1
|
Kafili G, Niknejad H, Tamjid E, Simchi A. Amnion-derived hydrogels as a versatile platform for regenerative therapy: from lab to market. Front Bioeng Biotechnol 2024; 12:1358977. [PMID: 38468689 PMCID: PMC10925797 DOI: 10.3389/fbioe.2024.1358977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In recent years, the amnion (AM) has emerged as a versatile tool for stimulating tissue regeneration and has been of immense interest for clinical applications. AM is an abundant and cost-effective tissue source that does not face strict ethical issues for biomedical applications. The outstanding biological attributes of AM, including side-dependent angiogenesis, low immunogenicity, anti-inflammatory, anti-fibrotic, and antibacterial properties facilitate its usage for tissue engineering and regenerative medicine. However, the clinical usage of thin AM sheets is accompanied by some limitations, such as handling without folding or tearing and the necessity for sutures to keep the material over the wound, which requires additional considerations. Therefore, processing the decellularized AM (dAM) tissue into a temperature-sensitive hydrogel has expanded its processability and applicability as an injectable hydrogel for minimally invasive therapies and a source of bioink for the fabrication of biomimetic tissue constructs by recapitulating desired biochemical cues or pre-defined architectural design. This article reviews the multi-functionality of dAM hydrogels for various biomedical applications, including skin repair, heart treatment, cartilage regeneration, endometrium regeneration, vascular graft, dental pulp regeneration, and cell culture/carrier platform. Not only recent and cutting-edge research is reviewed but also available commercial products are introduced and their main features and shortcomings are elaborated. Besides the great potential of AM-derived hydrogels for regenerative therapy, intensive interdisciplinary studies are still required to modify their mechanical and biological properties in order to broaden their therapeutic benefits and biomedical applications. Employing additive manufacturing techniques (e.g., bioprinting), nanotechnology approaches (e.g., inclusion of various bioactive nanoparticles), and biochemical alterations (e.g., modification of dAM matrix with photo-sensitive molecules) are of particular interest. This review article aims to discuss the current function of dAM hydrogels for the repair of target tissues and identifies innovative methods for broadening their potential applications for nanomedicine and healthcare.
Collapse
Affiliation(s)
- Golara Kafili
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Abou-Zeid SM, Ahmed AI, Awad A, Mohammed WA, Metwally MMM, Almeer R, Abdel-Daim MM, Khalil SR. Moringa oleifera ethanolic extract attenuates tilmicosin-induced renal damage in male rats via suppression of oxidative stress, inflammatory injury, and intermediate filament proteins mRNA expression. Biomed Pharmacother 2021; 133:110997. [PMID: 33197759 DOI: 10.1016/j.biopha.2020.110997] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/24/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023] Open
Abstract
Tilmicosin (Til) is a popular macrolide antibiotic, widely used in veterinary practice. The present study was designed to address the efficacy of Moringa oleifera ethanolic extract (MOE) in protecting against Tilmicosin (Til) - induced nephrotoxicity in Sprague Dawley rats. Animals were treated once with Til (75 mg/kg bw, subcutaneously), and/or MOE for 7 days (400 or 800 mg/kg bw, by oral gavage). Til-treatment was associated with significantly increased serum levels of creatinine, urea, sodium, potassium and GGT activity, as well as decreased total protein and albumin concentrations. Renal tissue hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were elevated, while the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymes were diminished. The levels of renal tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) and the mRNA expression of intermediate filament protein encoding genes (desmin, nestin and vimentin) in the kidney were up- regulated with histopathological alterations in renal glomeruli, tubules and interstitial tissue. These toxic effects were markedly ameliorated by co-treatment of MOE with Til, in a dose dependent manner. Taken together, these results indicate that MO at 800 mg/kg protects against Til-induced renal injury, likely by its potent antioxidant and anti-inflammatory properties, which make it suitable to be used as a protective supplement with Til therapy.
Collapse
Affiliation(s)
- Shimaa M Abou-Zeid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt.
| | - Amany I Ahmed
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Wafaa A Mohammed
- Clinical Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Mohamed M M Metwally
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| |
Collapse
|
3
|
She L, Xu D, Wang Z, Zhang Y, Wei Q, Aa J, Wang G, Liu B, Xie Y. Curcumin inhibits hepatic stellate cell activation via suppression of succinate-associated HIF-1α induction. Mol Cell Endocrinol 2018; 476:129-138. [PMID: 29746885 DOI: 10.1016/j.mce.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Aberrant succinate accumulation emerges as a unifying mechanism for inflammation and oxidative stress. This study aims to investigate whether curcumin ameliorates hepatic fibrosis via blocking succinate signaling. METHODS We investigated the effects of curcumin on hepatic succinate accumulation and liver fibrosis in mice fed a high-fat diet (HFD). Meanwhile, we stimulated mouse primary hepatic stellate cells (HSCs) with succinate and observed the inhibitory effects of curcumin on succinate signaling. RESULTS Oral administration of curcumin and metformin combated mitochondrial fatty acid oxidation and reduced hepatic succinate accumulation due to the inhibition of succinate dehydrogenase (SDH) activity and demonstrated inhibitory effect on hepatic fibrosis. In mouse primary HSCs, curcumin prevented succinate- and CoCl2-induced hypoxia-inducible transcription factor-1α (HIF-1α) induction via suppression of ROS production and effectively reduced gene expressions of Col1α, Col3α, fibronectin and TGF-β1 with inflammation inhibition. Knockdown of HIF-1α with small interfering RNA blocked the action of succinate to induce HSCs activation, indicative of the essential role of HIF-1α in succinate signaling. CONCLUSIONS Hepatic succinate accumulation served as a metabolic signal to promote liver fibrosis through HIF-1α induction. Curcumin reduced succinate accumulation by combating fatty acid oxidation and prevented HSCs activation by blocking succinate/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Linlin She
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Dan Xu
- Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210038, China
| | - Zixia Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yirui Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Qingli Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Baolin Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Awad A, Khalil SR, Farag MR, Nassan MA. Differential susceptibility of kidneys and livers to proliferative processes and transcriptional level of the genes encoding desmin, vimentin, connexin 43, and nestin in rats exposed to furan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:235-244. [PMID: 29990736 DOI: 10.1016/j.ecoenv.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/05/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
In this study, we aimed to assess the differential toxic impact, induced by furan exposure, on the liver and kidney tissues by estimating reactive oxygen species (ROS) level, total antioxidant capacity (TAC), oxidative damage, and the tissue injury markers in a male rat model. To explain such impacts, 20 rats were assigned into two groups: a control group, where rats were administered corn oil as a vehicle, and a furan-administered group, where furan was orally administered to rats at a dose of 16 mg/kg b wt/day (five days per week over eight weeks). The transcriptional levels of intermediate filament proteins (desmin, vimentin, nestin, and connexin 43) were assessed by using quantitative real-time polymerase chain reaction (PCR), and the cell proliferation markers (proliferating cell nuclear antigen [PCNA] and proliferation-associated nuclear antigen [Ki-67]) were recognized by immunohistochemical analysis. Furthermore, the ultrastructural changes of liver and kidney were monitored using electron microscopy. Our findings showed that furan exposure could induce hepatic and renal damage to different extents. Furan can increase the ROS content, oxidative damage indices, and liver tissue injury indices but not kidney injury indices. Furthermore, it decreases the TAC in the serum of exposed rats. In addition, furan exposure was associated with changes in the mRNA expression pattern of intermediate filament proteins in both kidney and liver tissues. Moreover, furan enhances the expression of PCNA and Ki-67 in the liver tissues but not in the kidney tissues. The ultrastructure evaluation revealed the incidence of glomerular podocyte degeneration and hepatocyte injury. These results conclusively demonstrate that the deleterious effects of furan are caused by promoting fibrosis and hepatocyte proliferation in liver tissues and triggering podocyte injury in the kidney tissues.
Collapse
Affiliation(s)
- Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samah R Khalil
- Forensic Medicine and Toxicology, Department, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt.
| | - Mayada Ragab Farag
- Forensic Medicine and Toxicology, Department, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Mohamed Abdo Nassan
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Tannuri ACA, Rotondo ÍG, Barros GG, Van Vaisberg V, Mendes-Neto C, Paes VR, Coelho MCM, Gonçalves J, Serafini S, Tannuri U. Are there differences in the growth adaptation processes of growing and mature organism models of short bowel syndrome? Clinics (Sao Paulo) 2018; 73:e499. [PMID: 30365828 PMCID: PMC6178875 DOI: 10.6061/clinics/2018/e499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The purpose of this study was to present an experimental model of short bowel syndrome (SBS) in weaning rats and to compare the adaptative mechanisms of the remaining bowel in weaning rats and adult animals by means of morphometric, histologic and molecular methods. METHODS Twenty-four weaning rats were divided into 3 groups of 8 animals, one control group and two short bowel groups (euthanasia after 4 and 21 days), and were compared with similar adult groups. Morphometric evaluations of the animals and histopathological and molecular studies of the remaining bowel were performed. RESULTS The weight of young rats increased after enterectomy, whereas that of adult rats decreased after enterectomy (p<0.0001). The ratio of intestinal length/body weight was significantly higher in weaning rats than in adults (p<0.002), showing that intestinal growth was more intense in weaning rats. Intestinal resection promoted increased thickness of the small bowel lamina propria (p=0.001) and reduced thickness of the colon lamina propria (p=0.04) in weaning rats relative to those in adults. In addition, intestinal resection promoted increased expression of the Bcl-xl gene (antiapoptotic) in adult animals compared with that in weaning rats (p=0.001). CONCLUSION Morphometric, histological and molecular differences were shown in the adaptation processes of growing and mature organisms.
Collapse
Affiliation(s)
- Ana Cristina Aoun Tannuri
- Divisao de Cirurgia Pediatrica, Unidade Pediatrica de Transplante de Figado e Laboratorio de Pesquisa em Cirurgia Pediatrica (LIM 30), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Ítalo Geraldo Rotondo
- Divisao de Cirurgia Pediatrica, Unidade Pediatrica de Transplante de Figado e Laboratorio de Pesquisa em Cirurgia Pediatrica (LIM 30), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Guilherme Garcia Barros
- Divisao de Cirurgia Pediatrica, Unidade Pediatrica de Transplante de Figado e Laboratorio de Pesquisa em Cirurgia Pediatrica (LIM 30), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Victor Van Vaisberg
- Divisao de Cirurgia Pediatrica, Unidade Pediatrica de Transplante de Figado e Laboratorio de Pesquisa em Cirurgia Pediatrica (LIM 30), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Cícero Mendes-Neto
- Divisao de Cirurgia Pediatrica, Unidade Pediatrica de Transplante de Figado e Laboratorio de Pesquisa em Cirurgia Pediatrica (LIM 30), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Vitor Ribeiro Paes
- Divisao de Cirurgia Pediatrica, Unidade Pediatrica de Transplante de Figado e Laboratorio de Pesquisa em Cirurgia Pediatrica (LIM 30), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Maria Cecilia Mendonça Coelho
- Divisao de Cirurgia Pediatrica, Unidade Pediatrica de Transplante de Figado e Laboratorio de Pesquisa em Cirurgia Pediatrica (LIM 30), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Josiane Gonçalves
- Divisao de Cirurgia Pediatrica, Unidade Pediatrica de Transplante de Figado e Laboratorio de Pesquisa em Cirurgia Pediatrica (LIM 30), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Suellen Serafini
- Divisao de Cirurgia Pediatrica, Unidade Pediatrica de Transplante de Figado e Laboratorio de Pesquisa em Cirurgia Pediatrica (LIM 30), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Uenis Tannuri
- Divisao de Cirurgia Pediatrica, Unidade Pediatrica de Transplante de Figado e Laboratorio de Pesquisa em Cirurgia Pediatrica (LIM 30), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
6
|
Zhao Y, Liu Y, Sun J, Sha H, Yang Y, Ye Q, Yang Q, Huang B, Yu Y, Huang H. Acute toxic responses of embryo-larval zebrafish to zinc pyrithione (ZPT) reveal embryological and developmental toxicity. CHEMOSPHERE 2018; 205:62-70. [PMID: 29684692 DOI: 10.1016/j.chemosphere.2018.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Zinc pyrithione (ZPT) is widely used in industrial and human daily life, due to its broad antimicrobial spectrum activity. Persistent accumulation of ZTP in the aquatic environment and bioaccumulation in the living organisms attracts more and more attention. However, only very limited information is available so far for the evaluation of systematic toxicity effects of ZPT on multiple organs development. This study intends to deepen our knowledge about the potential toxicity elicited by ZPT by assessing its acute effects on zebrafish (Danio rerio) through morphological, histological and molecular investigations. It has been verified that ZPT exhibits a broad spectrum of toxicity which causes growth retardation and tissue pathological and physiology alternations in heart, liver, eye, notochord, kidney and other organisms of zebrafish. The acute toxicity values of LC50 (95% CI) 96-h is calculated as 0.073 μM. Furthermore, the organ toxicity was verified due to up-regulation of expression of biomarker genes related to organ function and development. In sum, this study demonstrats systematic acute embryological and developmental toxicity of the ZPT on zebrafish embryos/larvae.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing, 211800, China.
| | - Yuyang Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Jing Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Hongtao Sha
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Yu Yang
- College of Environmental Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Qian Ye
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Qi Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Baoqi Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, China.
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
7
|
de Aro Braz MJ, Corbi LE, Tannuri ACA, Coelho MCM, Gonçalves JO, Serafini S, Tannuri U. Analysis of the reversibility of biliary cirrhosis in young rats submitted to biliary obstruction. J Pediatr Surg 2018; 53:1408-1413. [PMID: 28889961 DOI: 10.1016/j.jpedsurg.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/09/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND/PURPOSE Biliary atresia and other liver biliary obstructions are relevant conditions in pediatric surgery due to their progression to biliary cirrhosis and indication for liver transplantation. It is known that the period during which biliary obstruction persists determines the development of cirrhosis and its reversibility after a biliary drainage procedure. However, no time or histological markers of biliary cirrhosis reversibility have been established. MATERIALS AND METHODS One hundred and twenty-nine young Wistar rats underwent surgery for ligation of the common bile duct and were maintained until 8weeks. A part of these animals was submitted to biliary drainage surgery at 2, 3, 4, 5, or 6weeks after the initial procedure. After cyst formation at the site of obstruction, cyst-jejunal anastomosis was performed to restore bile flow. After biliary obstruction and drainage, liver samples were collected for histological and molecular analysis of the genes responsible for collagen deposition and fibrosis. RESULTS The mortality rates were 39.8% and 56.7% after the first and second procedures, respectively. Ductular proliferation (p=0.001) and collagen deposition increased according to the period under obstruction (p=0.0001), and both alterations were partially reduced after biliary drainage. There were no significant differences in the values of desmin and α-actin according to the period during which the animal remained with biliary obstruction (p=0.09 and p=0.3, respectively), although increased values of transforming growth factor beta 1 (TGFβ1) occurred after 8weeks (p=0.000). Desmin levels decreased, and α-actin and TGFβ1 levels increased according to the period under obstruction. The molecular alterations were partially reversed after biliary drainage. CONCLUSIONS The histologic and molecular changes in the liver parenchyma promoted by biliary obstruction in the young animal can be partially reversed by a biliary drainage procedure.
Collapse
Affiliation(s)
- Maria Julia de Aro Braz
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Leonardo Ervolino Corbi
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Ana Cristina Aoun Tannuri
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Maria Cecília Mendonça Coelho
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Josiane Oliveira Gonçalves
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Suellen Serafini
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Uenis Tannuri
- Pediatric Surgery Division, Pediatric Liver Transplantation Unit and Laboratory of Research in Pediatric Surgery (LIM 30), University of Sao Paulo Medical School, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Khalil SR, Mohammed AT, Abd El-fattah AH, Zaglool AW. Intermediate filament protein expression pattern and inflammatory response changes in kidneys of rats receiving doxorubicin chemotherapy and quercetin. Toxicol Lett 2018; 288:89-98. [DOI: 10.1016/j.toxlet.2018.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/28/2022]
|
9
|
Transplantation of Human Amniotic Membrane over the Liver Surface Reduces Hepatic Fibrosis in a Cholestatic Model in Young Rats. Stem Cells Int 2018. [PMID: 29535774 PMCID: PMC5845510 DOI: 10.1155/2018/6169546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Biliary atresia precedes liver cirrhosis and liver transplantation. Amniotic membrane (AM) promotes tissue regeneration, inhibits fibrosis, and reduces inflammation. Here, we test amniotic membrane potential as a therapeutic tool against cholestatic liver fibrosis. Methods Three groups of rats were used: sham surgery (SS), bile duct ligature (BDL), and bile duct ligature plus human amniotic membrane (BDL + AM). After surgery, animals were sacrificed at different weeks. Biochemical and histopathological analyses of liver tissue were performed. Collagen was expressed as a percentage of total liver tissue area. qPCR was performed to analyse gene expression levels of transforming growth factor-β1 (Tgfb1) and apelin (Apln). Statistical analysis performed considered p < 0.05 was significant. Results Groups undergoing BDL developed cholestasis. Biochemical markers from BDL + AM group improved compared to BDL group. Ductular reaction, portal fibrosis, and bile plugs were markedly reduced in the BDL + AM group compared to BDL group. Collagen area in BDL + AM group was statistically decreased compared to BDL group. Finally, expression levels of both Apln and Tgfb1 mRNA were statistically downregulated in BDL + AM group versus BDL group. Conclusion AM significantly reduces liver fibrosis in a surgical animal model of cholestasis. Our results suggest that AM may be useful as a therapeutic tool in liver cirrhosis.
Collapse
|
10
|
Abd El Motteleb DM, Ibrahim IAAEH, Elshazly SM. Sildenafil protects against bile duct ligation induced hepatic fibrosis in rats: Potential role for silent information regulator 1 (SIRT1). Toxicol Appl Pharmacol 2017; 335:64-71. [PMID: 28974454 DOI: 10.1016/j.taap.2017.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 02/09/2023]
Abstract
Hepatic fibrosis is a potential health problem that may end with life-threatening cirrhosis and primary liver cancer. Recent studies point out to the protective effects of silent information regulator1 (SIRT1), against different models of organs fibrosis. This work aimed to investigate the possible protective effect of sildenafil (SIRT1 activator) against hepatic fibrosis induced by bile duct ligation (BDL). Firstly, three different doses of sildenafil (5, 10, 20mg/kg/day) were investigated; to detect the most protective one against BDL induced liver dysfunction and hepatic fibrosis. The most protective dose is then used; to study its effect on BDL induced SIRT1 downregulation, imbalance of oxidant/antioxidant status, increased inflammatory cytokines and fibrosis. Sildenafil (20mg/kg/day) was the most protective one, it caused upregulation of SIRT1, reduction of hepatic malondialdehyde (MDA) content, increase in expression of nuclear factor erythroid 2-related factor 2 (Nrf2), hemeoxygenease (HO)-1, reduced glutathione (GSH) content and superoxide dismutase (SOD) activity. Hepatic content of tumor necrosis factor-α (TNF-α) and nuclear factor κB (NFκB) expression & content displayed significant reductions with sildenafil treatment, Furthermore, sildenafil caused marked reductions of transforming growth factor (TGF)-β content, expression of plasminogen activator inhibitor-1 (PAI-1), matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), α-smooth muscle actin (α-SMA), fibronectin, collagen I (α1) and hydroxyproline content. However, sildenafil protective effects were significantly reduced by co-administration of EX527 (SIRT1 inhibitor). Our work showed, for the first time that, sildenafil has promising protective effects against BDL induced liver dysfunction and hepatic fibrosis. These effects may be, in part, mediated by up regulation of SIRT1.
Collapse
Affiliation(s)
| | - Islam A A E-H Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Egypt
| | - Shimaa M Elshazly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Egypt.
| |
Collapse
|
11
|
Garrido M, Escobar C, Zamora C, Rejas C, Varas J, Párraga M, San Martin S, Montedónico S. Bile duct ligature in young rats: A revisited animal model for biliary atresia. Eur J Histochem 2017; 61:2803. [PMID: 29046057 PMCID: PMC5607851 DOI: 10.4081/ejh.2017.2803] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 12/27/2022] Open
Abstract
Biliary atresia leads to cirrhosis in the vast majority of patients and constitutes the first cause of paediatric liver transplantation. Animal models allow us to understand the molecular basis and natural history of diseases. The aim of this study is to describe a surgically created animal model of biliary atresia with emphasis in long-term liver function. Forty-two 3-week-old Sprague-Dawley rats were randomly divided into two groups: bile duct ligature (BDL) and control. The animals were sacrificed on the 2nd, 4th, and 6th postoperative weeks. Blood samples were collected for liver function analysis. The spleen to body weight ratio was determined. Histopathological examination of liver tissue was performed by hematoxylin-eosin and Sirius red staining. Collagen quantification was determined by using colorimetric digital image analysis and was expressed as a percentage of total liver tissue area. Quantitative real-time polymerase chain reaction was performed to analyse gene expression levels of transforming growth factor-β1 (Tgfb1) and apeline (Apln) genes. Statistical analysis was performed where P<0.05 was considered significant. Animals from BDL group developed increasing cholestasis with clinical and laboratory features. Splenomegaly was detected at 4th and 6th week (P<0.05). Histological evaluation of the liver showed ductular reaction, portal fibrosis and bile plugs. Collagen area to total liver tissue area had a median of 2.5% in the control group and 6.5 %, 14.3 % and 37.7 % in BDL rats at 2nd, 4th and 6th weeks respectively (P<0.001). Tgfb1 mRNA expression level was significantly higher at 6th week (P<0.001) in BDL group when compared to control. Apln mRNA expression level was significantly higher at 4th and 6th week (P<0.001) and showed a positive linear correlation (r = 0.975, P<0.05) in BDL group when compared to control. Bile duct ligature in young rats is an animal model that recreates clinical, laboratory, histological and molecular findings of biliary atresia. Bile duct ligature constitutes a good animal model to investigate therapeutic approaches for modifying the progression of liver fibrosis in biliary atresia.
Collapse
Affiliation(s)
- Matias Garrido
- Universidad de Valparaíso, Centro de Investigaciones Biomédicas.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Li Y, Zheng JY, Liu JQ, Yang J, Liu Y, Wang C, Ma XN, Liu BL, Xin GZ, Liu LF. Succinate/NLRP3 Inflammasome Induces Synovial Fibroblast Activation: Therapeutical Effects of Clematichinenoside AR on Arthritis. Front Immunol 2016; 7:532. [PMID: 28003810 PMCID: PMC5141240 DOI: 10.3389/fimmu.2016.00532] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/11/2016] [Indexed: 12/22/2022] Open
Abstract
Clematichinenoside AR (C-AR) is a triterpene saponin isolated from the root of Clematis manshurica Rupr., which is a herbal medicine used in traditional Chinese medicine for the treatment of arthritis. C-AR exerts anti-inflammatory and immunosuppressive properties, but little is known about its action in the suppression of fibroblast activation. Low oxygen tension and transforming growth factor-β (TGF-β1) induction in the synovium contribute to fibrosis in arthritis. This study was designed to investigate the effect of C-AR on synovial fibrosis from the aspects of hypoxic TGF-β1 and hypoxia-inducible transcription factor-1α (HIF-1α) induction. In the synovium of rheumatoid arthritis (RA) rats, hypoxic TGF-β1 induction increased succinate accumulation due to the reversal of succinate dehydrogenase (SDH) activation and induced NLRP3 inflammasome activation in a manner dependent on HIF-1α induction. In response to NLRP3 inflammasome activation, the released IL-1β further increased TGF-β1 induction, suggesting the forward cycle between inflammation and fibrosis in myofibroblast activation. In the synovium of RA rats, C-AR inhibited hypoxic TGF-β1 induction and suppressed succinate-associated NLRP3 inflammasome activation by inhibiting SDH activity, and thereby prevented myofibroblast activation by blocking the cross-talk between inflammation and fibrosis. Taken together, these results showed that succinate worked as a metabolic signaling, linking inflammation with fibrosis through NLRP3 inflammasome activation. These findings suggested that synovial succinate accumulation and HIF-1α induction might be therapeutical targets for the prevention of fibrosis in arthritis.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Jian-Qun Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Jie Yang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Xiao-Nan Ma
- Cellular and Molecular Biology Center of China Pharmaceutical University , Nanjing , China
| | - Bao-Lin Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing , China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
13
|
Lee SY, Lee J, Lee H, Kim B, Lew J, Baek N, Kim SH. MicroRNA134 Mediated Upregulation of JNK and Downregulation of NFkB Signalings Are Critically Involved in Dieckol Induced Antihepatic Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5508-14. [PMID: 27321552 DOI: 10.1021/acs.jafc.6b01945] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Though Dieckol, a phlorotannin of Ecklonia cava, was known to have antioxidant, anticancer, antidiabetic, and anti-inflammatory effects, the underlying antifibrotic mechanism of Dieckol still remains unclear until now. Thus, in the current study, the inhibitory mechanism of Dieckol on liver fibrosis was elucidated mainly in hepatic stellate cells (HSCs). Dieckol exerted cytotoxicity in LX-2, HSC-T6, and HepG2 cells with the reduced fibrosis features of large, spread out, and flattened polygonal shapes in LX-2 cells compared to untreated control. Dieckol attenuated the expression of α-SMA and TGF-β1, increased sub-G1 phase population, and induced caspase-3 activation and cleavages of PARP in HSCs. Furthermore, Dieckol decreased phosphorylation of ERK, p38, AKT, NF-kB, and IkB and activated the microRNA(miR)134 level and JNK phosphorylation in HSCs. Conversely, JNK inhbitor SP600125 reversed the effect of Dieckol on PARP, p-NF-kB, α -SMA, and p-JNK in LX-2 cells. Likewise, miR134 overexpression mimic enhanced phosphorylation of JNK and NF-kB and reduced the expression of α-SMA and PARP cleavage, while miR134 inhibitor reversed the ability of Dieckol to cleave PARP and attenuate the expression of α-SMA in LX-2 cells. Overall, our findings suggest that Dieckol suppresses liver fibrosis via caspase activation and miR134 mediated JNK activation and NF-kB inhibition.
Collapse
Affiliation(s)
| | - Jihyun Lee
- College of Korean Medicine, Kyung Hee University , Seoul 131-701, South Korea
| | - HyoJung Lee
- College of Korean Medicine, Kyung Hee University , Seoul 131-701, South Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University , Seoul 131-701, South Korea
| | | | | | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University , Seoul 131-701, South Korea
| |
Collapse
|
14
|
Tannuri ACA, Tannuri U. Pediatric Liver Transplantation Program at the Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Clinics (Sao Paulo) 2016; 71:185-6. [PMID: 27166766 PMCID: PMC4825203 DOI: 10.6061/clinics/2016(04)01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Santos MM, Tannuri ACA, Coelho MCM, de Oliveira Gonçalves J, Serafini S, da Silva LFF, Tannuri U. Immediate expression of c-fos and c-jun mRNA in a model of intestinal autotransplantation and ischemia-reperfusion in situ. Clinics (Sao Paulo) 2015; 70:373-9. [PMID: 26039956 PMCID: PMC4449475 DOI: 10.6061/clinics/2015(05)12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Intestinal ischemia-reperfusion injury occurs in several clinical conditions and after intestinal transplantation. The aim of the present study was to investigate the phenomena of apoptosis and cell proliferation in a previously described intestinal ischemia-reperfusion injury autograft model using immunohistochemical markers. The molecular mechanisms involved in ischemia-reperfusion injury repair were also investigated by measuring the expression of the early activation genes c-fos and c-jun, which induce apoptosis and cell proliferation. MATERIALS AND METHODS Thirty adult male Wistar rats were subjected to surgery for a previously described ischemia-reperfusion model that preserved the small intestine, the cecum and the ascending colon. Following reperfusion, the cecum was harvested at different time points as a representative segment of the intestine. The rats were allocated to the following four subgroups according to the reperfusion time: subgroup 1: 5 min; subgroup 2: 15 min; subgroup 3: 30 min; and subgroup 4: 60 min. A control group of cecum samples was also collected. The expression of c-fos, c-jun and immunohistochemical markers of cell proliferation and apoptosis (Ki67 and TUNEL, respectively) was studied. RESULTS The expression of both c-fos and c-jun in the cecum was increased beginning at 5 min after ischemia-reperfusion compared with the control. The expression of c-fos began to increase at 5 min, peaked at 30 min, and exhibited a declining tendency at 60 min after reperfusion. A progressive increase in c-jun expression was observed. Immunohistochemical analyses confirmed these observations. CONCLUSION The early activation of the c-fos and c-jun genes occurred after intestinal ischemia-reperfusion injury, and these genes can act together to trigger cell proliferation and apoptosis.
Collapse
|