Candela V, Di Lucia P, Carnevali C, Milanese A, Spagnoli A, Villani C, Gumina S. Epidemiology of distal radius fractures: a detailed survey on a large sample of patients in a suburban area.
J Orthop Traumatol 2022;
23:43. [PMID:
36040542 PMCID:
PMC9428104 DOI:
10.1186/s10195-022-00663-6]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background
Literature lacks data on correlations between epidemiology and clinical data of patients with distal radius fractures (DRFs).
Aim
The aim of this study was to present a detailed epidemiologic survey of a large consecutive series of patient with DRFs.
Materials and Methods
This retrospective study included 827 consecutive patients (579 females, 248 men) who sustained a DRFs in the last 5 years. All fractures were radiographically evaluated. DRFs were classified according to Association of Osteosynthesis classification. Data on age, gender, side, period in which fracture occurred, and fracture mechanism were collected. Statistical analysis was performed.
Results
The patients’ mean age was 60.23 [standard deviation (SD) 16.65] years, with the left side being most frequently involved (56.1%). The mean age of females at the time of fracture was significantly higher than that of males.
The most frequent pattern of fracture was the complete articular fracture (64.3%), while the most represented fracture type was 2R3A2.2 (21.5%). Regarding the period in which the fracture occurred, 305 DRFs (37.5%) were observed in the warmer months and 272 (33.4%) in the colder months. Low-energy trauma occurring outside home was found to be the major cause of DRF throughout the year.
In both genders, trauma mechanism 2 was more frequent (59.4% F; 31.9% M; p < 0.01).
A bimodal distribution of fracture mechanisms was found in males when considering the patient’s age with a high-energy mechanism of fracture (3 and 4), identified in 21% (n = 52) of males aged 18–45 years, and a low-energy mechanism (1 and 2) was observed in 39.9% (n = 99) of males aged > 45 years. A significant correlation between all trauma mechanisms (from 1 to 6) and different fracture patterns (complete, partial, and extraarticular) was found (p value < 0.001). The mean age of patients with extraarticular fractures (mean age 61.75 years; SD 18.18 years) was higher than that of those with complete (mean age 59.84 years; SD 15.67 years) and partial fractures (mean age 55.26 years; SD 18.31 years). Furthermore, considering different fracture patterns and patient age groups, a statistically significant difference was found (p < 0.001).
Conclusions
DRFs have a higher prevalence in females, an increase in incidence with older age, and no seasonal predisposition. Low-energy trauma occurring at home is the main cause of fracture among younger males sustaining fractures after sports trauma; Complete articular is the most frequent fracture pattern, while 2R3A2.2 is most frequent fracture type.
Level of evidence
Level IV; case series; descriptive epidemiology study.
Collapse