globally. Persistent high-risk HPV infection can result in cervical precancerous lesions and cervical cancer, with 70% of cervical cancer cases associated with high-risk types HPV16 and 18. HPV infection imposes a significant financial and psychological burden. Therefore, studying methods to eradicate HPV infection and halt the progression of precancerous lesions remains crucial. This review comprehensively explores the mechanisms underlying HPV-related cervical lesions, including the viral life cycle, immune factors, epithelial cell malignant transformation, and host and environmental contributing factors. Additionally, we provide a comprehensive overview of treatment methods for HPV-related cervical precancerous lesions and cervical cancer. Our focus is on immunotherapy, encompassing HPV therapeutic vaccines, immune checkpoint inhibitors, and advanced adoptive T cell therapy. Furthermore, we summarize the commonly employed drugs and other nonsurgical treatments currently utilized in clinical practice for managing HPV infection and associated cervical lesions. Gene editing technology is currently undergoing clinical research and, although not yet employed officially in clinical treatment of cervical lesions, numerous preclinical studies have substantiated its efficacy. Therefore, it holds promise as a precise treatment strategy for HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Lan Zheng
- Department of Pathology and Lab MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuedong He
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Xiaorong Qi
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Chen B, Zhao L, Yang R, Xu T. Advances in molecular mechanism of HPV16 E5 oncoprotein carcinogenesis. Arch Biochem Biophys 2023; 745:109716. [PMID: 37553047 DOI: 10.1016/j.abb.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/10/2023]
Abstract
For a considerable duration, cervical cancer has posed a significant risk to the well-being and survival of women. The emergence and progression of cervical cancer have garnered extensive attention, with prolonged chronic infection of HPV serving as a crucial etiological factor. Consequently, investigating the molecular mechanism underlying HPV-induced cervical cancer has become a prominent research area. The HPV molecule is composed of a long control region (LCR), an early coding region and a late coding region.The early coding region encompasses E1, E2, E4, E5, E6, E7, while the late coding region comprises L1 and L2 ORF.The investigation into the molecular structure and function of HPV has garnered significant attention, with the aim of elucidating the carcinogenic mechanism of HPV and identifying potential targets for the treatment of cervical cancer. Research has demonstrated that the HPV gene and its encoded protein play a crucial role in the invasion and malignant transformation of host cells. Consequently, understanding the function of HPV oncoprotein is of paramount importance in comprehending the pathogenesis of cervical cancer. E6 and E7, the primary HPV oncogenic proteins, have been the subject of extensive study. Moreover, a number of contemporary investigations have demonstrated the significant involvement of HPV16 E5 oncoprotein in the malignant conversion of healthy cells through its regulation of cell proliferation, differentiation, and apoptosis via diverse pathways, albeit the precise molecular mechanism remains unclear. This manuscript aims to provide a comprehensive account of the molecular structure and life cycle of HPV.The HPV E5 oncoprotein mechanism modulates cellular processes such as proliferation, differentiation, apoptosis, and energy metabolism through its interaction with cell growth factor receptors and other cellular proteins. This mechanism is crucial for the survival, adhesion, migration, and invasion of tumor cells in the early stages of carcinogenesis. Recent studies have identified the HPV E5 oncoprotein as a promising therapeutic target for early-stage cervical cancer, thus offering a novel approach for treatment.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Liping Zhao
- The Second Hospital of Jilin University, Changchun, China
| | - Rulin Yang
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Sausen DG, Shechter O, Gallo ES, Dahari H, Borenstein R. Herpes Simplex Virus, Human Papillomavirus, and Cervical Cancer: Overview, Relationship, and Treatment Implications. Cancers (Basel) 2023; 15:3692. [PMID: 37509353 PMCID: PMC10378257 DOI: 10.3390/cancers15143692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
There is a significant body of research examining the role of human papillomavirus (HPV) in the pathogenesis of cervical cancer, with a particular emphasis on the oncogenic proteins E5, E6, and E7. What is less well explored, however, is the relationship between cervical cancer and herpes simplex virus (HSV). To date, studies examining the role of HSV in cervical cancer pathogenesis have yielded mixed results. While several experiments have determined that HPV/HSV-2 coinfection results in a higher risk of developing cervical cancer, others have questioned the validity of this association. However, clarifying the potential role of HSV in the pathogenesis of cervical cancer may have significant implications for both the prevention and treatment of this disease. Should this relationship be clarified, treating and preventing HSV could open another avenue with which to prevent cervical cancer. The importance of this is highlighted by the fact that, despite the creation of an effective vaccine against HPV, cervical cancer still impacts 604,000 women and is responsible for 342,000 deaths annually. This review provides an overview of HSV and HPV infections and then delves into the possible links between HPV, HSV, and cervical cancer. It concludes with a summary of preventive measures against and recent treatment advances in cervical cancer.
Collapse
Affiliation(s)
- Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (D.G.S.); (O.S.)
| | - Oren Shechter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (D.G.S.); (O.S.)
| | - Elisa S. Gallo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| |
Collapse
|
6
|
Millán M, Villarreal L, D'Aiuto N, Bologna-Molina R, Sotelo-Silveira J, Benech JC, Hochmann J, Arocena M. Mechanical profile of human keratinocytes expressing HPV-18 oncogenes. Biochem Biophys Res Commun 2023; 657:86-91. [PMID: 36996545 DOI: 10.1016/j.bbrc.2023.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
During tumorigenesis, the mechanical properties of cancer cells change markedly, with decreased stiffness often accompanying a more invasive phenotype. Less is known about the changes in mechanical parameters at intermediate stages in the process of malignant transformation. We have recently developed a pre-tumoral cell model by stably transducing the immortalized but non-tumorigenic human keratinocyte cell line HaCaT with the E5, E6 and E7 oncogenes from HPV-18, one of the leading causes of cervical cancer and other types of cancer worldwide. We have used atomic force microscopy (AFM) to measure cell stiffness and to obtain mechanical maps of parental HaCaT and HaCaT E5/E6/E7-18 cell lines. We observed a significant decrease in Young's modulus in HaCaT E5/E6/E7-18 cells measured by nanoindentation in the central region, as well as decreased cell rigidity in regions of cell-cell contact measured by Peakforce Quantitative Nanomechanical Mapping (PF-QNM). As a morphological correlate, HaCaT E5/E6/E7-18 cells displayed a significantly rounder cell shape than parental HaCaT cells. Our results therefore show that decreased stiffness with concomitant perturbations in cell shape are early mechanical and morphological changes during the process of malignant transformation.
Collapse
|
7
|
Hypoxia, acidification and oxidative stress in cells cultured at large distances from an oxygen source. Sci Rep 2022; 12:21699. [PMID: 36522457 PMCID: PMC9755289 DOI: 10.1038/s41598-022-26205-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is a condition frequently encountered by cells in tissues, whether as a normal feature of their microenvironment or subsequent to deregulated growth. Hypoxia can lead to acidification and increased oxidative stress, with profound consequences for cell physiology and tumorigenesis. Therefore, the interplay between hypoxia and oxidative stress is an important aspect for understanding the effects of hypoxic microenvironments on cells. We have used a previously developed variant of the method of coverslip-induced hypoxia to study the process of acidification in a hypoxic microenvironment and to simultaneously visualize intracellular levels of hypoxia and oxidative stress. We observed high accumulation of CO2 in hypoxic conditions, which we show is the main contributor to acidification in our model. Also, increased levels of oxidative stress were observed in moderately hypoxic cells close to the oxygen source, where the mitochondrial membrane potential was preserved. Conversely, cells at large distances from the oxygen source showed higher levels of hypoxia, milder oxidative stress and reduced mitochondrial membrane potential. Our results contribute to characterize the interplay between reduced oxygen levels, acidification and oxidative stress in a simple in vitro setting, which can be used to model cell responses to an altered environment, such as the early tumor microenvironment.
Collapse
|
8
|
Zhang Y, Li J, Yang F, Zhang X, Ren X, Wei F. Relationship and prognostic significance of IL-33, PD-1/PD-L1, and tertiary lymphoid structures in cervical cancer. J Leukoc Biol 2022; 112:1591-1603. [PMID: 35501298 DOI: 10.1002/jlb.5ma0322-746r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/28/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
IL-33, an epithelial-derived cytokine, functions as an alarmin for the immune system in the tumor microenvironment (TME). However, the expression and role of IL-33 on cervical cancer remain unclear. The aim of this study was to investigate the expression of IL-33 and its relationship with clinicopathologic features, tertiary lymphoid structures (TLS), and programmed cell death 1 (PD-1)/programmed cell death 1 ligand (PD-L1) immune checkpoints by immunohistochemistry in 93 cervical cancer patient specimens. Down-regulation of IL-33 expression was observed in tumor tissues compared with adjacent tissues. More importantly, IL-33 was detected in the cytoplasm of tumor fraction. IL-33 expression in tumor cytoplasm was associated with tumor size and the invasive depth of tumors (p < 0.05). Meanwhile, IL-33 expression in tumor cytoplasm was positively correlated with infiltration of CD3+ T cells, CD8+ T cells, and PD-L1 expression in tumor tissues (p < 0.05). The number of TLS strongly correlated with the depth of tumor invasion, preoperative chemotherapy, human papillomavirus infection, and high level of PD-1 (p < 0.05). However, there was no significant relationship between IL-33 and TLS. Kaplan-Meier survival curves showed that the formation of TLS was associated with a better prognosis (p = 0.008). In multivariable Cox regression modeling, high expression of PD-L1 in tumor tissues was correlated with poor prognosis (HR = 0.128; 95% CI: 0.026-0.646; p = 0.013), whereas the high expression of IL-33 in tumor tissues was associated with better prognosis (HR = 5.097; 95% CI:1.050-24.755; p = 0.043). These results indicate that IL-33, TLS, and PD-L1 are potentially valuable prognostic predictor for cervical cancer. IL-33 has potential for combination with PD-L1-related antitumor therapy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jing Li
- Department of Pediatrics, Union Hospital, Tongji medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
9
|
Wang JL, Lee WJ, Fang CL, Hsu HL, Chen BJ, Liu HE. Human Papillomavirus Oncoproteins Confer Sensitivity to Cisplatin by Interfering with Epidermal Growth Factor Receptor Nuclear Trafficking Related to More Favorable Clinical Survival Outcomes in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14215333. [PMID: 36358752 PMCID: PMC9657246 DOI: 10.3390/cancers14215333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer death in the world. Identifying prognostic factors is crucial to improve the survival time of those with lung cancer. Our previous studies have reported that human papillomavirus (HPV) infections and epidermal growth factor receptor (EGFR) expression are associated with a better survival prognosis in lung adenocarcinoma. The purpose of this study was to detect the molecular evidence of HPV oncoproteins interfering with EGFR nuclear trafficking related to better prognosis in lung cancer. Based on the study results for a better response to cisplatin in transfected HPV 16E5/16E6/16E7 H292 xenograft animal models, as well as better survival in lung adenocarcinoma patients with either 16E6/18E6 or EGFR expression, we suggest that clinicians should adjust the treatment protocol according to HPV 16E6/18E6 expression and EGFR expression to increase the overall survival time in lung cancer. Abstract High-risk human papillomavirus (HPV) infections and epidermal growth factor receptor (EGFR) expression have been reported to be associated with more favorable survival outcomes in lung adenocarcinoma patients. In this study, we utilized transfected HPV 16E5/16E6/16E7 H292 cells to investigate the mechanism of HPV oncoproteins interfering with EGFR nuclear trafficking related to a better response to cisplatin. Furthermore, we correlated HPV 16E6/18E6 expression and differentially localized EGFR expression with the clinical association and survival impact in lung adenocarcinoma patients. Our results found significantly higher phosphorylated nuclear EGFR expression upon epidermal growth factor stimulus and better responses to cisplatin in transfected HPV 16E5/16E6/16E7 NCI-H292 cells and xenograft animal models. Our data were compatible with clinical results of a high correlation of HPV 16E6/18E6 and EGFR expression in non-small cell lung cancer tissues and the synergistic effects of both with the best survival prognosis in a lung adenocarcinoma cohort, especially in patients with older age, no brain metastasis, smoking history, and wild-type EGFR status. Cumulatively, our study supports HPV 16E5/16E6/16E7 oncoproteins interfering with EGFR nuclear trafficking, resulting in increased sensitivity to cisplatin. HPV 16E6/18E6 and EGFR expression serve as good prognostic factors in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Jinn-Li Wang
- Division of Hematology and Oncology, Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (J.-L.W.); (H.-E.L.); Tel.: +886-2-2930-7930 (ext. 8106) (J.-L.W.); Fax: +886-2-2930-2448 (J.-L.W.)
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Lang Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Lin Hsu
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Bo-Jung Chen
- Department of Pathology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Hsingjin-Eugene Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (J.-L.W.); (H.-E.L.); Tel.: +886-2-2930-7930 (ext. 8106) (J.-L.W.); Fax: +886-2-2930-2448 (J.-L.W.)
| |
Collapse
|
10
|
The Interaction of Human Papillomavirus Infection and Prostaglandin E2 Signaling in Carcinogenesis: A Focus on Cervical Cancer Therapeutics. Cells 2022; 11:cells11162528. [PMID: 36010605 PMCID: PMC9406919 DOI: 10.3390/cells11162528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic infection by high-risk human papillomaviruses (HPV) and chronic inflammation are factors associated with the onset and progression of several neoplasias, including cervical cancer. Oncogenic proteins E5, E6, and E7 from HPV are the main drivers of cervical carcinogenesis. In the present article, we review the general mechanisms of HPV-driven cervical carcinogenesis, as well as the involvement of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and downstream effectors in this pathology. We also review the evidence on the crosstalk between chronic HPV infection and PGE2 signaling, leading to immune response weakening and cervical cancer development. Finally, the last section updates the current therapeutic and preventive options targeting PGE2-derived inflammation and HPV infection in cervical cancer. These treatments include nonsteroidal anti-inflammatory drugs, prophylactic and therapeutical vaccines, immunomodulators, antivirals, and nanotechnology. Inflammatory signaling pathways are closely related to the carcinogenic nature of the virus, highlighting inflammation as a co-factor for HPV-dependent carcinogenesis. Therefore, blocking inflammatory signaling pathways, modulating immune response against HPV, and targeting the virus represent excellent options for anti-tumoral therapies in cervical cancer.
Collapse
|
11
|
Yu L, Li W. Abnormal activation of notch 1 signaling causes apoptosis resistance in cervical cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:11-19. [PMID: 35145579 PMCID: PMC8822208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/23/2020] [Indexed: 06/14/2023]
Abstract
Notch1 signaling pathway is an evolutionarily conserved and crucial regulator to determine cell fate and differentiation. Notch1 is often over expressed in several cancers, which plays an essential for cancer cell proliferation, survival, invasion and metastasis. The oncogenic function of Notch1 signaling in cervical cancer progression is not well-characterized. In the present study, we showed that Notch1 is significantly enhanced in cervical cancer tissues. Similarly, the relative mRNA and expression of Notch1 protein are significantly upregulated in cervical cancer cell lines such as HeLa and SiHa. Further, we have performed RNAi for NOTCH1 depletion to determine its specific role in cervical cancer progression. Flow cytometry analysis revealed that NOTCH1 depletion leads to activation of apoptotic cell death in cervical cancer. Further, the NOTCH1 depleted cells showed increased sensitivity towards DNA-targeting drugs and therefore cell viability was reduced efficiently. Altogether, our findings suggest that Notch1 overexpression in cervical cancer cells was involved in tumorigenesis and apoptosis resistance of cervical cancer.
Collapse
Affiliation(s)
- Lu Yu
- Department of Obstetrics and Gynaecology, People's Hospital of China Three Gorges University Yichang 443000, Hubei, China
| | - Wei Li
- Department of Obstetrics and Gynaecology, People's Hospital of China Three Gorges University Yichang 443000, Hubei, China
| |
Collapse
|
12
|
Peroxiredoxins-The Underrated Actors during Virus-Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10060977. [PMID: 34207367 PMCID: PMC8234473 DOI: 10.3390/antiox10060977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Enhanced production of reactive oxygen species (ROS) triggered by various stimuli, including viral infections, has attributed much attention in the past years. It has been shown that different viruses that cause acute or chronic diseases induce oxidative stress in infected cells and dysregulate antioxidant its antioxidant capacity. However, most studies focused on catalase and superoxide dismutases, whereas a family of peroxiredoxins (Prdx), the most effective peroxide scavengers, were given little or no attention. In the current review, we demonstrate that peroxiredoxins scavenge hydrogen and organic peroxides at their physiological concentrations at various cell compartments, unlike many other antioxidant enzymes, and discuss their recycling. We also provide data on the regulation of their expression by various transcription factors, as they can be compared with the imprint of viruses on transcriptional machinery. Next, we discuss the involvement of peroxiredoxins in transferring signals from ROS on specific proteins by promoting the oxidation of target cysteine groups, as well as briefly demonstrate evidence of nonenzymatic, chaperone, functions of Prdx. Finally, we give an account of the current state of research of peroxiredoxins for various viruses. These data clearly show that Prdx have not been given proper attention despite all the achievements in general redox biology.
Collapse
|
13
|
Chen W, Zhang Y, Zhao C, Shao S, Zhang Y, Li X, Bai X, Guo Q, Liu Q, Tang J, Zhang L. Nocardia Rubra Cell Wall Skeleton Up-Regulates T Cell Subsets and Inhibits PD-1/PD-L1 Pathway to Promote Local Immune Status of Patients With High-Risk Human Papillomavirus Infection and Cervical Intraepithelial Neoplasia. Front Immunol 2021; 11:612547. [PMID: 33552075 PMCID: PMC7856144 DOI: 10.3389/fimmu.2020.612547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
The Nocardia rubra cell wall skeleton (Nr-CWS) for external use is an immune enhancer, which has been widely used in human cervix diseases such as cervical erosion, but the mechanism of Nr-CWS enhancing immunity is still unclear. The purpose of this study was to explore the effect and mechanism of Nr-CWS on the local immune status of cervical tissue in patients with high-risk human papillomavirus (HR-HPV) infection and cervical precancerous lesion, cervical intraepithelial neoplasia (CIN). The recruited patients with HR-HPV infection and CIN were treated with Nr-CWS. The specimens were taken from these patients before and after local application of Nr-CWS respectively. The normal control specimens were tested simultaneously. Serial section analysis of immunohistochemistry and co-expression analysis were performed to characterize populations of T cells and the expressions of programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1). The levels of cytokines in local cervical tissue were also detected. Nr-CWS significantly increased T cells including CD4+, CD8+ T cells, and reduced the expression of PD-L1 in the patients’ local cervical tissues. Co-expression analyses showed that the proportions of PD-1+CD4+ cells in CD4+ T cells and PD-1+CD8+ cells in CD8+ T cells decreased after Nr-CWS application. Furthermore, the increase in the number of immune cells was accompanied by increased pro-inflammatory cytokines interleukin-12 (IL-12), interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and decreased suppressive cytokine IL-10. The results indicate that Nr-CWS, as an immunotherapeutic agent for HR-HPV infection and CIN, plays an immune promoting role related to the upregulation of T cell subsets and the inhibition of PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Wei Chen
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Medicine, Weihai Greatest Pharmaceutical Research Institute Co., Ltd., Weihai, China
| | - Chunfang Zhao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Suxia Shao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Yanan Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Xuehui Li
- Department of Gynaecology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue Bai
- Department of Gynaecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qianyu Guo
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Qianwen Liu
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Junmin Tang
- Department of Histology and Embryology, Peking University Health Science Centre, Beijing, China
| | - Lei Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Preci DP, Almeida A, Weiler AL, Mukai Franciosi ML, Cardoso AM. Oxidative damage and antioxidants in cervical cancer. Int J Gynecol Cancer 2020; 31:265-271. [PMID: 33109527 DOI: 10.1136/ijgc-2020-001587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
The pathogenesis of cervical cancer is related to oxidative damage caused by persistent infection by one of the oncogenic types of human papillomavirus (HPV). This damage comes from oxidative stress, which is the imbalance caused by the increase in reactive oxygen and nitrogen species and impaired antioxidant mechanisms, promoting tumor progression through metabolic processes. The incorporation of HPV into the cellular genome leads to the expression of oncoproteins, which are associated with chronic inflammation and increased production of reactive oxygen species, oxidizing proteins, lipids and DNA. The increase in these parameters is related, in general, to the reduction of circulating levels of enzymatic antioxidants-superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase; and non-enzymatic antioxidants-reduced glutathione, coenzyme Q10 and vitamins A, C and E, according to tumor staging. In contrast, some enzymatic antioxidants suffer upregulation in the tumor tissue as a way of adapting to the oxidative environment generated by themselves, such as glutathione-S-transferase, reduced glutathione, glutathione peroxidase, superoxide dismutase 2, induced nitric oxide synthase, peroxiredoxins 1, 3 and 6, and thioredoxin reductase 2. The decrease in the expression and activity of certain circulatory antioxidants and increasing the redox status of the tumor cells are thus key to cervical carcinoma prognosis. In addition, vitamin deficit is considered a possible modifiable risk factor by supplementation, since the cellular functions can have a protective effect on the development of cervical cancer. In this review, we will discuss the impact of oxidative damage on cervical cancer progression, as well as the main oxidative markers and therapeutic potentialities of antioxidants.
Collapse
Affiliation(s)
- Daciele Paola Preci
- Medicine Course, Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Angélica Almeida
- Medicine Course, Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Anne Liss Weiler
- Medicine Course, Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | | | | |
Collapse
|
15
|
Chen Y, Hu X, Yang S. Clinical significance of focal adhesion kinase (FAK) in cervical cancer progression and metastasis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2586-2592. [PMID: 33165433 PMCID: PMC7642699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Focal adhesion kinase is a non-receptor, tyrosine kinase of cells whose key functions are cell adhesion, migration, and invasion. Aberrant expression and regulation of FAK-mediated intracellular signaling pathways has been reported in several cancers and they are involved in cancer cell migration and apoptosis resistance. By RT-PCR, we found that cervical cancer cells showed a 4-fold increase of relative mRNA expression of FAK compared to control cells. In parallel, the FAK protein expression level was also elevated in cervical cancer cells. Interestingly, knockdown of FAK in cervical cancer cells showed attenuated cell proliferation and migration. Further, the FAK RNAi cells became more sensitive to chemotherapeutic drugs such as 5-FU and docetaxel and therefore the rate of cell survival is declined. The significant over-expression of FAK in cervical cancer cells might involve in cervical carcinogenesis and prolonged cell survival. This FAK overexpression might be a potential target for anti-cancer drugs to attenuate rapid cell proliferation and invasion by inducing apoptosis.
Collapse
Affiliation(s)
- Yanxian Chen
- Department of Obstetrics and Gynecology, Suzhou Hospital of Integrated Traditional Chinese and Western MedicineSuzhou, Jiangsu, China
| | - Xiaofeng Hu
- Department of Obstetrics and Gynecology, Suzhou Hospital of Integrated Traditional Chinese and Western MedicineSuzhou, Jiangsu, China
| | - Shu Yang
- Department of Abdominal Oncology, The Second Affiliated Gospital of Zunyi Medical UniversityZunyi 563000, Guizhou, China
| |
Collapse
|