1
|
Nguyen DH, Duque V, Phillips N, Mecawi AS, Cunningham JT. Spatial transcriptomics reveal basal sex differences in supraoptic nucleus gene expression of adult rats related to cell signaling and ribosomal pathways. Biol Sex Differ 2023; 14:71. [PMID: 37858270 PMCID: PMC10585758 DOI: 10.1186/s13293-023-00554-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND The supraoptic nucleus (SON) of the hypothalamus contains magnocellular neurosecretory cells that secrete the hormones vasopressin and oxytocin. Sex differences in SON gene expression have been relatively unexplored. Our study used spatially resolved transcriptomics to visualize gene expression profiles in the SON of adult male (n = 4) and female (n = 4) Sprague-Dawley rats using Visium Spatial Gene Expression (10x Genomics). METHODS Briefly, 10-μm coronal sections (~ 4 × 4 mm) containing the SON were collected from each rat and processed using Visium slides and recommended protocols. Data were analyzed using 10x Genomics' Space Ranger and Loupe Browser applications and other bioinformatic tools. Two unique differential expression (DE) analysis methods, Loupe Browser and DESeq2, were used. RESULTS Loupe Browser DE analysis of the SON identified 116 significant differentially expressed genes (DEGs) common to both sexes (e.g., Avp and Oxt), 31 significant DEGs unique to the males, and 73 significant DEGs unique to the females. DESeq2 analysis revealed 183 significant DEGs between the two groups. Gene Ontology (GO) enrichment and pathway analyses using significant genes identified via Loupe Browser revealed GO terms and pathways related to (1) neurohypophyseal hormone activity, regulation of peptide hormone secretion, and regulation of ion transport for the significant genes common to both males and females, (2) Gi signaling/G-protein mediated events for the significant genes unique to males, and (3) potassium ion transport/voltage-gated potassium channels for the significant genes unique to females, as some examples. GO/pathway analyses using significant genes identified via DESeq2 comparing female vs. male groups revealed GO terms/pathways related to ribosomal structure/function. Ingenuity Pathway Analysis (IPA) identified additional sex differences in canonical pathways (e.g., 'Mitochondrial Dysfunction', 'Oxidative Phosphorylation') and upstream regulators (e.g., CSF3, NFKB complex, TNF, GRIN3A). CONCLUSION There was little overlap in the IPA results for the two different DE methods. These results suggest sex differences in SON gene expression that are associated with cell signaling and ribosomal pathways.
Collapse
Affiliation(s)
- Dianna H Nguyen
- Department of Physiology and Anatomy, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
| | - Victor Duque
- Department of Biophysics, Laboratory of Molecular Neuroendocrinology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Nicole Phillips
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - André Souza Mecawi
- Department of Biophysics, Laboratory of Molecular Neuroendocrinology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
2
|
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. ADVANCES IN NEUROBIOLOGY 2018; 21:101-193. [PMID: 30334222 PMCID: PMC6310046 DOI: 10.1007/978-3-319-94593-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.
Collapse
Affiliation(s)
- Arshad M Khan
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA.
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| | - Alice H Grant
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Gully A P C Burns
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA, USA
| | - Brendan S Thatcher
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Vishwanath T Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Benjamin W Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Zachary S Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Daniel H Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
3
|
Loh SY, Jahans-Price T, Greenwood MP, Greenwood M, Hoe SZ, Konopacka A, Campbell C, Murphy D, Hindmarch CCT. Unsupervised Network Analysis of the Plastic Supraoptic Nucleus Transcriptome Predicts Caprin2 Regulatory Interactions. eNeuro 2017; 4:ENEURO.0243-17.2017. [PMID: 29279858 PMCID: PMC5738864 DOI: 10.1523/eneuro.0243-17.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 11/21/2022] Open
Abstract
The supraoptic nucleus (SON) is a group of neurons in the hypothalamus responsible for the synthesis and secretion of the peptide hormones vasopressin and oxytocin. Following physiological cues, such as dehydration, salt-loading and lactation, the SON undergoes a function related plasticity that we have previously described in the rat at the transcriptome level. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a putative network from 500 plastic SON genes in which genes are the nodes and the edges are the inferred interactions. The most active nodal gene identified within the network was Caprin2. Caprin2 encodes an RNA-binding protein that we have previously shown to be vital for the functioning of osmoregulatory neuroendocrine neurons in the SON of the rat hypothalamus. To test the validity of the Glasso network, we either overexpressed or knocked down Caprin2 transcripts in differentiated rat pheochromocytoma PC12 cells and showed that these manipulations had significant opposite effects on the levels of putative target mRNAs. These studies suggest that the predicative power of the Glasso algorithm within an in vivo system is accurate, and identifies biological targets that may be important to the functional plasticity of the SON.
Collapse
Affiliation(s)
- Su-Yi Loh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Thomas Jahans-Price
- School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Michael P. Greenwood
- School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Mingkwan Greenwood
- School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - See-Ziau Hoe
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Agnieszka Konopacka
- School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Colin Campbell
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - David Murphy
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Charles C. T. Hindmarch
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Queen’s Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, Ontario, ON K7L 3N6 Canada
| |
Collapse
|
4
|
Greenwood MP, Mecawi AS, Hoe SZ, Mustafa MR, Johnson KR, Al-Mahmoud GA, Elias LLK, Paton JFR, Antunes-Rodrigues J, Gainer H, Murphy D, Hindmarch CCT. A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol 2015; 308:R559-68. [PMID: 25632023 DOI: 10.1152/ajpregu.00444.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/21/2015] [Indexed: 01/16/2023]
Abstract
Salt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, arginine vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. On osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function-related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared with euhydrated (EU) controls in terms of drinking and eating behavior, body weight, and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL and remined data from the SON that describes the transcriptome response to WD. From a list of 2,783 commonly regulated transcripts, we selected 20 genes for validation by qPCR. All of the 9 genes that have already been described as expressed or regulated in the SON by osmotic stimuli were confirmed in our models. Of the 11 novel genes, 5 were successfully validated while 6 were false discoveries.
Collapse
Affiliation(s)
| | - Andre S Mecawi
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kory R Johnson
- Clinical Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Ghada A Al-Mahmoud
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Al Tarfa, Doha, Qatar
| | - Lucila L K Elias
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F R Paton
- School of Physiology and Pharmacology, University Walk, Bristol, United Kingdom; and
| | - Jose Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Harold Gainer
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Charles C T Hindmarch
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia;
| |
Collapse
|