1
|
Qian S, Liu H, Wei H, Liu J, Li X, Luo X. Toxic effects of prolonged propofol exposure on cardiac development in zebrafish larvae. BMC Anesthesiol 2025; 25:81. [PMID: 39966746 PMCID: PMC11834635 DOI: 10.1186/s12871-025-02942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Propofol, commonly used as an intravenous anesthetic during pregnancy, can easily penetrate the placental barrier, potentially affecting fetal heart development. This study aims to investigate propofol's impact on developing zebrafish heart structure and function, and identify potential drug targets. METHODS Zebrafish embryos were exposed to different concentrations of propofol (0.5, 1, and 5 mg/L) to observe changes in zebrafish larval heart structure and function (heart rate). In vitro cell experiments were conducted to assess the effects of propofol at different concentrations on cardiomyocyte viability and migration. Transcriptomic sequencing was utilized to identify and validate potential drug targets associated with propofol-induced cardiac toxicity. RESULTS The results demonstrate that propofol dose-dependently reduces the hatching and survival rates of zebrafish larvae, while increasing the rate of deformities. Transgenic green fluorescent zebrafish larvae exposed to propofol exhibit enlarged cardiac cavities, and HE staining reveals thinning of the myocardial wall. Additionally, propofol-treated zebrafish larvae show a decrease in heart rate. We also assess the impact of propofol on myocardial cell function, showing decreased cell viability, reduced migration function, and increased apoptosis. Finally, transcriptome sequencing analysis and differential gene co-expression network analysis identify agxt2 as a potential target of propofol-induced cardiac toxicity. CONCLUSION In conclusion, our study indicates that propofol alters the structure and function of the developing zebrafish heart, with the mitochondrial-related gene agxt2 possibly being a target of its pharmacological effects.
Collapse
Affiliation(s)
- Shaojie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huizi Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hanwei Wei
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jintao Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaojun Li
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaopan Luo
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Huh J, Hwang W. The Role of Anesthetic Management in Lung Cancer Recurrence and Metastasis: A Comprehensive Review. J Clin Med 2024; 13:6681. [PMID: 39597826 PMCID: PMC11594908 DOI: 10.3390/jcm13226681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Lung cancer remains a leading cause of cancer-related mortality worldwide. Although surgical treatment is a primary approach, residual cancer cells and surgery-induced pathophysiological changes may promote cancer recurrence and metastasis. Anesthetic agents and techniques have recently been shown to potentially impact these processes by modulating surgical stress responses, immune function, inflammatory pathways, and the tumor microenvironment. Anesthetics can influence immune-modulating cytokines, induce pro-inflammatory factors such as HIF-1α, and alter natural-killer cell activity, affecting cancer cell survival and spread. Preclinical studies suggest volatile anesthetics may promote tumor progression by triggering pro-inflammatory signaling, while propofol shows potential antitumor properties through immune-preserving effects and reductions in IL-6 and other inflammatory markers. Additionally, opioids are known to suppress immune responses and stimulate pathways that may support cancer cell proliferation, whereas regional anesthesia may reduce these risks by decreasing the need for systemic opioids and volatile agents. Despite these findings, clinical data remain inconclusive, with studies showing mixed outcomes across patient populations. Current clinical trials, including comparisons of volatile agents with propofol-based total intravenous anesthesia, aim to provide clarity but highlight the need for further investigation. Large-scale, well-designed studies are essential to validate the true impact of anesthetic choice on cancer recurrence and to optimize perioperative strategies that support long-term oncologic outcomes for lung cancer patients.
Collapse
Affiliation(s)
| | - Wonjung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
3
|
Ahn HJ. Anesthesia and cancer recurrence: a narrative review. Anesth Pain Med (Seoul) 2024; 19:94-108. [PMID: 38725164 PMCID: PMC11089301 DOI: 10.17085/apm.24041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/15/2024] Open
Abstract
Cancer is a leading cause of death worldwide. With the increasingly aging population, the number of emerging cancer cases is expected to increase markedly in the foreseeable future. Surgical resection with adjuvant therapy is the best available option for the potential cure of many solid tumors; thus, approximately 80% of patients with cancer undergo at least one surgical procedure during their disease. Agents used in general anesthesia can modulate cytokine release, transcription factors, and/or oncogenes. This can affect host immunity and the capability of cancer cells to survive and migrate, not only during surgery but for up to several weeks after surgery. However, it remains unknown whether exposure to anesthetic agents affects cancer recurrence or metastasis. This review explores the current literature to explain whether and how the choice of anesthetic and perioperative medication affect cancer surgery outcomes.
Collapse
Affiliation(s)
- Hyun Joo Ahn
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Debel W, Ramadhan A, Vanpeteghem C, Forsyth RG. Does the Choice of Anaesthesia Affect Cancer? A Molecular Crosstalk between Theory and Practice. Cancers (Basel) 2022; 15:cancers15010209. [PMID: 36612205 PMCID: PMC9818147 DOI: 10.3390/cancers15010209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
In recent years, there has been an increasing scientific interest in the interaction between anaesthesia and cancer development. Retrospective studies show that the choice of anaesthetics may influence cancer outcome and cancer recurrence; however, these studies show contradictory results. Recently, some large randomized clinical trials have been completed, yet they show no significant effect of anaesthetics on cancer outcomes. In this scoping review, we compiled a body of in vivo and in vitro studies with the goal of evaluating the biological effects of anaesthetics on cancer cells in comparison to clinical effects as described in recent studies. It was found that sevoflurane, propofol, opioids and lidocaine are likely to display direct biological effects on cancer cells; however, significant effects are only found in studies with exposure to high concentrations of anaesthetics and/or during longer exposure times. When compared to clinical data, these differences in exposure and dose-effect relation, as well as tissue selectivity, population selection and unclear anaesthetic dosing protocols might explain the lack of outcome.
Collapse
Affiliation(s)
- Wiebrecht Debel
- Department of Anesthesiology, University Hospital Ghent, 9000 Ghent, Belgium
| | - Ali Ramadhan
- Department of Pathological Anatomy, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | | | - Ramses G. Forsyth
- Department of Pathological Anatomy, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
- Laboratorium for Experimental Pathology (EXPA), Vrije Universiteit Brussel, 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-(2)-4775084
| |
Collapse
|
5
|
Cui C, Zhang D, Sun K, Zhu Y, Xu J, Kang Y, Zhang G, Cai Y, Mao S, Long R, Ma J, Dong S, Sun Y. Propofol maintains Th17/Treg cell balance in elderly patients undergoing lung cancer surgery through GABAA receptor. BMC Immunol 2022; 23:58. [PMID: 36434505 PMCID: PMC9701037 DOI: 10.1186/s12865-022-00490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/17/2022] [Indexed: 11/27/2022] Open
Abstract
Propofol is widely used in clinical anesthesia due to its advantages of rapid onset and less adverse reactions. This study focused on the role of propofol in the balance of Th17/Treg in elderly patients with lung cancer during perioperative period. Patients undergoing lung cancer surgery were anesthetized by propofol or sevoflurane. Veinal blood was collected at different time points to evaluate the changes of Th17/Treg cell. Propofol better maintained the balance of Th17/Treg in vivo. The peripheral blood of patients with lung cancer was collected in vitro before surgery. Cluster of differentiation (CD)4+ T cells were obtained and then treated with propofol at different concentrations and γ-aminobutyric acid A (GABAA) receptor antagonists. Propofol affected Th17/Treg cell balance by increasing Th17 cells, decreasing Treg cells, thus elevating Th17/Treg ratio, and inhibited invasion and migration of lung cancer cells through GABAA receptor, which was counteracted by GABAA receptor inhibitors. Subsequently, tumor in situ model of lung cancer in aged mice was established. Propofol anesthetized mice had lower change of Th17/Treg ratio, higher survival rate and less metastasis. In brief, propofol regulated balance of Th17/Treg in elderly patients undergoing lung cancer surgery through GABAA receptor. Additionally, propofol could inhibit metastasis of lung cancer.
Collapse
Affiliation(s)
- Can Cui
- grid.413405.70000 0004 1808 0686Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| | - Dengwen Zhang
- grid.413405.70000 0004 1808 0686Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| | - Ke Sun
- grid.413405.70000 0004 1808 0686Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| | - Yi Zhu
- grid.413405.70000 0004 1808 0686Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| | - Jindong Xu
- grid.413405.70000 0004 1808 0686Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| | - Yin Kang
- grid.413405.70000 0004 1808 0686Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| | - Guangyan Zhang
- grid.413405.70000 0004 1808 0686Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| | - Yujin Cai
- grid.413405.70000 0004 1808 0686Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| | - Songsong Mao
- grid.413405.70000 0004 1808 0686Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| | - Ruichun Long
- grid.413405.70000 0004 1808 0686Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| | - Jue Ma
- grid.413405.70000 0004 1808 0686Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| | - Song Dong
- grid.413405.70000 0004 1808 0686Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| | - Yi Sun
- grid.413405.70000 0004 1808 0686Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChuan Road, Guangzhou, 510080 China
| |
Collapse
|
6
|
Gu L, Pan X, Wang C, Wang L. The benefits of propofol on cancer treatment: Decipher its modulation code to immunocytes. Front Pharmacol 2022; 13:919636. [PMID: 36408275 PMCID: PMC9672338 DOI: 10.3389/fphar.2022.919636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2023] Open
Abstract
Anesthetics are essential for cancer surgery, but accumulated research have proven that some anesthetics promote the occurrence of certain cancers, leading to adverse effects in the lives of patients. Although anesthetic technology is mature, there is no golden drug selection standard for surgical cancer treatment. To afford the responsibility of human health, a more specific regimen for cancer resection is indeed necessary. Immunosuppression in oncologic surgery has an adverse influence on the outcomes of patients. The choice of anesthetic strategies influences perioperative immunity. Among anesthetics, propofol has shown positive effects on immunity. Apart from that, propofol's anticancer effect has been generally reported, which makes it more significant in oncologic surgery. However, the immunoregulative function of propofol is not reorganized well. Herein, we have summarized the impact of propofol on different immunocytes, proposed its potential mechanism for the positive effect on cancer immunity, and offered a conceivable hypothesis on its regulation to postoperative inflammation. We conclude that the priority of propofol is high in oncologic surgery and propofol may be a promising immunomodulatory drug for tumor therapy.
Collapse
Affiliation(s)
- Long Gu
- First Operating Room, First Hospital of Jilin University, Changchun, China
| | - Xueqi Pan
- Intensive Care Unit, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Chongcheng Wang
- Trauma Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Wang
- Department of Pediatric Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
7
|
Brogi E, Forfori F. Anesthesia and cancer recurrence: an overview. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE (ONLINE) 2022; 2:33. [PMID: 37386584 DOI: 10.1186/s44158-022-00060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/05/2022] [Indexed: 07/01/2023]
Abstract
Several perioperative factors are responsible for the dysregulation or suppression of the immune system with a possible impact on cancer cell growth and the development of new metastasis. These factors have the potential to directly suppress the immune system and activate hypothalamic-pituitary-adrenal axis and the sympathetic nervous system with a consequent further immunosuppressive effect.Anesthetics and analgesics used during the perioperative period may modulate the innate and adaptive immune system, inflammatory system, and angiogenesis, with a possible impact on cancer recurrence and long-term outcome. Even if the current data are controversial and contrasting, it is crucial to increase awareness about this topic among healthcare professionals for a future better and conscious choice of anesthetic techniques.In this article, we aimed to provide an overview regarding the relationship between anesthesia and cancer recurrence. We reviewed the effects of surgery, perioperative factors, and anesthetic agents on tumor cell survival and tumor recurrence.
Collapse
Affiliation(s)
- Etrusca Brogi
- Department of Anesthesia and Intensive Care, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - Francesco Forfori
- Department of Anesthesia and Intensive Care, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| |
Collapse
|
8
|
Volatile versus propofol general anesthesia and long-term survival after breast cancer surgery: a national registry retrospective cohort study. Anesthesiology 2022; 137:315-326. [PMID: 35759394 DOI: 10.1097/aln.0000000000004309] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Several retrospective studies using administrative or single center data have failed to show any difference between general anesthesia using propofol versus inhaled volatiles on long-term survival after breast cancer surgery. Although randomized controlled trials are ongoing, validated data from national clinical registries may advance the reliability of existing knowledge. METHODS Data on breast cancer surgery performed under general anesthesia between 2013 and 2019 from The Swedish PeriOperative Register and The National Quality Register for Breast Cancer were record-linked. Overall survival was compared between patients receiving propofol or inhaled volatile for anesthesia maintenance. RESULTS Of 18,674 subjects, 13,873 patients (74.3%) received propofol and 4,801 (25.7%) received an inhaled volatile for general anesthesia maintenance. The two cohorts differed in most respects. Patients receiving inhaled volatile were older (67 years vs 65 years), sicker (888 [19.0%] ASA status 3-5 versus 1,742 [12.8%]), and the breast cancer to be more advanced. Median follow-up was 33 months (IQR, 19 to 48). In the full, unmatched cohort, there was a statistically significantly higher overall survival among patients receiving propofol (13,489/ 13,873 (97.2%)) versus inhaled volatile (4,039/4,801 (84.1%)) hazard ratio = 0.80 (95% CI 0.70-0.90, P < 0.001). Following 1:1 propensity score matching (4,658 matched pairs) there was no statistically significant difference in overall survival, (propofol 4,284/4,658 (92.0%) versus inhaled volatile 4,288/4,658 (92.1%) hazard ratio = 0.98 (95% CI 0.85-1.13, P = 0.756)). CONCLUSIONS Among patients undergoing breast cancer surgery under general anesthesia, no association was observed between the choice of propofol or an inhaled volatile maintenance and overall survival.
Collapse
|
9
|
Cheng J, Zhang R, Yan M, Li Y. Circular RNA hsa_circ_0000277 promotes tumor progression and DDP resistance in esophageal squamous cell carcinoma. BMC Cancer 2022; 22:238. [PMID: 35241028 PMCID: PMC8895546 DOI: 10.1186/s12885-022-09241-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) are well-known regulators of cancer progression and chemoresistance in various types of cancers. This study was performed to investigate the function of hsa_circ_0000277 in esophageal squamous cell carcinoma (ESCC). Methods RNA levels were analyzed via the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell Counting Kit-8 (CCK-8) assay was applied to determine cell proliferation and half maximal inhibitory concentration (IC50) of cisplatin (DDP). Colony formation ability was evaluated by colony formation assay. Cell cycle and apoptosis were measured using flow cytometry. RNA immunoprecipitation (RIP), pull-down assay and dual-luciferase reporter assays were performed for target interaction analysis. The protein levels were determined through western blot. Xenograft models were established for researching hsa_circ_0000277 function in vivo. Results Hsa_circ_0000277 expression was increased in ESCC cells and tissues, and it had important clinical significance. Downregulation of hsa_circ_0000277 repressed ESCC cell proliferation, colony formation, cell cycle, and DDP resistance. Hsa_circ_0000277 acted as a microRNA-873-5p (miR-873-5p) sponge and Sry-related high-mobility group box 4 (SOX4) was validated as a target of miR-873-5p. Moreover, hsa_circ_0000277/miR-873-5p axis and miR-873-5p/SOX4 axis regulated ESCC cell progression and DDP resistance. Hsa_circ_0000277/miR-873-5p axis activated SOX4/Wnt/β-catenin signaling pathway. Hsa_circ_0000277 facilitated tumorigenesis and DDP resistance by miR-873-5p/SOX4 axis in vivo. Conclusion These findings unraveled that hsa_circ_0000277 promoted ESCC progression and DDP resistance via miR-873-5p/SOX4/Wnt/β-catenin axis, showing a specific molecular mechanism of carcinogenesis and chemoresistance in ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09241-9.
Collapse
Affiliation(s)
- Jiwei Cheng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan Province, China
| | - Ruixiang Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan Province, China
| | - Ming Yan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan Province, China
| | - Yin Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan Province, China.
| |
Collapse
|
10
|
Wu WW, Zhang WH, Zhang WY, Liu K, Chen XZ, Zhou ZG, Liu J, Zhu T, Hu JK. The long-term survival outcomes of gastric cancer patients with total intravenous anesthesia or inhalation anesthesia: a single-center retrospective cohort study. BMC Cancer 2021; 21:1193. [PMID: 34758772 PMCID: PMC8579630 DOI: 10.1186/s12885-021-08946-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Background The relationship between the type of anesthesia and the survival outcomes of gastric cancer patients is uncertain. This study compared the overall outcome of gastric cancer patients after surgery with total intravenous anesthesia (TIVA) or inhalation anesthesia (IHA). Methods Clinicopathological variables of gastric cancer patients were retrieved from the database of the Surgical Gastric Cancer Patient Registry in West China Hospital, Sichuan University. Patients were grouped according to whether they received TIVA or IHA during the operation. Propensity score (PS) matching was used to balance the baseline variables, and survival outcomes were compared between these two groups. In addition, studies comparing survival outcomes between TIVA and IHA used for gastric cancer surgery and published before April 20th, 2020, were identified, and their data were pooled. Results A total of 2827 patients who underwent surgical treatment from Jan 2009 to Dec 2016 were included. There were 323 patients in the TIVA group and 645 patients in the IHA group, with 1:2 PS matching. There was no significant difference in overall survival outcomes between the TIVA and IHA groups before matching the cohort (p = 0.566) or after matching the cohort (p = 0.679) by log-rank tests. In the Cox hazard regression model, there was no significant difference between the TIVA and IHA groups before (HR: 1.054, 95% CI: 0.881–1.262, p = 0.566) or after (HR: 0.957, 95% CI: 0.779–1.177, p = 0.679) PS matching. The meta-analysis of survival outcomes between the TIVA and IHA groups found critical statistical value in the before PS matching cohort (HR 0.74, 95% CI: 0.57–0.96 p < 0.01) and after PS matching cohort (HR: 0.65, 95% CI: 0.46–0.94, p < 0.01). Conclusions Combined with the results of previous studies, total intravenous anesthesia has been shown to be superior to inhalation anesthesia in terms of overall survival for gastric cancer patients undergoing surgical treatment. The selection of intravenous or inhalation anesthesia for gastric cancer surgery should take into account the long-term prognosis of the patient. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08946-7.
Collapse
Affiliation(s)
- Wei-Wei Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guo Xue Street, Chengdu, Sichuan Province, China
| | - Wei-Han Zhang
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 37 Guo Xue Street, Chengdu, Sichuan Province, China
| | - Wei-Yi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guo Xue Street, Chengdu, Sichuan Province, China
| | - Kai Liu
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 37 Guo Xue Street, Chengdu, Sichuan Province, China
| | - Xin-Zu Chen
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 37 Guo Xue Street, Chengdu, Sichuan Province, China
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 37 Guo Xue Street, Chengdu, Sichuan Province, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guo Xue Street, Chengdu, Sichuan Province, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guo Xue Street, Chengdu, Sichuan Province, China
| | - Jian-Kun Hu
- Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 37 Guo Xue Street, Chengdu, Sichuan Province, China.
| |
Collapse
|
11
|
Saha P, Das A, Chatterjee N, Chakrabarti D, Sinha D. Impact of anesthetics on oncogenic signaling network: a review on propofol and isoflurane. Fundam Clin Pharmacol 2021; 36:49-71. [PMID: 34655261 DOI: 10.1111/fcp.12732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022]
Abstract
Propofol as an intravenous anesthetic and isoflurane as an inhalational/volatile anesthetic continue to be an important part of surgical anesthetic interventions worldwide. The impact of these anesthetics on tumor progression, immune modulation, and survival rates of cancer patients has been widely investigated. Although most of the preclinical studies have provided a beneficial effect of propofol over isoflurane or other volatile anesthetics, several investigations have shown contradictory results, which warrant more preclinical and clinical studies. Propofol mostly exhibits antitumor properties, whereas isoflurane being a cost-effective anesthetic is frequently used. However, isoflurane has been also reported with protumorigenic activity. This review provides an overall perspective on the network of signaling pathways that may modulate several steps of tumor progression from inflammation, immunomodulation, epithelial-mesenchymal transition (EMT) to invasion, metastasis, angiogenesis, and cancer stemness and extracellular vesicles along with chemotherapeutic applications and clinical status of these anesthetics. A clear understanding of the mechanistic viewpoints of these anesthetics may pave the way for more prospective clinical trials with the ultimate goal of obtaining a safe and optimal anesthetic intervention that would prevent cancer recurrence and may influence better postoperative survival.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ananya Das
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nabanita Chatterjee
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Deepa Chakrabarti
- Department of Anesthesiology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
12
|
Cao Y, Fan L, Li L, Zhou J. Propofol suppresses cell proliferation in gastric cancer cells through NRF2-mediated polyol pathway. Clin Exp Pharmacol Physiol 2021; 49:264-274. [PMID: 34570396 PMCID: PMC9299175 DOI: 10.1111/1440-1681.13595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022]
Abstract
Propofol, a widely used short‐acting intravenous sedative agent, has gradually gained attention due to the tumour‐suppressing role and non‐anaesthetic effect. Dysfunction of metabolic reprogramming has been recognised as a well‐documented factor for tumour progression. The aim of this study is to explore the effect of propofol on the polyol pathway in gastric cancer cells. In this study, we found that propofol treatment led to a significant downregulation of cell proliferation in BGC823 and GES‐1 cells, which was attributed to the decreased AR‐mediated polyol pathway. Both aldo‐keto reductase family 1, member B1 (AKR1B1) and AKR1B10 were significantly reduced in BGC823 and GES‐1 cells in response to propofol stimulation, leading to decreased AR activity and sorbitol level. Addition of sorbitol could reverse the inhibitory effect of propofol on cell proliferation. Mechanically, propofol treatment drastically inhibited phosphorylation and nuclear translocation of nuclear factor (erythroid‐derived 2)‐like 2 (NRF2), subsequently decreased the binding of NRF2 to AR promoter. Overexpression of NRF2 resulted in the recovery of AR expression in gastric cancer cell with propofol treatment. Taken together, these finding showed that propofol suppressed cell proliferation in BGC823 and GES‐1 cell through NRF2‐mediated polyol pathway, which would aid the selection of sedation for patients with gastric cancer.
Collapse
Affiliation(s)
- Yajun Cao
- Department of Anesthesia, Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Long Fan
- Department of Pharmacy, Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Linkai Li
- Department of Pharmacy, Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Jiexian Zhou
- Department of Anesthesia, Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| |
Collapse
|
13
|
Bimonte S, Cascella M, Forte CA, Esposito G, Del Prato F, Raiano N, Del Prete P, Cuomo A. Effects of the Hypnotic Alkylphenol Derivative Propofol on Breast Cancer Progression. A Focus on Preclinical and Clinical Studies. In Vivo 2021; 35:2513-2519. [PMID: 34410937 DOI: 10.21873/invivo.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022]
Abstract
Propofol is a hypnotic alkylphenol derivative with many biological activities. It is predominantly used in anesthesia and is the most used parenteral anesthetic agent in the United States. Accumulating preclinical studies have shown that this compound may inhibit cancer recurrence and metastasis. Nevertheless, other investigations provided evidence that this compound may promote breast cancer cell progression by modulating different molecular pathways. Clinical data on this topic are scarce and derive from retrospective analyses. For this reason, we reviewed and evaluated the available data to reveal insight into this controversial issue. More preclinical and clinical investigations are necessary to determine the potential role of propofol in the proliferation of breast cancer cells.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy;
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Cira Antonietta Forte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Gennaro Esposito
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Francesco Del Prato
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Nicola Raiano
- Radiology Division, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Via Mariano Semmola, Naples, Italy
| | - Paola Del Prete
- Direzione Scientifica, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
14
|
Raigon Ponferrada A, Guerrero Orriach JL, Molina Ruiz JC, Romero Molina S, Gómez Luque A, Cruz Mañas J. Breast Cancer and Anaesthesia: Genetic Influence. Int J Mol Sci 2021; 22:7653. [PMID: 34299272 PMCID: PMC8307639 DOI: 10.3390/ijms22147653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the leading cause of mortality in women. It is a heterogeneous disease with a high degree of inter-subject variability even in patients with the same type of tumor, with individualized medicine having acquired significant relevance in this field. The clinical and morphological heterogeneity of the different types of breast tumors has led to a diversity of staging and classification systems. Thus, these tumors show wide variability in genetic expression and prognostic biomarkers. Surgical treatment is essential in the management of these patients. However, the perioperative period has been found to significantly influence survival and cancer recurrence. There is growing interest in the pro-tumoral effect of different anaesthetic and analgesic agents used intraoperatively and their relationship with metastatic progression. There is cumulative evidence of the influence of anaesthetic techniques on the physiopathological mechanisms of survival and growth of the residual neoplastic cells released during surgery. Prospective randomized clinical trials are needed to obtain quality evidence on the relationship between cancer and anaesthesia. This document summarizes the evidence currently available about the effects of the anaesthetic agents and techniques used in primary cancer surgery and long-term oncologic outcomes, and the biomolecular mechanisms involved in their interaction.
Collapse
Affiliation(s)
- Aida Raigon Ponferrada
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Jose Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Juan Carlos Molina Ruiz
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Salvador Romero Molina
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Aurelio Gómez Luque
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Jose Cruz Mañas
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| |
Collapse
|
15
|
Edgunlu TG, Avci CB, Ozates NP, Bagca BG, Celik SK, Boluk A, Ugur B. In Vitro Effects of Propofol on Cytotoxic, Apoptotic and PI3K-Akt Signaling Pathway Genes on Brain Cancer Cells. Anticancer Agents Med Chem 2021; 22:356-361. [PMID: 34238171 DOI: 10.2174/1871520621666210708094328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
AIM It was aimed to determine the cytotoxic and apoptotic effect of propofol on glioma cells. BACKGROUND Propofol [2,6-diisopropylphenol] is a commonly used intravenous anesthetic. Propofol is known to have a mechanism of action on the PI3K-AKT pathway. OBJECTIVE This study aimed to evaluate the effect of propofol on the proliferation and apoptosis of human glioma cells, as well as to investigate changes in expression levels of the PI3K-AKT signaling pathway genes. MATERIALS-METHODS The cytotoxic effect of propofol on the U-87 MG cell line was determined by WST-1 method. Annexin V-FITC and Mitoprobe JC-1 assay were used to measure apoptosis by flow cytometry. Expression levels of genes in the PI3K-AKT signaling pathway were investigated by qRT-PCR. RESULTS We have shown that propofol-induced apoptosis in U-87 MG cells by 17.1-fold compared to untreated control. Furthermore, significant differences were found in the expression levels of the PI3K-AKT signaling pathway genes. CONCLUSION As a result of our study, it was found that propofol caused differences in expression levels of PI3K-AKT signaling pathway genes, and it was suggested that these differences might be related to apoptosis induction.
Collapse
Affiliation(s)
- Tuba Gokdogan Edgunlu
- Muğla Sıtkı Koçman University Faculty of Medicine Department of Medical Biology, Turkey
| | - Cigir Biray Avci
- Ege University Faculty of Medicine Department of Medical Biology, Turkey
| | | | - Bakiye Goker Bagca
- Ege University Faculty of Medicine Department of Medical Biology, Turkey
| | - Sevim Karakas Celik
- Bülent Ecevit University Faculty of Medicine Department of Medical Genetic, Turkey
| | - Aydin Boluk
- Muğla Sıtkı Koçman University Faculty of Medicine, Turkey
| | - Bakiye Ugur
- Muğla Sıtkı Koçman University Faculty of Medicine Department of Anesthesiology and Reanimation, Turkey
| |
Collapse
|
16
|
Du Y, Zhang X, Zhang H, Chen Y, Zhu S, Shu J, Pan H. Propofol modulates the proliferation, invasion and migration of bladder cancer cells through the miR‑145‑5p/TOP2A axis. Mol Med Rep 2021; 23:439. [PMID: 33846791 PMCID: PMC8060790 DOI: 10.3892/mmr.2021.12078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Propofol‑based anesthesia has been reported to reduce the recurrence and metastasis of a number of cancer types following surgical resection. However, the effects of propofol in bladder cancer (BC) are yet to be fully elucidated. The aim of the present study was to investigate the functions of propofol in BC and their underlying mechanisms. In the study, the expression of microRNA (miR)‑145‑5p in BC tissues and cell lines was evaluated using reverse transcription‑quantitative PCR, and the effects of propofol on BC cells were determined using cell viability, wound healing and Transwell cell invasion assays, bioinformatics analysis, western blotting, immunohistochemistry and in vivo tumor xenograft models. It was found that propofol significantly suppressed the proliferation, migration and invasion of BC cells in vitro. In addition, propofol induced miR‑145‑5p expression in a time‑dependent manner, and miR‑145‑5p knockdown attenuated the inhibitory effects of propofol on the proliferation, migration and invasion of BC cells. Topoisomerase II α (TOP2A) was a direct target of miR‑145‑5p, and silencing TOP2A reversed the effects of miR‑145‑5p knockdown in propofol‑treated cells. Furthermore, propofol suppressed tumor xenograft growth, which was partially attenuated by miR‑145‑5p knockdown. The present study provided novel insight into the advantages of surgical intervention with propofol anesthesia in patients with BC.
Collapse
Affiliation(s)
- Yi Du
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Xudong Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Hongwei Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Yiding Chen
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shuying Zhu
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jinjun Shu
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Hui Pan
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Abstract
Objective This study aimed to explore the correlation between the SRY-related high-mobility-group box gene 4 (SOX4) 3′ untranslated region (UTR) single nucleotide polymorphism (SNP) and osteoporosis susceptibility. Methods The study recruited 330 osteoporosis patients (the case group) and 330 non-osteoporosis patients (the control group) in Sichuan Chengdu First People’s Hospital and Zibo Central Hospital from August 2016 to August 2019. Sanger sequencing was used to analyze the genotypes of SOX4 gene rs79958549, rs139085828, and rs201335371 loci. Multi-factor dimensionality reduction (MDR) was used to analyze the interaction between the SOX4 gene rs79958549, rs139085828, and rs201335371 loci and the clinical characteristics of the subjects. Results The risk of osteoporosis in the carriers of A allele at SOX4 rs79958549 was 5.40 times that in the carriers of the G allele (95% CI 3.25–8.96, P < 0.01). The risk of osteoporosis in the carriers of the A allele at SOX4 rs139085828 was 1.68 times that in the carriers of the G allele (95% CI 1.45–1.85, P < 0.01). The risk of osteoporosis in the carriers of the T allele at SOX4 rs201335371 was 0.54 times that in the carriers of the C allele (95% CI 0.43–0.69, P < 0.01). The SOX4 gene rs79958549, rs139085828, and rs201335371 A-A-C haplotype (OR = 5.14, 95% CI 2.45–10.57, P < 0.01) were associated with increased risk of osteoporosis and G-G-T haplotype was significantly associated with decreased risk of osteoporosis (OR = 0.48, 95% CI 0.38–0.62, P < 0.01). The interaction among the factors of sex, smoking, drinking, rs79958549, rs201335371 was the best model for osteoporosis prediction, and the risk for osteoporosis in ‘high-risk combination’ was 2.74 times that of ‘low-risk combination’ (95% CI 1.01–7.43, P = 0.04). Multiple logistic regression analysis revealed that the risk factors for osteoporosis were BMD (OR = 5.85, 95% CI 2.88–8.94, P < 0.01), T score (OR = 8.54, 95% CI 5.66–10.49, P < 0.01), Z score (OR = 3.77, 95% CI 2.15–8.50, P < 0.01), rs79958549 SNP (OR = 6.92, 95% CI 3.58–8.93, P < 0.01), and rs139085828 SNP (OR = 2.36, 95% CI 1.85–4.27, P < 0.01). The protective factor for osteoporosis was rs201335371SNP (OR = 0.48, 95% CI 0.32–0.75, P < 0.01). Conclusion The SOX4 gene SNPs rs79958549, rs139085828, and rs201335371 loci were significantly associated with osteoporosis risk.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Surgery remains integral to treating solid cancers. However, the surgical stress response, characterized by physiologic perturbation of the adrenergic, inflammatory, and immune systems, may promote procancerous pathways. Anesthetic technique per se may attenuate/enhance these pathways and thereby could be implicated in long-term cancer outcomes. RECENT FINDINGS To date, clinical studies have predominantly been retrospective and underpowered and, thus limit meaningful conclusions. More recently, prospective studies of regional anesthesia for breast and colorectal cancer surgery have failed to demonstrate long-term cancer outcome benefit. However, based on the consistent observation of protumorigenic effects of surgical stress and that of volatile anesthesia in preclinical studies, supported by in vivo models of tumor progression and metastasis, we await robust prospective clinical studies exploring the role of propofol-based total intravenous anesthesia (cf. inhalational volatiles). Additionally, anti-adrenergic/anti-inflammatory adjuncts, such as lidocaine, nonsteroidal anti-inflammatory drugs and the anti-adrenergic propranolol warrant ongoing research. SUMMARY The biologic perturbation of the perioperative period, compounded by the effects of anesthetic agents, renders patients with cancer particularly vulnerable to enhanced viability of minimal residual disease, with long-term outcome consequences. However, low level and often conflicting clinical evidence equipoise currently exists with regards to optimal oncoanesthesia techniques. Large, prospective, randomized control trials are urgently needed to inform evidence-based clinical practice guidelines.
Collapse
|
19
|
Li S, Yang H, Zhao M, Gong L, Wang Y, Lv Z, Quan Y, Wang Z. Demethylation of HACE1 gene promoter by propofol promotes autophagy of human A549 cells. Oncol Lett 2020; 20:280. [PMID: 33014158 PMCID: PMC7520799 DOI: 10.3892/ol.2020.12143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Propofol (2,6-diisopropylphenol) is one of the most commonly used intravenous anesthetics and possesses a number of non-anesthetic effects, including antitumor function. The aim of the present study was to elucidate the antitumor molecular mechanism of propofol on A549 and H1299 cells. A549 and H1299 cells were treated in the presence or absence of different concentrations (0, 60 or 120 µmol) of propofol for different durations (0, 24, 48 or 72 h), and proliferation was detected by MTT and colony formation assays; the protein levels of optineurin (OPTN) ubiquitination, HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1), methyl-CpG binding domain protein 3 (MBD3) and Microtubule-associated protein 1A/1B-light chain 3 were detected by immunoblotting or quantitative (q)PCR; the methylation state of the HACE1 gene promoter was detected by bisulfite DNA sequencing; and binding of MBD3 on HACE1 gene promoter was detected by chromatin immunoprecipitation-qPCR. Propofol inhibited proliferation of A549 and H1299 cells and promoted HACE1-OPTN axis-mediated selective autophagy activity by increasing the protein expression levels of HACE1 via demethylating its promoter region. Furthermore, propofol promoted expression levels of MBD3 and binding to the -1,000 to -1 bp (transcription start site) region of HACE1 gene promoter. MBD3-knockdown experiments indicated that propofol inhibited proliferation of A549 cells in a MBD3-dependent manner. Thus, the findings of the present study provided a potential antitumor molecular mechanism mediated by propofol.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Hui Yang
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Min Zhao
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Linli Gong
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Yahong Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Zhiyong Lv
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Yuhang Quan
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Zhonghui Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
20
|
Xian XS, Wang YT, Jiang XM. Propofol Inhibits Proliferation and Invasion of Stomach Cancer Cells by Regulating miR-205/YAP1 Axis. Cancer Manag Res 2020; 12:10771-10779. [PMID: 33149682 PMCID: PMC7605617 DOI: 10.2147/cmar.s270344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background Propofol is a common clinical intravenous anesthetic. In the last few years, studies have revealed that propofol not only has good anesthetic effect but also has certain anticancer effect. However, its role in stomach cancer (SC) and related mechanisms are still under investigation. Objective This study was designed to determine the effect of propofol on SC and its related mechanisms. Methods Purchased SC cells were treated with propofol at different concentrations (5, 10, and 20 μg/mL), miR-205 overexpression, and YAP1 inhibition. Then, the Cell Counting Kit-8 (CCK8), Transwell, and flow cytometry were carried out to determine the biological behavior changes of treated cells and the expression of miR-205 and YAP1 after treatment. Results Propofol (10 μg/mL and 20 μg/mL) inhibited the growth of SC cells and promoted their apoptosis, and overexpressing miR-205 or inhibiting YAP1 can exert the same effects. In addition, propofol (10μg/mL and 20μg/mL) up-regulated miR-205 in SC cells. The dual-luciferase reporter assay revealed that YAP1 could be targeted and regulated by miR-205, and the rescue assay revealed that inhibiting miR-205 or overexpressing YAP1 could weaken the effect of propofol on the biological behaviors of SC cells. Conclusion Propofol can strongly suppress the proliferation and invasion of SC cells and induce their apoptosis via the miR-205/YAP1 axis.
Collapse
Affiliation(s)
- Xiang-Shu Xian
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Qingdao 264000, People's Republic of China
| | - Yu-Tie Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Qingdao 264000, People's Republic of China
| | - Xiao-Meng Jiang
- Department of Digestive, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| |
Collapse
|
21
|
Khorsandi L, Farasat M. Zinc oxide nanoparticles enhance expression of maspin in human breast cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38300-38310. [PMID: 32621200 DOI: 10.1007/s11356-020-09986-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Toxic and apoptotic impacts of zinc oxide nanoparticle (ZNP) on different cancer cells have been reported. Maspin (a mammary serine protease inhibitor) as a tumor suppressor gene can inhibit tumor growth and metastasis. The expression of maspin is modulated by p53, Bcl-2 family genes, and estrogen receptor α (ER-α). This study aimed to assess the ZNP effects on maspin expression in MCF-7 cells (a breast cancer cell). Experimental groups (ZNP5, ZNP10, and ZNP20) received 5, 10, and 20 μM/mL ZNP for 48 h, respectively. 17-β-estradiol (E2) was used to evaluate the role of ER-α in the anticancer impact of ZNP. Cell viability, Annexin V, migration assay, gene expression, and western blotting methods were applied to evaluate ZNP effects on the MCF-7 cells. ZNP at the concentrations of 10 and 20 μM/mL could significantly decrease the viability and migration rate, and significantly increase apoptosis percentage in the MCF-7 cells. ZNP significantly enhanced mRNA expression and protein level of maspin in MCF-7 cells in a concentration-dependent way. ZNP concentration-dependently elevated mRNA expression and protein level of p53 and Bax while reduced the expression of Bcl-2 and ER-α. E2 promoted cancer cell growth by enhancing survival and migration rates. E2 treatment reduced mRNA expression and protein level of maspin and p53, and elevated Bcl-2 expression. ZNP considerably changed these events induced by E2 in the MCF-7 cells. It is concluded that the maspin overexpression is one of the toxic mechanisms of the ZNP on the ER-α-positive breast cancer cells, and can suppress the migration of these cells.
Collapse
Affiliation(s)
- Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farasat
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Zeng J, Li YK, Quan FF, Zeng X, Chen CY, Zeng T, Zou J, Tong WJ. Propofol‑induced miR‑125a‑5p inhibits the proliferation and metastasis of ovarian cancer by suppressing LIN28B. Mol Med Rep 2020; 22:1507-1517. [PMID: 32627014 PMCID: PMC7346589 DOI: 10.3892/mmr.2020.11223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Propofol, a commonly used intravenous anesthetic agent during surgery, has relatively widespread pharmacological actions. Previous studies have reported that propofol may act as an antitumor drug in several cancer types, such as pancreatic cancer, lung cancer and gastric cancer. However, the underlying mechanism in ovarian cancer remain unknown. Therefore, the present study investigated the pharmacological effect of propofol on microRNAs (miRNAs) in ovarian cancer treatment. Propofol (1, 5 or 10 µg/ml) was used to treat A2780 and SKOV3 ovarian cancer cells for 1, 2, 3, 4 or 5 days. The MTT assay was used to detect cell viability, while wound healing and Transwell assays were utilized to assess the invasive and migratory abilities. The bioinformatics prediction approach identified differentially expressed miRNAs (miRs) that were used in Gene Ontology, Gene Set Enrichment Analysis and Kyoto Encyclopedia of Genes and Genomes analyses. The expression levels of miR‑125a‑5p and lin‑28 homolog B (LIN28B) were evaluated by reverse transcription‑quantitative PCR (RT‑qPCR). A luciferase assay was performed to identify the relationship between miR‑125a‑5p and LIN28B. Western blotting was conducted to measure the protein expression of LIN28B. It was demonstrated that propofol significantly upregulated miR‑125a‑5p to exert its antitumor activity. RT‑qPCR results suggested that propofol could upregulate miR‑125a‑5p and LIN28B expression levels in ovarian cancer cell lines. Western blot analysis also indicated that propofol could enhance the expression of LIN28B in ovarian cancer cell lines. The luciferase assay identified that miR‑125a‑5p could directly inhibit the expression of LIN28B to suppress proliferation and metastasis in ovarian cancer. In conclusion, these results suggested that propofol inhibited ovarian cancer proliferation and metastasis by enhancing miR‑125a‑5p, which targets LIN28B.
Collapse
Affiliation(s)
- Juan Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yu-Kun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Fei-Fei Quan
- Department of Gynecology, Foshan First People's Hospital, Foshan, Guangdong 528000, P.R. China
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xin Zeng
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chang-Ye Chen
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
- Correspondence to: Dr Juan Zou, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, 28 West Changsheng Road, Hengyang, Hunan 421001, P.R. China, E-mail:
| | - Wen-Juan Tong
- Department of Obstetrics, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
- Dr Wen-Juan Tong, Department of Obstetrics, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, Hunan 421001, P.R. China, E-mail:
| |
Collapse
|
23
|
Xu Y, Pan S, Jiang W, Xue F, Zhu X. Effects of propofol on the development of cancer in humans. Cell Prolif 2020; 53:e12867. [PMID: 32596964 PMCID: PMC7445405 DOI: 10.1111/cpr.12867] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of most the significant threats to human health worldwide, and the primary method of treating solid tumours is surgery. Propofol, one of the most widely used intravenous anaesthetics in surgery, was found to be involved in many cancer‐related pathophysiology processes, mainly including anti‐tumour and minor cancer‐promoting effects in various types of cancer. An increasing number of studies have identified that propofol plays a role in cancer by regulating the expression of multiple signalling pathways, downstream molecules, microRNAs and long non‐coding RNAs. Emerging evidence has indicated that propofol can enhance the anti‐tumour effect of chemotherapeutic drugs or some small molecular compounds. Additionally, in vivo animal models have shown that propofol inhibits tumour growth and metastasis. Furthermore, most clinical trials indicate that propofol is associated with better survival outcomes in cancer patients after surgery. Propofol use is encouraged in cancers that appear to have a better prognosis after its use during surgery. We hope that future large and prospective multicenter studies will provide more precise answers to guide the choice of anaesthetics during cancer surgery.
Collapse
Affiliation(s)
- Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Gao X, Mi Y, Guo N, Luan J, Xu H, Hu Z, Wang N, Zhang D, Gou X, Xu L. The mechanism of propofol in cancer development: An updated review. Asia Pac J Clin Oncol 2020; 16:e3-e11. [DOI: 10.1111/ajco.13301] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Xingchun Gao
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| | - Yajing Mi
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| | - Na Guo
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Jing Luan
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| | - Hao Xu
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| | - Zhifang Hu
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Ning Wang
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Dian Zhang
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Xingchun Gou
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Lixian Xu
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| |
Collapse
|
25
|
Farooqi AA, Adylova A, Sabitaliyevich UY, Attar R, Sohail MI, Yilmaz S. Recent updates on true potential of an anesthetic agent as a regulator of cell signaling pathways and non-coding RNAs in different cancers: Focusing on the brighter side of propofol. Gene 2020; 737:144452. [PMID: 32044408 DOI: 10.1016/j.gene.2020.144452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
There has always been a quest to search for synthetic and natural compounds having premium pharmacological properties and minimum off-target and/or side effects. Therefore, in accordance with this approach, scientists have given special attention to the molecules having remarkable ability to target oncogenic protein network, restore drug sensitivity and induce apoptosis in cancer cells. The mechanisms through which general anesthetics modulated wide-ranging deregulated cell signaling pathways and non-coding RNAs remained unclear. However, rapidly accumulating experimentally verified evidence has started to resolve this long-standing mystery and a knowledge about these important molecular targets has surfaced and how these drugs act at the molecular level is becoming more understandable. In this review we have given special attention to available evidence related to ability of propofol to modulate Wnt/β-catenin, JAK/STAT and mTOR-driven pathway. Excitingly, great strides have been made in sharpening our concepts related to potential of propofol to modulate non-coding RNAs in different cancers. Collectively, these latest findings offer interesting, unexplored opportunities to target deregulated signaling pathways to induce apoptosis in drug-resistant cancers.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Aima Adylova
- Department of Postgraduate Education and Research, Kazakhstan Medical University KSPH, Almaty, Kazakhstan
| | | | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Turkey
| | | | - Seher Yilmaz
- Department of Anatomy, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| |
Collapse
|
26
|
Zhu F, Li Q, Yang Y, Wang L, Wang J. Propofol Suppresses Proliferation, Migration, Invasion And Promotes Apoptosis By Upregulating microRNA-140-5p In Gastric Cancer Cells. Onco Targets Ther 2019; 12:10129-10138. [PMID: 31819507 PMCID: PMC6885654 DOI: 10.2147/ott.s225360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to investigate the anti-tumor effect of propofol on gastric cancer (GC) and its underlying mechanisms. Patients and methods SGC-7901 and MKN45 cells were transfected and divided into the following groups: Control group, Propofol group, Propofol+miR-140-5p inhibitor group and miR-140-5p inhibitor group. Moreover, cell proliferation, apoptosis, migration and invasion of SGC-7901 and MKN45 cells were evaluated by BrdU incorporation assay, Annexin V-FITC/PI double staining assay, wound healing assay and transwell assay, respectively. The mRNA expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 were detected by qRT-PCR. Cleaved caspase-3, Bcl-2, MMP-2 and MMP-9 expressions were detected by Western blot. Results Propofol inhibited cell proliferation, migration and invasion, but promoted cell apoptosis in SGC-7901 and MKN45 cells. Propofol also elevated the expression of miR-140-5p. Suppression of miR-140-5p could reverse the effects of propofol on the biological behavior of SGC-7901 and MKN45 cells. Meanwhile, propofol treatment increased the expression of cleaved caspase-3 but decreased Bcl-2, MMP-2 and MMP-9 in SGC-7901 and MKN45 cells. The expression of cleaved caspase-3 was downregulated while Bcl-2, MMP-2 and MMP-9 were upregulated by miR-140-5p suppression. Conclusion Propofol could inhibit cell proliferation, migration and invasion, as well as promote cell apoptosis by upregulating miR-140-5p in gastric cancer cells.
Collapse
Affiliation(s)
- Fengbo Zhu
- Department of Gastroenterology, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| | - Qiuxia Li
- Department of Gastroenterology, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| | - Ying Yang
- Department of Hyperbaric Oxygen, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| | - Liangui Wang
- Department of Gastroenterology, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| | - Jing Wang
- Department of Anesthesiology, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| |
Collapse
|
27
|
Wang L, Chen R, Zhang Y. miR-296-3p targets APEX1 to suppress cell migration and invasion of non-small-cell lung cancer. Oncol Lett 2019; 18:2612-2618. [PMID: 31402954 DOI: 10.3892/ol.2019.10572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 05/03/2019] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most common cause of cancer-associated mortality worldwide. MicroRNAs (miRs) are a class of small non-coding RNAs that are commonly dysregulated in human cancer. The aim of the current study was to evaluate the effect of miR-296-3p on the cell migration and invasion of NSCLC. Pairs of tumor tissues and para-cancerous tissues (n=50) were collected from patients with NSCLC, and the expression of miR-296-3p was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, tumor cell viability, migration and invasion were examined in vitro using Cell Counting Kit-8, wound healing and Matrigel assays, respectively. Furthermore, potential targets of miR-296-3p were screened for using TargetScan and validated using a dual-luciferase reporter assay. The expression levels of phosphoinositide-3-kinase (PI3K), AKT serine/threonine kinase (AKT), mammalian target of rapamycin (mTOR), matrix metallopeptidase 2 (MMP2) and SRY-box 4 (SOX4) were detected by RT-qPCR and western blot analysis. The data indicated that miR-296-3p was downregulated in tumor tissues compared with adjacent normal tissues. Overexpression of miR-296-3p inhibited NSCLC cell viability, migration and invasion in vitro. Furthermore, apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) was identified as a direct target of miR-296-3p. APEX1 expression was upregulated in tumor tissues compared with para-cancerous tissues, and the mRNA and protein expression levels of APEX1 were decreased following transfection of NSCLC cells with miR-296-3p mimics compared with control cells. Additional investigations revealed that miR-296-3p was involved in regulating the PI3K/AKT/mTOR signaling pathway, and miR-296-3p mimics decreased the mRNA and protein expression levels of MMP2 and SOX4. In summary, the findings demonstrated that miR-296-3p may function as a tumor suppressor, and inhibits the migration and invasion of NSCLC cells by targeting APEX1. miR-296-3p is therefore a potential therapeutic molecular modulator of NSCLC.
Collapse
Affiliation(s)
- Lifeng Wang
- Department of Respiration, Xi'an High-tech Hospital, Xi'an, Shaanxi 710075, P.R. China
| | - Ruilin Chen
- Department of Respiration, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yongqing Zhang
- Department of Respiration, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
28
|
Influence of perioperative anaesthetic and analgesic interventions on oncological outcomes: a narrative review. Br J Anaesth 2019; 123:135-150. [PMID: 31255291 DOI: 10.1016/j.bja.2019.04.062] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Surgery is an important treatment modality for the majority of solid organ cancers. Unfortunately, cancer recurrence following surgery of curative intent is common, and typically results in refractory disease and patient death. Surgery and other perioperative interventions induce a biological state conducive to the survival and growth of residual cancer cells released from the primary tumour intraoperatively, which may influence the risk of a subsequent metastatic disease. Evidence is accumulating that anaesthetic and analgesic interventions could affect many of these pathophysiological processes, influencing risk of cancer recurrence in either a beneficial or detrimental way. Much of this evidence is from experimental in vitro and in vivo models, with clinical evidence largely limited to retrospective observational studies or post hoc analysis of RCTs originally designed to evaluate non-cancer outcomes. This narrative review summarises the current state of evidence regarding the potential effect of perioperative anaesthetic and analgesic interventions on cancer biology and clinical outcomes. Proving a causal link will require data from prospective RCTs with oncological outcomes as primary endpoints, a number of which will report in the coming years. Until then, there is insufficient evidence to recommend any particular anaesthetic or analgesic technique for patients undergoing tumour resection surgery on the basis that it might alter the risk of recurrence or metastasis.
Collapse
|
29
|
Ren YL, Zhang W. Propofol promotes apoptosis of colorectal cancer cells via alleviating the suppression of lncRNA HOXA11-AS on miRNA let-7i. Biochem Cell Biol 2019; 98:90-98. [PMID: 31013434 DOI: 10.1139/bcb-2018-0235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To date, surgical resection is the mainstay for the treatment of colorectal cancer (CRC). Propofol (2,6-diisopropylphenol), one of the most commonly used intravenous anaesthetic agents, has been reported to be involved in modulating the malignancy of a variety of human cancers. However, the underlying mechanisms remain poorly understood. In this study, using a cell counting kit (CCK-8), flow cytometry, and caspase-3 cleavage assays, we found that propofol promoted cell apoptosis and inhibited cell proliferation in both Colo205 and SW620 cells, through the down-regulation of HOXA11-AS and up-regulation of let-7i. Moreover, gain-of-function studies of HOXA11-AS or loss-of-function studies of let-7i also revealed a negative correlation between HOXA11-AS and let-7i in propofol-mediated biological functions of CRC cells. Furthermore, our mechanistic experiments revealed that HOXA11-AS acts as a molecular sponge for let-7i, thereby regulating the expression of ABCC10. We investigate the theory that propofol suppresses colorectal cancer tumorigenesis by modulating the HOXA11-AS-let-7i-ABCC10 regulatory network, indicating the potential for propofol to control CRC development.
Collapse
Affiliation(s)
- Yan-Ling Ren
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
30
|
Yu X, Gao Y, Zhang F. Propofol inhibits pancreatic cancer proliferation and metastasis by up‐regulating miR‐328 and down‐regulating ADAM8. Basic Clin Pharmacol Toxicol 2019; 125:271-278. [PMID: 30861616 DOI: 10.1111/bcpt.13224] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xiangdi Yu
- Department of Anesthesiology Guizhou Provincial People’s Hospital Guiyang China
| | - Yutong Gao
- Department of Anesthesiology Guizhou Provincial People’s Hospital Guiyang China
- Department of Biomedicine Guizhou University Guiyang China
| | - Fangxiang Zhang
- Department of Anesthesiology Guizhou Provincial People’s Hospital Guiyang China
| |
Collapse
|
31
|
Jiang YW, Cheng HY, Kuo CL, Way TD, Lien JC, Chueh FS, Lin YL, Chung JG. Tetrandrine inhibits human brain glioblastoma multiforme GBM 8401 cancer cell migration and invasion in vitro. ENVIRONMENTAL TOXICOLOGY 2019; 34:364-374. [PMID: 30549224 DOI: 10.1002/tox.22691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Tetrandrine (TET) has been reported to induce anti-cancer activity in many human cancer cells and also to inhibit cancer cell migration and invasion. However, there are no reports to show TET inhibits cell migration and invasion in human brain glioblastoma multiforme GBM 8401 cells. In this study, we investigated the anti-metastasis effects of TET on GBM 8401 cells in vitro. Under sub-lethal concentrations (from 1, 5 up to 10 μM), TET significantly inhibited cell mobility, migration and invasion of GBM 8401 cells that were assayed by wound healing and Transwell assays. Gelatin zymography assay showed that TET inhibited MMP-2 activity in GBM 8401 cells. Western blotting results indicated that TET inhibited several key metastasis-related proteins, such as p-EGFR(Tyr1068) , SOS-1, GRB2, Ras, p-AKT(Ser473) and p-AKT(Thr308) , NF-κB-p65, Snail, E-cadherin, N-cadherin, NF-κB, MMP-2 and MMP-9 that were significant reduction at 24 and 48 hours treatment by TET. TET reduced MAPK signaling associated proteins such as p-JNK1/2 and p-c-Jun in GBM 8401 cells. The electrophoretic mobility shift (EMSA) assay was used to investigate NF-κB and DNA binding was reduced by TET in a dose-dependently. Based on these findings, we suggested that TET could be used in anti-metastasis of human brain glioblastoma multiforme GBM 8401 cells in the future.
Collapse
Affiliation(s)
- Yi-Wen Jiang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Hsin-Yu Cheng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jin-Cherng Lien
- School of pharmacy, China Medical University, Taichung, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
32
|
Sun H, Gao D. Propofol suppresses growth, migration and invasion of A549 cells by down-regulation of miR-372. BMC Cancer 2018; 18:1252. [PMID: 30547768 PMCID: PMC6295097 DOI: 10.1186/s12885-018-5175-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Propofol, a commonly used intravenous anesthetic during cancer resection surgery, has been found to exhibit tumor inhibitory effects in vitro and in vivo. The role of propofol in lung cancer has been previously reported, whereas its action mechanism remains unclear. This study further investigated the effects of propofol on lung cancer A549 cell growth, migration and invasion, as well as the underlying mechanisms. METHODS Cell viability, proliferation, migration, invasion and apoptosis were assessed by CCK-8 assay, BrdU assay, two chamber transwell assay and flow cytometry, respectively. The regulatory effect of propofol on microRNA-372 (miR-372) expression in A549 cells was analyzed by qRT-PCR. Cell transfection was used to change the expression of miR-372. The protein expression of key factors involving in cell proliferation, apoptosis, migration and invasion, as well as Wnt/β-catenin and mTOR pathways were analyzed by western blotting. RESULTS Propofol inhibited lung cancer A549 cell viability, proliferation, migration, and invasion, but promoted cell apoptosis. Moreover, miR-372 was down-regulated in propofol-treated A549 cells. Overexpression of miR-372 abrogated the effects of propofol on proliferation, migration, invasion and apoptosis of A549 cells. Knockdown of miR-372 had opposite effects. Furthermore, propofol suppressed Wnt/β-catenin and mTOR signaling pathways by down-regulating miR-372. CONCLUSION Propofol inhibits growth, migration and invasion of lung cancer A549 cells at least in part by down-regulating miR-372 and then inactivating Wnt/β-catenin and mTOR pathways.
Collapse
Affiliation(s)
- Hai Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin, 130033, China
| | - Dengyu Gao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin, 130033, China.
| |
Collapse
|
33
|
Wilks JA. Cancer Biology: a Primer for Perioperative
Clinicians. CURRENT ANESTHESIOLOGY REPORTS 2018. [DOI: 10.1007/s40140-018-0302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|