1
|
Awasthi SK, Kumar M, Kumar V, Sarsaiya S, Anerao P, Ghosh P, Singh L, Liu H, Zhang Z, Awasthi MK. A comprehensive review on recent advancements in biodegradation and sustainable management of biopolymers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119600. [PMID: 35691442 DOI: 10.1016/j.envpol.2022.119600] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Recent years have seen upsurge in plastic manufacturing and its utilization in various fields, such as, packaging, household goods, medical applications, and beauty products. Due to various adverse impacts imposed by synthetic plastics on the health of living well-being and the environment, the biopolymers have been emerged out an alternative. Although, the biopolymers such as polyhydroxyalkanoates (PHA) are entirely degradable. However, the other polymers, such as poly (lactic acid) (PLA) are only partially degradable and often not biosynthesized. Biodegradation of the polymers using microorganisms is considered an effective bioremediation approach. Biodegradation can be performed in aerobic and anaerobic environments. In this context, the present review discusses the biopolymer production, their persistence in the environment, aerobic biodegradation, anaerobic biodegradation, challenges associated with biodegradation and future perspectives. In addition, this review discusses the advancement in the technologies associated with biopolymer production, biodegradation, and their biodegradation standard in different environmental settings. Furthermore, differences in the degradation condition in the laboratory as well as on-site are discussed.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Prathmesh Anerao
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| |
Collapse
|
2
|
Biodegradation of Hemicellulose-Cellulose-Starch-Based Bioplastics and Microbial Polyesters. RECYCLING 2021. [DOI: 10.3390/recycling6010022] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The volume of discarded solid wastes, especially plastic, which accumulates in large quantities in different environments, has substantially increased. Population growth and the consumption pattern of societies associated with unsustainable production routes have caused the pollution level to increase. Therefore, the development of materials that help mitigate the impacts of plastics is fundamental. However, bioplastics can result in a misunderstanding about their properties and environmental impacts, as well as incorrect management of their final disposition, from misidentifications and classifications. This chapter addresses the aspects and factors surrounding the biodegradation of bioplastics from natural (plant biomass (starch, lignin, cellulose, hemicellulose, and starch) and bacterial polyester polymers. Therefore, the biodegradation of bioplastics is a factor that must be studied, because due to the increase in the production of different bioplastics, they may present differences in the decomposition rates.
Collapse
|