1
|
Ataş O, Bılge K, Yıldız S, Dundar S, Calik I, Gezer Ataş A, Bozoglan A. Systemic effect of calcium silicate-based cements with different radiopacifiers-histopathological analysis in rats. PeerJ 2023; 11:e15376. [PMID: 37312877 PMCID: PMC10259441 DOI: 10.7717/peerj.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 06/15/2023] Open
Abstract
Aim This in vivo study aimed to examine the systemic effects of contemporary calcium silicate cements (CSC) contain different radiopacifiers in rats. Materials & Methods Polyethylene tubes filled with BIOfactor MTA (BIO), Neo MTA Plus (NEO), MTA Repair HP (REP), Biodentine (DENT) and empty tubes (control group) were implanted into the subcutaneous tissues of 80 male Spraque Dawley rats for 7 and 30 days (n = 8). After 7 and 30 day, samples of liver and kidney tissues were submitted to histopathological analysis. Blood samples were collected to evaluate changes in hepatic and renal functions of rats. Wilcoxon and post hoc Dunn Bonferroni tests were used to compare between the 7th and 30th days in order to evaluate the histopathological data. Paired-sample t-test was used to compare laboratory values between the 7th and 30th days, ANOVA analysis and a post hoc Tukey test were used to compare values between groups (p < 0.05). Results On the 7th day, REP, BIO and NEO groups were statistically similar in kidney tissue and the degree of inflammation was found to be significantly higher in these groups compared to the control and DENT groups. On the 30th day, the degree of inflammation of the REP and NEO groups in the kidney tissue was found to be significantly higher than the control, BIO and DENT groups. Although the inflammation in the liver was moderate and mild on the 7th and 30th days, no statistically significant difference was observed between the groups. Vascular congestion was evaluated as mild and moderate in kidney and liver in all groups, and no statistically significant difference was observed between the groups. While there was no statistically significant difference between the groups in the 7th day AST, ALT and urea values, when the creatinine values were compared, the DENT and NEO groups were found to be statistically similar and significantly lower than the control group. On the 30th day, ALT values were statistically similar between the groups. The AST values of the BIO group were found to be significantly higher than the DENT group. While BIO, DENT, NEO and control groups had statistically similar urea values, the REP group was found to be significantly higher than the other groups. The creatinine value of the REP group was significantly higher than the groups other than the control group (p < 0.05). Conclusion CSCs with different radiopacifiers had similar and acceptable effects on the histological examination of the kidneys and liver systemically, and serum ALT, AST, urea, creatinine levels.
Collapse
Affiliation(s)
- Osman Ataş
- Faculty of Dentistry, Department of Pediatric Dentistry, Firat (Euphrates) University, Elazig, Turkey
| | - Kubra Bılge
- Faculty of Dentistry, Department of Restorative Dentistry, Firat University, Elazig, Turkey
| | - Semsettin Yıldız
- Faculty of Dentistry, Department of Pediatric Dentistry, Firat (Euphrates) University, Elazig, Turkey
| | - Serkan Dundar
- Faculty of Dentistry, Department of Periodontology, Firat (Euphrates) University, Elazig, Turkey
| | - Ilknur Calik
- Faculty of Medicine, Department of Pathology, Firat (Euphrates) University, Elazig, Turkey
| | | | - Alihan Bozoglan
- Faculty of Dentistry, Department of Periodontology, Firat (Euphrates) University, Elazig, Turkey
| |
Collapse
|
2
|
Kim M, Hayashi M, Yu B, Lee TK, Kim RH, Jo DW. Effects of Fucoidan Powder Combined with Mineral Trioxide Aggregate as a Direct Pulp-Capping Material. Polymers (Basel) 2022; 14:polym14122315. [PMID: 35745892 PMCID: PMC9228542 DOI: 10.3390/polym14122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The development of direct pulp-capping materials with favorable biological and structural properties is an important goal in restorative dentistry. Fucoidan is a sulfated, fucose-containing polysaccharide obtained from brown seaweed, with a wide range of applications; however, its use as a direct pulp-capping material has not been examined. This study aimed to evaluate the mechanical, physical, and biological effects of fucoidan combined with conventional mineral trioxide aggregate (MTA) for direct pulp capping. The capping materials were created using Portland cement (80 wt%) and zirconium oxide (20 wt%) as base components, compared with base components plus 5 wt% fucoidan (PZF5) and base components plus 10 wt% fucoidan (PZF10). The initial and final setting time, compressive strength, chemical components, cell viability, adhesion, migration, osteogenesis, and gene expression were analyzed. Fucoidan significantly reduced the initial and final setting time, regardless of quantity. However, the compressive strength was lower for PZF5. Sulfur levels increased with fucoidan. The biological activity improved, especially in the PZF5 group. Cell migration, Alizarin Red S staining, and alkaline phosphatase activity were upregulated in the PZF5 group. Fucoidan is a useful regenerative additive for conventional pulp-capping materials because it reduces the setting time and improves cell migration and osteogenic ability.
Collapse
Affiliation(s)
- Mijoo Kim
- UCLA School of Dentistry Restorative Materials and Applied Dental Research Laboratory, Los Angeles, CA 90095, USA; (M.K.); (M.H.); (B.Y.); (T.K.L.); (R.H.K.)
- Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Marc Hayashi
- UCLA School of Dentistry Restorative Materials and Applied Dental Research Laboratory, Los Angeles, CA 90095, USA; (M.K.); (M.H.); (B.Y.); (T.K.L.); (R.H.K.)
- Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Bo Yu
- UCLA School of Dentistry Restorative Materials and Applied Dental Research Laboratory, Los Angeles, CA 90095, USA; (M.K.); (M.H.); (B.Y.); (T.K.L.); (R.H.K.)
- Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Thomas K. Lee
- UCLA School of Dentistry Restorative Materials and Applied Dental Research Laboratory, Los Angeles, CA 90095, USA; (M.K.); (M.H.); (B.Y.); (T.K.L.); (R.H.K.)
- Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Reuben H. Kim
- UCLA School of Dentistry Restorative Materials and Applied Dental Research Laboratory, Los Angeles, CA 90095, USA; (M.K.); (M.H.); (B.Y.); (T.K.L.); (R.H.K.)
- Section of Restorative Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Deuk-Won Jo
- Section of Dentistry, Department of Prosthodontics, Seoul National University Bundang Hospital, Seongnam 13620, Korea
- Correspondence: ; Tel.: +82-31-787-7548
| |
Collapse
|
3
|
Rodrigues EM, Viola KS, Maldonado LG, Rossa Junior C, Guerreiro-Tanomaru JM, Tanomaru Filho M. Cytotoxicity and bioactive potential of new root repair materials for use with BMP-2 transfected human osteoblast cells. Braz Oral Res 2022; 36:e063. [PMID: 36507750 DOI: 10.1590/1807-3107bor-2022.vol36.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Modified formulations of calcium silicate repair materials with additives have been developed to enhance handling, consistency, biocompatibility and bioactivity. Considering the relevance of osteoblastic cell response to mineralized tissue repair, human osteoblastic cells (Saos-2 cells overexpressing BMP-2) were exposed to mineral trioxide aggregate (MTA) (with calcium tungstate - CaWO4), MTA HP Repair, Bio-C Repair and Bio-C Pulpo. Cell viability was assessed by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) and neutral red (NR), and cell death, by flow cytometry. Gene expression of bone morphogenetic protein 2 (BMP-2), runt-related transcription factor 2 (RUNX-2), and alkaline phosphatase (ALP) osteogenic markers were evaluated by real-time polymerase chain reaction (RT-qPCR). ALP activity and alizarin red staining (ARS) were used to detect mineralization nodule deposition. Bioactive cements presented no cytotoxic effect, and did not induce apoptosis at the higher dilution (1:12). MTA, Bio-C Repair and Bio-C Pulpo exhibited higher ALP activity than the control group (P < 0.05) after 7 days. MTA, MTA HP and Bio-C Pulpo affected the formation of mineralized nodules (p < 0.05). Exposure to all cement extracts for 1 day increased BMP-2 gene expression. RUNX-2 mRNA was greater in MTA, MTA HP and Bio-C Repair. MTA, MTA HP and Bio-C Pulpo increased the ALP mRNA expression, compared with BMP-2 unexposed cells (P < 0.05). Calcium silicate cements showed osteogenic potential and biocompatibility in Saos-2 cells transfected BMP-2, and increased the mRNA expression of BMP-2, RUNX-2, and ALP osteogenic markers in the BMP-2 transfected system, thereby promoting a cellular response to undertake the mineralized tissue repair.
Collapse
Affiliation(s)
- Elisandra Márcia Rodrigues
- Universidade Estadual Paulista - Unesp, Schoool of Dentistry, Department of Restorative Dentistry, Araraquara, SP, Brazil
| | - Kennia Scapin Viola
- Universidade Estadual Paulista - Unesp, Schoool of Dentistry, Department of Restorative Dentistry, Araraquara, SP, Brazil
| | - Laura Gonzalez Maldonado
- Universidade Estadual Paulista - Unesp, Schoool of Dentistry, Department of Diagnosis and Surgery, Araraquara, SP, Brazil
| | - Carlos Rossa Junior
- Universidade Estadual Paulista - Unesp, Schoool of Dentistry, Department of Diagnosis and Surgery, Araraquara, SP, Brazil
| | | | - Mario Tanomaru Filho
- Universidade Estadual Paulista - Unesp, Schoool of Dentistry, Department of Restorative Dentistry, Araraquara, SP, Brazil
| |
Collapse
|
4
|
Hoshino RA, Delfino MM, da Silva GF, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Sasso-Cerri E, Cerri PS. Biocompatibility and bioactive potential of the NeoMTA Plus endodontic bioceramic-based sealer. Restor Dent Endod 2021; 46:e4. [PMID: 33680893 PMCID: PMC7906839 DOI: 10.5395/rde.2021.46.e4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 11/11/2022] Open
Abstract
Objectives This study evaluated the biocompatibility and bioactive potential of NeoMTA Plus mixed as a root canal sealer in comparison with MTA Fillapex. Materials and Methods Polyethylene tubes filled with NeoMTA Plus (n = 20), MTA Fillapex (n = 20), or nothing (control group, CG; n = 20) were inserted into the connective tissue in the dorsal subcutaneous layer of rats. After 7, 15, 30 and 60 days, the specimens were processed for paraffin embedding. The capsule thickness, collagen content, and number of inflammatory cells (ICs) and interleukin-6 (IL-6) immunolabeled cells were measured. von Kossa-positive structures were evaluated and unstained sections were analyzed under polarized light. Two-way analysis of variance was performed, followed by the post hoc Tukey test (p ≤ 0.05). Results At 7 days, the capsules around NeoMTA Plus and MTA Fillapex had more ICs and IL-6-immunostained cells than the CG. However, at 60 days, there was no significant difference in the IC number between NeoMTA Plus and the CG (p = 0.1137) or the MTA Fillapex group (p = 0.4062), although a greater number of IL-6-immunostained cells was observed in the MTA Fillapex group (p = 0.0353). From 7 to 60 days, the capsule thickness of the NeoMTA Plus and MTA Fillapex specimens significantly decreased, concomitantly with an increase in the collagen content. The capsules around root canal sealers showed positivity to the von Kossa stain and birefringent structures. Conclusions The NeoMTA Plus root canal sealer is biocompatible and exhibits bioactive potential.
Collapse
Affiliation(s)
- Roberto Alameda Hoshino
- Department of Restorative Dentistry, Dental School, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Mateus Machado Delfino
- Department of Restorative Dentistry, Dental School, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Guilherme Ferreira da Silva
- Pro-Rectory of Research and Post-graduation, School of Dentistry, Universidade Sagrado Coração (USC), Bauru, SP, Brazil
| | | | - Mário Tanomaru-Filho
- Department of Restorative Dentistry, Dental School, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Estela Sasso-Cerri
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Laboratory of Histology and Embryology, Dental School, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Laboratory of Histology and Embryology, Dental School, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
5
|
Queiroz MB, Torres FFE, Rodrigues EM, Viola KS, Bosso-Martelo R, Chavez-Andrade GM, Guerreiro-Tanomaru JM, Tanomaru-Filho M. Physicochemical, biological, and antibacterial evaluation of tricalcium silicate-based reparative cements with different radiopacifiers. Dent Mater 2021; 37:311-320. [DOI: 10.1016/j.dental.2020.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 11/21/2020] [Indexed: 12/23/2022]
|
6
|
Sanz JL, Forner L, Llena C, Guerrero-Gironés J, Melo M, Rengo S, Spagnuolo G, Rodríguez-Lozano FJ. Cytocompatibility and Bioactive Properties of Hydraulic Calcium Silicate-Based Cements (HCSCs) on Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs): A Systematic Review of In Vitro Studies. J Clin Med 2020; 9:jcm9123872. [PMID: 33260782 PMCID: PMC7761433 DOI: 10.3390/jcm9123872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The implementation of hydraulic calcium silicate-based endodontic cements (HCSCs) in biologically based endodontic procedures for the primary dentition has been recently investigated, focusing on the biological response of stem cells from human exfoliated deciduous teeth (SHEDs) towards them. The present systematic review aimed to present a qualitative synthesis of the available literature consisting of in vitro assays, which assessed the cytocompatibility and bioactive properties of HCSCs in direct contact with SHEDs. Following the PRISMA statement, an electronic database search was carried out in Medline, Scopus, Embase, Web of Science, and SciELO on March 31st and updated on November 16th, 2020. In vitro studies evaluating the biological response of SHEDs to the treatment with HCSCs were eligible. Within the term biological response, assays assessing the cytocompatibility (i.e., cell viability, migration, proliferation), cell plasticity or differentiation (i.e., osteo/odontogenic marker expression), and bioactivity or biomineralization (i.e., mineralized nodule formation) were included. A total of seven studies were included after the selection process. The study sample comprised an extensive range of cell viability, migration, proliferation, adhesion, and bioactivity assays regarding the biological response of SHEDs towards five different commercially available HCSCs (MTA, ProRoot MTA, Biodentine, iRoot BP Plus, and Theracal LC). Biodentine, MTA, and iRoot BP Plus showed significant positive results in cytocompatibility and bioactivity assays when cultured with SHEDs. The results from in vitro assays assessing the cytocompatibility and bioactivity of the HCSCs MTA, Biodentine, and iRoot BP Plus towards SHEDs support their use in vital pulp treatment for the primary dentition.
Collapse
Affiliation(s)
- José Luis Sanz
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Leopoldo Forner
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
- Correspondence: ; Tel.: +34-963864175
| | - Carmen Llena
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Julia Guerrero-Gironés
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain; (J.G.-G.); (F.J.R.-L.)
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - María Melo
- Departament d’Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010 Valencia, Spain; (J.L.S.); (C.L.); (M.M.)
| | - Sandro Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy; (S.R.); (G.S.)
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy; (S.R.); (G.S.)
- Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Francisco Javier Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain; (J.G.-G.); (F.J.R.-L.)
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
7
|
Benetti F, Queiroz ÍODA, Cosme-Silva L, Conti LC, Oliveira SHPD, Cintra LTA. Cytotoxicity, Biocompatibility and Biomineralization of a New Ready-for-Use Bioceramic Repair Material. Braz Dent J 2019; 30:325-332. [PMID: 31340221 DOI: 10.1590/0103-6440201902457] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/05/2019] [Indexed: 11/21/2022] Open
Abstract
New mineral trioxide aggregate (MTA) formulations are constantly introduced in the market, usually in a powder-and-liquid form. Bioceramic (Bio-C) Repair is a ready-for-use material suggested as substitute for MTA, but its properties need to be studied. This study evaluated the cytotoxicity, biocompatibility and biomineralization of Bio-C Repair compared to MTA Repair High-Plasticity (MTA-HP) and white MTA-Angelus (MTA-Ang). L929 fibroblasts were exposed to material-extracted (undiluted, ½ and ¼ dilutions; 6, 24 and 48h). Polyethylene tubes with material or empty (control) were implanted in the subcutaneous tissue of rats. After 7 and 30 days (n=8), the specimens were removed for analysis (hematoxylin-eosin, von Kossa and polarized light). Cytotoxicity data were statistically analyzed by two-way ANOVA, and biocompatibility data by Kruskal-Wallis and Dunn tests (p<0.05). The cells exposed to the materials had greater viability at most of the periods compared with control (p<0.05). The undiluted and ½ dilutions of MTA-HP extract showed higher cytocompatibility than Bio-C Repair at 6 h and with the ¼ dilution at 24 h (p<0.05); the white MTA-Ang showed higher cytocompatibility than Bio-C Repair at most of periods (p<0.05). The undiluted white MTA-Ang extract had higher cytocompatibility at 6 and 24h than MTA-HP, and with ½ dilution at 24h (p<0.05). The materials' cytocompatibility was similar at 48h for most dilutions (p>0.05). At 7 and 30 days, the groups had moderate and mild inflammation, respectively (p>0.05). All materials showed positive structures for von Kossa and polarized light. In conclusion, Bio-C Repair had similar cytocompatibility to MTA-based materials is biocompatible and induces biomineralization.
Collapse
Affiliation(s)
- Francine Benetti
- Endodontics, School of Dentistry, UNESP - Universidade Estadual Paulista, Araçatuba, SP, Brazil.,Restorative Dentistry, School of Dentistry, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Leopoldo Cosme-Silva
- Endodontics, School of Dentistry, UNESP - Universidade Estadual Paulista, Araçatuba, SP, Brazil
| | - Leticia Citelli Conti
- Endodontics, School of Dentistry, UNESP - Universidade Estadual Paulista, Araçatuba, SP, Brazil
| | | | | |
Collapse
|
8
|
Dahake PT, Panpaliya NP, Kale YJ, Dadpe MV, Kendre SB, Bogar C. Response of stem cells from human exfoliated deciduous teeth (SHED) to three bioinductive materials - An in vitro experimental study. Saudi Dent J 2019; 32:43-51. [PMID: 31920278 PMCID: PMC6950838 DOI: 10.1016/j.sdentj.2019.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction Stem cells have unmatched capacity and potential for regeneration and when used alone or in combination with scaffolds to replace or repair damaged cells, can differentiate into any mature cell. Aim To evaluate the functional differentiation potential of EMD (Enamel Matrix Derivative), MTA (Mineral Trioxide Aggregate) and Biodentine on Stem Cells from Human Exfoliated Deciduous teeth (SHED). Objective To determine functional differentiation potential (osteogenic/odontogenic) of various biomaterials on SHED. Material and method SHED derived from 5th linear passage after sub-culturing were treated with EMD, MTA and Biodentine individually and their effect on cell viability was compared and evaluated by MTT (3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assay for 7 days. Alizarin red S staining was used to assess mineralization potential of these materials by the staining calcium deposits for 14 days. The results were analyzed using One-way ANOVA, Post hoc Tukey’s test for multiple comparisons. Results It was observed that EMD imparted the highest cell viability at the end of 7 days (p < 0.001) followed by Biodentine and MTA. Likewise EMD showed highest potential to enhanced mineralization and expression of dentine sialoprotein (p < 0.001) followed by Biodentine and MTA at the end of 14 days (p<0.001). Conclusion It can be concluded that all the tested materials are bioinductive to SHED. EMD can be used for various vital pulp therapies as that of Biodentine and MTA with predictable as well as enhanced success rate.
Collapse
Affiliation(s)
- Prasanna T Dahake
- Department of Pedodontics and Preventive Dentistry, MIDSR Dental College and Hospital, Latur, Maharashtra, India
| | - Nikita P Panpaliya
- Department of Pedodontics and Preventive Dentistry, MIDSR Dental College and Hospital, Latur, Maharashtra, India
| | - Yogesh J Kale
- Department of Pedodontics and Preventive Dentistry, MIDSR Dental College and Hospital, Latur, Maharashtra, India
| | - Mahesh V Dadpe
- Department of Pedodontics and Preventive Dentistry, MIDSR Dental College and Hospital, Latur, Maharashtra, India
| | - Shrikant B Kendre
- Department of Pedodontics and Preventive Dentistry, MIDSR Dental College and Hospital, Latur, Maharashtra, India
| | - Chetana Bogar
- Central Research Laboratory, MMNGH Institute of Dental Sciences, Belgaum, Karnataka, India
| |
Collapse
|
9
|
Zordan‐Bronzel CL, Tanomaru‐Filho M, Rodrigues EM, Chávez‐Andrade GM, Faria G, Guerreiro‐Tanomaru JM. Cytocompatibility, bioactive potential and antimicrobial activity of an experimental calcium silicate‐based endodontic sealer. Int Endod J 2019; 52:979-986. [DOI: 10.1111/iej.13086] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/25/2019] [Indexed: 01/09/2023]
Affiliation(s)
- C. L. Zordan‐Bronzel
- Department of Restorative Dentistry School of Dentistry São Paulo State University (Unesp) Araraquara São Paulo Brazil
| | - M. Tanomaru‐Filho
- Department of Restorative Dentistry School of Dentistry São Paulo State University (Unesp) Araraquara São Paulo Brazil
| | - E. M. Rodrigues
- Department of Restorative Dentistry School of Dentistry São Paulo State University (Unesp) Araraquara São Paulo Brazil
| | - G. M. Chávez‐Andrade
- Department of Restorative Dentistry School of Dentistry São Paulo State University (Unesp) Araraquara São Paulo Brazil
| | - G. Faria
- Department of Restorative Dentistry School of Dentistry São Paulo State University (Unesp) Araraquara São Paulo Brazil
| | - J. M. Guerreiro‐Tanomaru
- Department of Restorative Dentistry School of Dentistry São Paulo State University (Unesp) Araraquara São Paulo Brazil
| |
Collapse
|
10
|
Pinheiro LS, Iglesias JE, Boijink D, Mestieri LB, Poli Kopper PM, Figueiredo JADP, Grecca FS. Cell Viability and Tissue Reaction of NeoMTA Plus: An In Vitro and In Vivo Study. J Endod 2018; 44:1140-1145. [PMID: 29866406 DOI: 10.1016/j.joen.2018.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The aim of this study was to evaluate the cell viability and tissue reaction of NeoMTA Plus (NMP; Avalon Biomed Inc, Houston, TX) compared with mineral trioxide aggregate (MTA; Angelus, Londrina, PR, Brazil) and Biodentine (BD; Septodont, Saint-Maur-de-Fossés, France). METHODS Fibroblasts (3T3) were plated and exposed to 1% extract from the test material before and after setting. Cytotoxicity assessment was performed using the 3-(4,5-dimethyl-thiazoyl)-2,5-diphenyl-tetrazolium bromide and sulforhodamine B assays. In vivo evaluation consisted of polyethylene tube implantation of the materials in rat subcutaneous tissue. Histologic analysis occurred at 7, 30, and 90 days, scoring inflammatory events and collagen fiber formation. Analysis of variance and the Tukey and t tests were used for cytocompatibility assays, and the Kruskal-Wallis test followed by the Dunn test were used for biocompatibility assays (P ≤ .05). RESULTS The materials in the cytotoxicity assays presented greater viability after setting (P ≤ .05). NMP and MTA presented higher viability than the control (Dulbecco modified Eagle medium) on the 3-(4,5-dimethyl-thiazoyl)-2,5-diphenyl-tetrazolium bromide assay before and after setting (P ≤ .05). The sulforhodamine B assay showed that MTA and BD presented less viability than NMP and the control, and NMP was similar to the control before setting. After setting, MTA and BD presented higher viability when compared with the control group (P ≤ .05), and NMP was similar to control. Inflammatory infiltrate reduction occurred throughout the test periods for all materials. At 7 days, neutrophils were present in BD (P ≤ .05), and granuloma and giant cells were present in BD and MTA. At 30 days, BD showed intense inflammatory infiltrates and a large number of macrophages when compared with NMP, MTA, and the control (P ≤ .05). At 90 days, BD presented a thick fiber layer compared with NMP (P ≤ .05). CONCLUSIONS NMP showed similar biocompatible behavior to MTA and BD.
Collapse
Affiliation(s)
- Lucas Siqueira Pinheiro
- Postgraduate Program in Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Eick Iglesias
- Postgraduate Program in Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daiana Boijink
- Postgraduate Program in Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Boldrin Mestieri
- Postgraduate Program in Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Maria Poli Kopper
- Department of Conservative Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Antônio de Poli Figueiredo
- Department of Morphology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabiana Soares Grecca
- Department of Conservative Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Araújo LB, Cosme-Silva L, Fernandes AP, Oliveira TMD, Cavalcanti BDN, Gomes Filho JE, Sakai VT. Effects of mineral trioxide aggregate, BiodentineTM and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth. J Appl Oral Sci 2018; 26:e20160629. [PMID: 29412365 PMCID: PMC5777405 DOI: 10.1590/1678-7757-2016-0629] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/07/2017] [Indexed: 11/22/2022] Open
Abstract
The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA), calcium hydroxide (CH) and BiodentineTM (BD) on stem cells from human exfoliated deciduous teeth (SHED) in vitro. SHED were cultured for 1 - 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL), and tested for viability (MTT assay) and proliferation (SRB assay). Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1) was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning) and culture medium supplemented with 20% FBS were used as controls. MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA) (p<0.05). In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH) (p<0.05). A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population.
Collapse
Affiliation(s)
- Leandro Borges Araújo
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil
| | - Leopoldo Cosme-Silva
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil.,Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Odontologia Restauradora, Araçatuba, São Paulo, Brasil
| | - Ana Paula Fernandes
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil.,Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, São Paulo, Brasil
| | - Thais Marchini de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, São Paulo, Brasil
| | | | - João Eduardo Gomes Filho
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Odontologia Restauradora, Araçatuba, São Paulo, Brasil
| | - Vivien Thiemy Sakai
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil
| |
Collapse
|
12
|
Huck C, Barud HDS, Basso FG, Costa CADS, Hebling J, Garcia LDFR. Cytotoxicity of New Calcium Aluminate Cement (EndoBinder) Containing Different Radiopacifiers. Braz Dent J 2017; 28:57-64. [DOI: 10.1590/0103-6440201701023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/09/2016] [Indexed: 11/21/2022] Open
Abstract
Abstract This study aimed to evaluate the cytotoxicity of a calcium aluminate cement (EndoBinder) containing different radiopacifiers, Bi2O3, ZnO or ZrO2, compared with Mineral Trioxide Aggregate (MTA). According to ISO 10993-12:2012 (E) recommendations, 0.2 g of each cement were applied in transwell inserts and placed in 24-well culture plates containing 1 mL of culture medium (DMEM). After 24 h of incubation, the extracts (DMEM containing components released from the cements) were applied to immortalized odontoblast-like MDPC-23 cells. Cell viability (MTT test), alkaline phosphatase activity (ALP), total protein production and cell morphology (Scanning Electron Microscopy - SEM) were evaluated. The volume of 50 µL of extract was used to determine the chemical elements released by the cements using Energy Dispersive Spectroscopy (EDS). The following groups were established (n=6): NC - negative control (without treatment); EB - EndoBinder without radiopacifier; EBBO - EndoBinder+Bi2O3; EBZnO - EndoBinder+ZnO; EBZrO - EndoBinder+ZrO2 and WMTA - White MTA. Data were subjected to statistical analysis (Kruskal-Wallis test, level of significance=5%). Cells exposed to the different versions of EndoBinder presented small reduction in viability, total protein production and ALP activity, with values similar to the NC and WMTA groups (p>0.05). Different elements (C, O, Na, Al, P, Si, Cl, Bi, K) released by the cements were detected in the extracts. However, the cells had no significant changes in their morphology. EndoBinder and MTA did not affect negatively the metabolism of the odontoblastic-like cells, showing it to be cytocompatible, irrespective of the used radiopacifier.
Collapse
|
13
|
Samiei M, Ghasemi N, Aghazadeh M, Divband B, Akbarzadeh F. Biocompatibility of Mineral Trioxide Aggregate with TiO2 Nanoparticles on Human Gingival Fibroblasts. J Clin Exp Dent 2017; 9:e182-e185. [PMID: 28210432 PMCID: PMC5303314 DOI: 10.4317/jced.53126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/18/2016] [Indexed: 11/29/2022] Open
Abstract
Background The New compositions of white mineral trioxide aggregate (WMTA) or use of various additives like nanoparticles might affect MTA’s ideal characteristics This study was performed to evaluate the cytotoxicity of WMTA and WMTA with Titanium dioxide (TiO2) nanoparticles (1% weight ratio) at different storage times after mixing on human gingival fibroblasts (HGFs). Material and Methods HGFs were obtained from the attached gingiva of human premolars. HGFs were cultured in Dulbecco’s Modified Eagle medium, supplemented with 10% fetal calf serum, penicillin and streptomycin. The cells were exposed to WMTA (groups 1 and 2) and WMTA+TiO2 (groups 3 and 4). The fifth and sixth groups served as controls. Each group contained 15 wells. After 24h (groups 1, 3 and 5) and 48 h (groups 2, 4 and 6) of exposure, HGF viability was determined by Mosmann’s tetrazolium toxicity (MTT) assay. Statistical analysis of the data was performed by using one-way analysis of variance and Tukey post hoc test, with significance of p < 0.05. Results With both materials, the viability of HGFs significantly decrased with increasing the incubation time from 24h to 48 h (P<0.05). There was no significant difference between the materials regarding HGF viability (P>0.05). Conclusions Under the limitations of the present study, incorporation of TiO2 nanoparticles into MTA at 1 wt% had no negative effect on its biocompatibility. Key words:Cytotoxicity, fibroblast, MTA, MTT assay, nanoparticle, TiO2.
Collapse
Affiliation(s)
- Mohammad Samiei
- Associate Professor, Department of Endodontics, Dental Faculty, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Negin Ghasemi
- Assistant Professor, Department of Endodontics, Dental and Periodontal Research Center, Dental Faculty, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Marzieh Aghazadeh
- Assistant Professor, Department of Oral Medicine , Dental Faculty, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Baharak Divband
- Assistant Professor, Department of Chemistry, Tabriz University, Tabriz, Iran
| | | |
Collapse
|