1
|
Abdou HM, Saad AM, Abd Elkader HTAE, Essawy AE. Role of vitamin D 3 in mitigating sodium arsenite-induced neurotoxicity in male rats. Toxicol Res (Camb) 2024; 13:tfae203. [PMID: 39611054 PMCID: PMC11602150 DOI: 10.1093/toxres/tfae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Arsenic is associated with various neurological disorders, notably affecting memory and cognitive functions. The current study examined the protective effects of vitamin D3 (Vit. D3) in countering oxidative stress, neuroinflammation and apoptosis induced by sodium arsenite (SA) in the cerebral cortex of rats. Male Wistar rats were subjected to a daily oral administration of sodium arsenite (NaAsO2, SA) at a dosage of 5 mg/kg, along with 500 IU/kg of Vit. D3, and a combination of both substances for four weeks. The results indicated that Vit. D3 effectively mitigated the SA-induced increase in oxidative stress markers, thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO), the decrease in antioxidants (reduced glutathione; GSH, superoxide dismutase; SOD, catalase; CAT, and glutathione peroxidase; GPx), as well as the increase in pro-inflammatory markers including, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and amyloid-beta (Aβ)1-42. Furthermore, Vit. D3 reversed the alterations in the neurochemicals acetylcholinesterase (AchE), monoamine oxidase (MAO), dopamine (DA), and acetylcholine (Ach) and ameliorated the histopathological changes in the cerebral cortex. Moreover, immunohistochemical analyses revealed that Vit. D3 reduced the SA-induced overexpression of cerebral cysteine aspartate-specific protease-3 (caspase-3) and glial fibrillary acidic protein (GFAP) in the cerebral cortex of male rats. Consequently, the co-administration of Vit. D3 can protect the cerebral cortex against SA-induced neurotoxicity, primarily through its antioxidant, anti-inflammatory, anti-apoptotic, and anti-astrogliosis effects.
Collapse
Affiliation(s)
- Heba Mohamed Abdou
- Zoology Department, Faculty of Science, Alexandria University, Aflatoun St., El Shatby, Alexandria 21568, Egypt
| | - Alaa Mohamed Saad
- Zoology Department, Faculty of Science, Alexandria University, Aflatoun St., El Shatby, Alexandria 21568, Egypt
| | - Heba-Tallah Abd Elrahim Abd Elkader
- Zoology, Biological and Geological Sciences Department, Faculty of Education, Alexandria University, 22 El-Guish Road, El-Shatby, Alexandria 21526, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Aflatoun St., El Shatby, Alexandria 21568, Egypt
| |
Collapse
|
2
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
3
|
Ahmadi S, Hasani A, Khabbaz A, Poortahmasbe V, Hosseini S, Yasdchi M, Mehdizadehfar E, Mousavi Z, Hasani R, Nabizadeh E, Nezhadi J. Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity. Biogerontology 2024; 25:957-983. [PMID: 39317918 DOI: 10.1007/s10522-024-10136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aytak Khabbaz
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasbe
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hosseini
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yasdchi
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mousavi
- Department of Psychology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqaiyeh Hasani
- School of Medicine, Istanbul Okan University, Tuzla, 34959, Istanbul, Turkey
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Nezhadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Hediyal TA, Vichitra C, Anand N, Bhaskaran M, Essa SM, Kumar P, Qoronfleh MW, Akbar M, Kaul-Ghanekar R, Mahalakshmi AM, Yang J, Song BJ, Monaghan TM, Sakharkar MK, Chidambaram SB. Protective effects of fecal microbiota transplantation against ischemic stroke and other neurological disorders: an update. Front Immunol 2024; 15:1324018. [PMID: 38449863 PMCID: PMC10915229 DOI: 10.3389/fimmu.2024.1324018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The bidirectional communication between the gut and brain or gut-brain axis is regulated by several gut microbes and microbial derived metabolites, such as short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides. The Gut microbiota (GM) produce neuroactives, specifically neurotransmitters that modulates local and central neuronal brain functions. An imbalance between intestinal commensals and pathobionts leads to a disruption in the gut microbiota or dysbiosis, which affects intestinal barrier integrity and gut-immune and neuroimmune systems. Currently, fecal microbiota transplantation (FMT) is recommended for the treatment of recurrent Clostridioides difficile infection. FMT elicits its action by ameliorating inflammatory responses through the restoration of microbial composition and functionality. Thus, FMT may be a potential therapeutic option in suppressing neuroinflammation in post-stroke conditions and other neurological disorders involving the neuroimmune axis. Specifically, FMT protects against ischemic injury by decreasing IL-17, IFN-γ, Bax, and increasing Bcl-2 expression. Interestingly, FMT improves cognitive function by lowering amyloid-β accumulation and upregulating synaptic marker (PSD-95, synapsin-1) expression in Alzheimer's disease. In Parkinson's disease, FMT was shown to inhibit the expression of TLR4 and NF-κB. In this review article, we have summarized the potential sources and methods of administration of FMT and its impact on neuroimmune and cognitive functions. We also provide a comprehensive update on the beneficial effects of FMT in various neurological disorders by undertaking a detailed interrogation of the preclinical and clinical published literature.
Collapse
Affiliation(s)
- Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - C. Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua, College of Medicine, Saint John’s, Antigua and Barbuda
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Centre University of Toledo, Health Science, Toledo, OH, United States
| | - Saeefh M. Essa
- Department of Computer Science, Northwest High School, Bethesda, MD, United States
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, Ypsilanti, MI, United States
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Ruchika Kaul-Ghanekar
- Symbiosis Centre for Research and Innovation (SCRI), Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International University (SIU), Pune, Maharashtra, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Bio-physics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| |
Collapse
|
5
|
Mohamed SK, Ahmed AAE, Elkhoely A. Sertraline Pre-Treatment Attenuates Hemorrhagic Transformation Induced in Rats after Cerebral Ischemia Reperfusion via Down Regulation of Neuronal CD163: Involvement of M1/M2 Polarization Interchange and Inhibiting Autophagy. J Neuroimmune Pharmacol 2023; 18:657-673. [PMID: 37955765 PMCID: PMC10770270 DOI: 10.1007/s11481-023-10093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Cerebral ischemia reperfusion (I/R) is one of the neurovascular diseases which leads to severe brain deterioration. Haemorrhagic transformation (HT) is the main complication of ischemic stroke. It exacerbates by reperfusion, causing a more deleterious effect on the brain and death. The current study explored the protective effect of sertraline (Sert) against cerebral I/R in rats by inhibiting HT, together with the molecular pathways involved in this effect. Forty-eight wister male rats were divided into 4 groups: Sham, Sert + Sham, I/R, and Sert + I/R. The ischemic model was induced by bilateral occlusion of the common carotid artery for 20 min, then reperfusion for 24 h. Sertraline (20 mg/kg, p.o.) was administrated for 14 days before exposure to ischemia. Pre-treatment with Sert led to a significant attenuation of oxidative stress and inflammation. In addition, Sert attenuated phosphorylation of extracellular regulated kinases and nuclear factor kappa-p65 expression, consequently modulating microglial polarisation to M2 phenotype. Moreover, Sert prevented the hemorrhagic transformation of ischemic stroke as indicated by the notable decrease in neuronal expression of CD163, activity of Heme oxygenase-2 and matrix metalloproteinase-2 and 9 levels. In the same context, Sert decreased levels of autophagy and apoptotic markers. Furthermore, histological examination, Toluidine blue, and Prussian blue stain aligned with the results. In conclusion, Sert protected against cerebral I/R damage by attenuating oxidative stress, inflammation, autophagy, and apoptotic process. It is worth mentioning that our study was the first to show that Sert inhibited hemorrhagic transformation. The protective effect of sertraline against injury induced by cerebral ischemia reperfusion via inhibiting Hemorrhagic transformation.
Collapse
Affiliation(s)
- Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt.
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Abeer Elkhoely
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| |
Collapse
|
6
|
Cui W, Xu L, Huang L, Tian Y, Yang Y, Li Y, Yu Q. Changes of gut microbiota in patients at different phases of stroke. CNS Neurosci Ther 2023; 29:3416-3429. [PMID: 37309276 PMCID: PMC10580337 DOI: 10.1111/cns.14271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Gut dysbiosis appears rapidly after acute stroke and may affect the prognosis, whereas changes in gut microbiota with gradual recovery from stroke are unknown and rarely studied. The purpose of this study is to explore the characteristics of gut microbiota changes over time after stroke. METHODS Stroke patients and healthy subjects were selected to compare the clinical data and gut microbiota of the patient group in two phases with that of healthy subjects and 16S rRNA gene sequencing was used to search the differences of gut microbiota in subjects. RESULTS Compared with the healthy subjects, the subacute patients mainly decreased the abundance of some gut microbial communities, while the decreased communities reduced and more communities increased the abundance in the convalescent patients. The abundance of Lactobacillaceae increased in both phases in patient group, while Butyricimona, Peptostreptococaceae and Romboutsia decreased in both phases. Correlation analysis found that the MMSE scores of patients in the two phases had the greatest correlation with the gut microbiota. CONCLUSION Gut dysbiosis still existed in patients in the subacute phase and convalescent phase, and gradually improved with the recovery of stroke. Gut microbiota may affect the prognosis of stroke by affecting BMI and/or related indicators, and there is a strong correlation between gut microbiota and cognitive function after stroke.
Collapse
Affiliation(s)
- Wei Cui
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Li Xu
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Lin Huang
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Yang Tian
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Yan Yang
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Yamei Li
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Qian Yu
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
7
|
Bai W, Huo S, Zhou G, Li J, Yang Y, Shao J. Biliverdin modulates the Nrf2/A20/eEF1A2 axis to alleviate cerebral ischemia-reperfusion injury by inhibiting pyroptosis. Biomed Pharmacother 2023; 165:115057. [PMID: 37399716 DOI: 10.1016/j.biopha.2023.115057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
This study aimed to examine whether Biliverdin, which is a common metabolite of haem, can alleviate cerebral ischemia reperfusion injury (CIRI) by inhibiting pyroptosis. Here, CIRI was induced by middle cerebral artery occlusion-reperfusion (MCAO/R) in C57BL/6 J mice and modelled by oxygen and glucose deprivation/reoxygenation (OGD/R) in HT22 cells, it was treated with or without Biliverdin. The spatiotemporal expression of GSDMD-N and infarction volumes were assessed by immunofluorescence staining and triphenyltetrazolium chloride (TTC), respectively. The NLRP3/Caspase-1/GSDMD pathway, which is central to the pyroptosis process, as well as the expression of Nrf2, A20, and eEF1A2 were determined by Western-blots. Nrf2, A20, and eEF1A2 interactions were verified using dual-luciferase reporter assays, chromatin immunoprecipitation, or co-immunoprecipitation. Additionally, the role of Nrf2/A20/eEF1A2 axis in modulating the neuroprotective properties of Biliverdin was investigated using A20 or eEF1A2 gene interference (overexpression and/or silencing). 40 mg/kg of Biliverdin could significantly alleviate CIRI both in vivo and in vitro, promoted the activation of Nrf2, elevated A20 expression, but decreased eEF1A2 expression. Nrf2 can bind to the promoter of A20, thereby transcriptionally regulating the expression of A20. A20 can furthermore interacted with eEF1A2 through its ZnF4 domain to ubiquitinate and degrade it, leading to the downregulation of eEF1A2. Our studies have also demonstrated that either the knock-down of A20 or over-expression of eEF1A2 blunted the protective effect of Biliverdin. Rescue experiments further confirmed that Biliverdin could regulate the NF-κB pathway via the Nrf2/A20/eEF1A2 axis. In summary, our study demonstrates that Biliverdin ameliorates CIRI by inhibiting the NF-κB pathway via the Nrf2/A20/eEF1A2 axis. Our findings can help identify novel therapeutic targets for the treatment of CIRI.
Collapse
Affiliation(s)
- Wenya Bai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Siying Huo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Guilin Zhou
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Yuan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China.
| |
Collapse
|
8
|
Bui TVA, Hwangbo H, Lai Y, Hong SB, Choi YJ, Park HJ, Ban K. The Gut-Heart Axis: Updated Review for The Roles of Microbiome in Cardiovascular Health. Korean Circ J 2023; 53:499-518. [PMID: 37525495 PMCID: PMC10435824 DOI: 10.4070/kcj.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular diseases (CVDs), including coronary artery disease, stroke, heart failure, and hypertension, are the global leading causes of death, accounting for more than 30% of deaths worldwide. Although the risk factors of CVDs have been well understood and various treatment and preventive measures have been established, the mortality rate and the financial burden of CVDs are expected to grow exponentially over time due to the changes in lifestyles and increasing life expectancies of the present generation. Recent advancements in metagenomics and metabolomics analysis have identified gut microbiome and its associated metabolites as potential risk factors for CVDs, suggesting the possibility of developing more effective novel therapeutic strategies against CVD. In addition, increasing evidence has demonstrated the alterations in the ratio of Firmicutes to Bacteroidetes and the imbalance of microbial-dependent metabolites, including short-chain fatty acids and trimethylamine N-oxide, play a crucial role in the pathogenesis of CVD. However, the exact mechanism of action remains undefined to this day. In this review, we focus on the compositional changes in the gut microbiome and its related metabolites in various CVDs. Moreover, the potential treatment and preventive strategies targeting the gut microbiome and its metabolites are discussed.
Collapse
Affiliation(s)
- Thi Van Anh Bui
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Hyesoo Hwangbo
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Yimin Lai
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Kiwon Ban
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
9
|
De Sales-Millán A, Aguirre-Garrido JF, González-Cervantes RM, Velázquez-Aragón JA. Microbiome-Gut-Mucosal-Immune-Brain Axis and Autism Spectrum Disorder (ASD): A Novel Proposal of the Role of the Gut Microbiome in ASD Aetiology. Behav Sci (Basel) 2023; 13:548. [PMID: 37503995 PMCID: PMC10376175 DOI: 10.3390/bs13070548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterised by deficits in social interaction and communication, as well as restricted and stereotyped interests. Due of the high prevalence of gastrointestinal disorders in individuals with ASD, researchers have investigated the gut microbiota as a potential contributor to its aetiology. The relationship between the microbiome, gut, and brain (microbiome-gut-brain axis) has been acknowledged as a key factor in modulating brain function and social behaviour, but its connection to the aetiology of ASD is not well understood. Recently, there has been increasing attention on the relationship between the immune system, gastrointestinal disorders and neurological issues in ASD, particularly in relation to the loss of specific species or a decrease in microbial diversity. It focuses on how gut microbiota dysbiosis can affect gut permeability, immune function and microbiota metabolites in ASD. However, a very complete study suggests that dysbiosis is a consequence of the disease and that it has practically no effect on autistic manifestations. This is a review of the relationship between the immune system, microbial diversity and the microbiome-gut-brain axis in the development of autistic symptoms severity and a proposal of a novel role of gut microbiome in ASD, where dysbiosis is a consequence of ASD-related behaviour and where dysbiosis in turn accentuates the autistic manifestations of the patients via the microbiome-gut-brain axis in a feedback circuit.
Collapse
Affiliation(s)
- Amapola De Sales-Millán
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | - Rina María González-Cervantes
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | | |
Collapse
|
10
|
Han S, Cai L, Chen P, Kuang W. A study of the correlation between stroke and gut microbiota over the last 20years: a bibliometric analysis. Front Microbiol 2023; 14:1191758. [PMID: 37350780 PMCID: PMC10282156 DOI: 10.3389/fmicb.2023.1191758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Purpose This study intends to uncover a more thorough knowledge structure, research hotspots, and future trends in the field by presenting an overview of the relationship between stroke and gut microbiota in the past two decades. Method Studies on stroke and gut microbiota correlations published between 1st January 2002 and 31st December 2021 were retrieved from the Web of Science Core Collection and then visualized and scientometrically analyzed using CiteSpace V. Results A total of 660 papers were included in the study, among which the United States, the United Kingdom, and Germany were the leading research centers. Cleveland Clinic, Southern Medical University, and Chinese Academy of Science were the top three institutions. The NATURE was the most frequently co-cited journal. STANLEY L HAZEN was the most published author, and Tang WHW was the most cited one. The co-occurrence analysis revealed eight clusters (i.e., brain-gut microbiota axis, fecal microbiome transplantation, gut microbiota, hypertension, TMAO, ischemic stroke, neuroinflammation, atopobiosis). "gut microbiota," "Escherichia coli," "cardiovascular disease," "risk," "disease," "ischemic stroke," "stroke," "metabolism," "inflammation," and "phosphatidylcholine" were the most recent keyword explosions. Conclusion Findings suggest that in the next 10 years, the number of publications produced annually may increase significantly. Future research trends tend to concentrate on the mechanisms of stroke and gut microbiota, with the inflammation and immunological mechanisms, TMAO, and fecal transplantation as hotspots. And the relationship between these mechanisms and a particular cardiovascular illness may also be a future research trend.
Collapse
Affiliation(s)
- Shengnan Han
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Longhui Cai
- First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peipei Chen
- School of Medical Technology, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
11
|
Zhao L, Xiao J, Li S, Guo Y, Fu R, Hua S, Du Y, Xu S. The interaction between intestinal microenvironment and stroke. CNS Neurosci Ther 2023; 29 Suppl 1:185-199. [PMID: 37309254 PMCID: PMC10314114 DOI: 10.1111/cns.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Stroke is not only a major cause of disability but also the third leading cause of death, following heart disease and cancer. It has been established that stroke causes permanent disability in 80% of survivors. However, current treatment options for this patient population are limited. Inflammation and immune response are major features that are well-recognized to occur after a stroke. The gastrointestinal tract hosts complex microbial communities, the largest pool of immune cells, and forms a bidirectional regulation brain-gut axis with the brain. Recent experimental and clinical studies have highlighted the importance of the relationship between the intestinal microenvironment and stroke. Over the years, the influence of the intestine on stroke has emerged as an important and dynamic research direction in biology and medicine. AIMS In this review, we describe the structure and function of the intestinal microenvironment and highlight its cross-talk relationship with stroke. In addition, we discuss potential strategies aiming to target the intestinal microenvironment during stroke treatment. CONCLUSION The structure and function of the intestinal environment can influence neurological function and cerebral ischemic outcome. Improving the intestinal microenvironment by targeting the gut microbiota may be a new direction in treating stroke.
Collapse
Affiliation(s)
- Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| | - Jie Xiao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Songlin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| | - Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Shengyu Hua
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuzheng Du
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| |
Collapse
|
12
|
Zhang T, Wu X, Liu B, Huang H, Zhou C, Liang P. The contribution of probiotics for the double-edge effect of cefazolin on postoperative neurocognitive disorders by rebalancing the gut microbiota. Front Neurosci 2023; 17:1156453. [PMID: 37179548 PMCID: PMC10174111 DOI: 10.3389/fnins.2023.1156453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Emerging data suggest that perioperative gut dysbiosis is prevalent and may be associated with postoperative neurocognitive disorders (PND). Antibiotics and probiotics are key factors influencing the microbiota. Many antibiotics have anti-microorganisms and direct anti-inflammatory properties, which may have cognitive repercussions. NLRP3 inflammasome activation has been reported to be involved with cognitive deficits. This study aimed to determine the effect and mechanism of probiotics on neurocognitive problems associated with perioperative gut dysbiosis by the NLRP3 pathway. Methods In a randomized, controlled trial, adult male Kunming mice undergoing surgery were administered cefazolin, FOS + probiotics, CY-09, or a placebo in four distinct experimental cohorts. Fear conditioning (FC) tests evaluate learning and memory. Following FC tests to evaluate inflammatory response (IR) and the permeability of barrier systems, the hippocampus and colon were extracted, and feces were collected for 16 s rRNA. Results One week after surgery, surgery/anesthesia decreased the frozen behavior. Cefazolin attenuated this declination but aggravated postoperative freezing behavior 3 weeks after surgery. Probiotics ameliorated surgery/anesthesia-induced memory deficits and perioperative cefazolin-induced postoperative memory deficits 3 weeks after surgery. NLRP3, caspase-1, Interleukin-1β (IL-1β), and Interleukin-18 (IL-18) levels were increased 1 week after the hippocampus and colon surgery, which were attenuated by CY-09 and probiotics, respectively. Discussion Probiotics could correct dysbacteria and IR caused by surgery/anesthesia stress and cefazolin alone. These findings imply that probiotics are an efficient and effective way of maintaining the balance of gut microbiota, which may reduce NLRP3-related inflammation and alleviate PND.
Collapse
Affiliation(s)
- Tianyao Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaochu Wu
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Cheng Zhou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University and the Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
13
|
The Bridge Between Ischemic Stroke and Gut Microbes: Short-Chain Fatty Acids. Cell Mol Neurobiol 2023; 43:543-559. [PMID: 35347532 DOI: 10.1007/s10571-022-01209-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/03/2022]
Abstract
Short-chain fatty acids (SCFAs) are monocarboxylates produced by the gut microbiota (GM) and result from the interaction between diet and GM. An increasing number of studies about the microbiota-gut-brain axis (MGBA) indicated that SCFAs may be a crucial mediator in the MGBA, but their roles have not been fully clarified. In addition, there are few studies directly exploring the role of SCFAs as a potential regulator of microbial targeted interventions in ischemic stroke, especially for clinical studies. This review summarizes the recent studies concerning the relationship between ischemic stroke and GM and outlines the role of SCFAs as a bridge between them. The potential mechanisms by which SCFAs affect ischemic stroke are described. Finally, the beneficial effects of SFCAs-mediated therapeutic measures such as diet, dietary supplements (e.g., probiotics and prebiotics), fecal microbiota transplantation, and drugs on ischemic brain injury are also discussed.
Collapse
|
14
|
Qian W, Wu M, Qian T, Xie C, Gao Y, Qian S. The roles and mechanisms of gut microbiome and metabolome in patients with cerebral infarction. Front Cell Infect Microbiol 2023; 13:1112148. [PMID: 36761896 PMCID: PMC9905239 DOI: 10.3389/fcimb.2023.1112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
As the most common type of stroke, ischemic stroke, also known as cerebral infarction (CI), with its high mortality and disability rate, has placed a huge burden on social economy and public health. Treatment methods for CI mainly include thrombectomy, thrombolysis, drug therapy, and so on. However, these treatments have certain timeliness and different side effects. In recent years, the gut-brain axis has become a hot topic, and its role in nervous system diseases has been confirmed by increasing evidences. The intestinal microbiota, as an important part of the gut-brain axis, has a non-negligible impact on the progression of CI through mechanisms such as inflammatory response and damage-associated molecular patterns, and changes in the composition of intestinal microbiota can also serve as the basis for predicting CI. At the same time, the diagnosis of CI requires more high-throughput techniques, and the analysis method of metabolomics just fits this demand. This paper reviewed the changes of intestinal microbiota in patients within CI and the effects of the intestinal microbiota on the course of CI, and summarized the therapeutic methods of the intervention with the intestinal microbiota. Furthermore, metabolic changes of CI patients were also discussed to reveal the molecular characteristics of CI and to elucidate the potential pathologic pathway of its interference.
Collapse
Affiliation(s)
| | | | - Tingting Qian
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chen Xie
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yaxin Gao
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | | |
Collapse
|
15
|
Wang J, Liu X, Li Q. Interventional strategies for ischemic stroke based on the modulation of the gut microbiota. Front Neurosci 2023; 17:1158057. [PMID: 36937662 PMCID: PMC10017736 DOI: 10.3389/fnins.2023.1158057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The microbiota-gut-brain axis connects the brain and the gut in a bidirectional manner. The organism's homeostasis is disrupted during an ischemic stroke (IS). Cerebral ischemia affects the intestinal flora and microbiota metabolites. Microbiome dysbiosis, on the other hand, exacerbates the severity of IS outcomes by inducing systemic inflammation. Some studies have recently provided novel insights into the pathogenesis, efficacy, prognosis, and treatment-related adverse events of the gut microbiome in IS. In this review, we discussed the view that the gut microbiome is of clinical value in personalized therapeutic regimens for IS. Based on recent non-clinical and clinical studies on stroke, we discussed new therapeutic strategies that might be developed by modulating gut bacterial flora. These strategies include dietary intervention, fecal microbiota transplantation, probiotics, antibiotics, traditional Chinese medication, and gut-derived stem cell transplantation. Although the gut microbiota-targeted intervention is optimistic, some issues need to be addressed before clinical translation. These issues include a deeper understanding of the potential underlying mechanisms, conducting larger longitudinal cohort studies on the gut microbiome and host responses with multiple layers of data, developing standardized protocols for conducting and reporting clinical analyses, and performing a clinical assessment of multiple large-scale IS cohorts. In this review, we presented certain opportunities and challenges that might be considered for developing effective strategies by manipulating the gut microbiome to improve the treatment and prevention of ischemic stroke.
Collapse
|
16
|
Exercise Preconditioning Ameliorates Cognitive Impairment in Mice with Ischemic Stroke by Alleviating Inflammation and Modulating Gut Microbiota. Mediators Inflamm 2022; 2022:2124230. [PMID: 36262547 PMCID: PMC9576414 DOI: 10.1155/2022/2124230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Several studies have demonstrated that exercise preconditioning is an effective means of alleviating poststroke cognitive impairment (PSCI). Mechanisms of regulating cognitive function have not been fully elucidated. Herein, the present study is aimed at exploring the effect of the microbiota-gut-inflammasome-brain axis in the process of exercise preconditioning moderating cognitive impairment after ischemic stroke. We observed that exercise preconditioning decreased infarct size, reduced the degree of neuronal damage, and alleviated cognitive impairment in mice with ischemic stroke. In addition, exercise preconditioning also reduced the expression of inflammatory cytokines, as well as NLRP3, Caspase-1, IL-18, and IL-1β protein expressions. Ischemic stroke could downregulate the abundance of Roseburia while increasing the abundance of the Helicobacter at the level of genus. As a comparison, exercise preconditioning increased the abundance of the Lactobacillus, which was beneficial for mice at the genus level. In conclusion, exercise preconditioning can improve cognitive dysfunction after ischemic stroke through alleviating inflammation and regulating the composition and diversity of the gut microbiota, which might provide a new strategy for the prevention of PSCI.
Collapse
|
17
|
Krakovski MA, Arora N, Jain S, Glover J, Dombrowski K, Hernandez B, Yadav H, Sarma AK. Diet-microbiome-gut-brain nexus in acute and chronic brain injury. Front Neurosci 2022; 16:1002266. [PMID: 36188471 PMCID: PMC9523267 DOI: 10.3389/fnins.2022.1002266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, appreciation for the gut microbiome and its relationship to human health has emerged as a facilitator of maintaining healthy physiology and a contributor to numerous human diseases. The contribution of the microbiome in modulating the gut-brain axis has gained significant attention in recent years, extensively studied in chronic brain injuries such as Epilepsy and Alzheimer’s Disease. Furthermore, there is growing evidence that gut microbiome also contributes to acute brain injuries like stroke(s) and traumatic brain injury. Microbiome-gut-brain communications are bidirectional and involve metabolite production and modulation of immune and neuronal functions. The microbiome plays two distinct roles: it beneficially modulates immune system and neuronal functions; however, abnormalities in the host’s microbiome also exacerbates neuronal damage or delays the recovery from acute injuries. After brain injury, several inflammatory changes, such as the necrosis and apoptosis of neuronal tissue, propagates downward inflammatory signals to disrupt the microbiome homeostasis; however, microbiome dysbiosis impacts the upward signaling to the brain and interferes with recovery in neuronal functions and brain health. Diet is a superlative modulator of microbiome and is known to impact the gut-brain axis, including its influence on acute and neuronal injuries. In this review, we discussed the differential microbiome changes in both acute and chronic brain injuries, as well as the therapeutic importance of modulation by diets and probiotics. We emphasize the mechanistic studies based on animal models and their translational or clinical relationship by reviewing human studies.
Collapse
Affiliation(s)
| | - Niraj Arora
- Department of Neurology, University of Missouri, Columbia, MO, United States
| | - Shalini Jain
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Jennifer Glover
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Keith Dombrowski
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Beverly Hernandez
- Clinical Nutrition Services, Tampa General Hospital, Tampa, FL, United States
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, United States
- *Correspondence: Hariom Yadav,
| | - Anand Karthik Sarma
- Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
- Anand Karthik Sarma,
| |
Collapse
|
18
|
Savigamin C, Samuthpongtorn C, Mahakit N, Nopsopon T, Heath J, Pongpirul K. Probiotic as a Potential Gut Microbiome Modifier for Stroke Treatment: A Systematic Scoping Review of In Vitro and In Vivo Studies. Nutrients 2022; 14:nu14173661. [PMID: 36079918 PMCID: PMC9460291 DOI: 10.3390/nu14173661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Pharmacologic and non-pharmacologic treatments for stroke are essential but can be costly or harmful, whereas probiotics are a promising alternative. This scoping review aimed to synthesize the in vitro and in vivo evidence of probiotics on stroke-related neurological, biochemical, and histochemical outcomes. METHODS A systematic review was conducted in PubMed, Embase, and Cochrane Central Register of Clinical Trials (CENTRAL) up to 7 May 2021. Titles and abstracts were screened and assessed by two independent reviewers. The initial screening criteria aimed to include studies using probiotics, prebiotics, and symbiotics both in vitro and in vivo for the prevention and/or treatment of stroke. RESULTS Of 6293 articles, 4990 passed the initial screen after excluding duplication articles, of which 36 theme-related full texts were assessed and 13 were included in this review. No in vitro studies passed the criteria to be included in this review. Probiotics can ameliorate neurological deficits and show their anti-inflammation and anti-oxidative properties. Decreased loss of cerebral volume and inhibition of neuronal apoptosis were revealed in histopathological evidence. CONCLUSIONS There are potential cognitive benefits of probiotic supplementation, especially among animal models, on decreasing cerebral volume, increasing neurological score, and decreasing the inflammatory response. However, further investigation is needed to validate these conclusions in various populations.
Collapse
Affiliation(s)
- Chatuthanai Savigamin
- Department of Parasitology, Chulalongkorn University Faculty of Medicine, Bangkok 10330, Thailand
| | - Chatpol Samuthpongtorn
- Department of Preventive and Social Medicine, School of Global Health, Chulalongkorn University Faculty of Medicine, Bangkok 10330, Thailand
| | - Nuttida Mahakit
- Department of Preventive and Social Medicine, School of Global Health, Chulalongkorn University Faculty of Medicine, Bangkok 10330, Thailand
| | - Tanawin Nopsopon
- Department of Preventive and Social Medicine, School of Global Health, Chulalongkorn University Faculty of Medicine, Bangkok 10330, Thailand
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Julia Heath
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, School of Global Health, Chulalongkorn University Faculty of Medicine, Bangkok 10330, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Clinical Research Center, Bumrungrad International Hospital, Bangkok 10110, Thailand
- Correspondence:
| |
Collapse
|
19
|
Tang R, Yi J, Lu S, Chen B, Liu B. Therapeutic Effect of Buyang Huanwu Decoction on the Gut Microbiota and Hippocampal Metabolism in a Rat Model of Cerebral Ischemia. Front Cell Infect Microbiol 2022; 12:873096. [PMID: 35774407 PMCID: PMC9237419 DOI: 10.3389/fcimb.2022.873096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Buyang Huanwu decoction (BHD) is a well-known Chinese herbal prescription. It has been widely used in the clinical treatment of cerebral ischemia (CI) in China. However, the mechanism underlying the treatment of CI with BHD remains to be elucidated. In this study, we combined microbiomic and metabolomic strategies to explore the therapeutic effects of BHD on middle cerebral artery occlusion (MCAO) in rats. Our results showed that BHD could effectively improve neurological severity scores and alleviate neuronal damage in rats with MCAO. BHD could also reduce the level of peripheral proinflammatory cytokines and inhibit neuroinflammation. 16S rRNA sequencing showed that BHD could increase the relative abundances of the genera Lactobacillus, Faecalibacterium, Ruminococcaceae_UCG-002, etc., while decreasing the relative abundances of the genera Escherichia-Shigella, Klebsiella, Streptococcus, Coprococcus_2, Enterococcus, etc. Untargeted metabolomic analysis of hippocampal samples showed that 17 significantly differentially abundant metabolites and 9 enriched metabolic pathways were linked with BHD treatment. We also found that the regulatory effects of BHD on metabolites were correlated with the differentially abundant microbial taxa. The predicted function of the gut microbiota and the metabolic pathway enrichment results showed that purine metabolism, glutamatergic synapses, arginine and proline metabolism, and alanine, aspartic acid and glutamate metabolism were involved in the effects of BHD. These pathways may be related to pathological processes such as excitotoxicity, neuroinflammation, and energy metabolism disorder in CI. In summary, these findings suggest that regulation of hippocampal metabolism and of the composition and function of the gut microbiota may be important mechanisms underlying the effect of BHD in the treatment of CI.
Collapse
Affiliation(s)
- Rongmei Tang
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Jian Yi
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Shuangying Lu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Bowei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Baiyan Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Baiyan Liu,
| |
Collapse
|
20
|
Dandekar MP, Yin X, Peng T, Devaraj S, Morales R, McPherson DD, Huang SL. Repetitive xenon treatment improves post-stroke sensorimotor and neuropsychiatric dysfunction. J Affect Disord 2022; 301:315-330. [PMID: 34990636 DOI: 10.1016/j.jad.2022.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/21/2021] [Accepted: 01/02/2022] [Indexed: 12/20/2022]
Abstract
Stroke is a life-changing event as stroke survivors experience changes in personality, emotions and mood. We investigated the effect of xenon gas encapsulated in liposomes on stroke-generated sensorimotor impairments, and anxiety- and depression-like phenotypes. Ischemic stroke was created by the intraluminal middle cerebral artery occlusion (MCAO) for 6 h followed by reperfusion in rats. Xenon-liposome (6 mg/kg, intravenous) treatment was given multiple times starting at 2 h post-ischemia through 6 h (5X), and once-daily for next 3 days. Rats underwent ischemic injury displayed sensorimotor deficits in the adhesive removal, vibrissae-evoked forelimb placement and rotarod tests. These animals also made lesser entries and spent less time on open arms of the elevated-plus maze and swam more in passive mode in the forced swimming test, indicating anxiety- and depression-like behaviors at 28- and 35-days post-injury, respectively. Repeated intravenous treatment with xenon-liposomes ameliorated these behavioral aberrations (p < 0.05). Gut microbiome analysis (16S ribosomal-RNA gene sequencing) showed a decrease in the Clostridium clusters XI, XIVa, XVIII and Lactobacillus bacterium, and increase of the Prevotella in the xenon-liposome group. No microbiota communities were majorly affected across the treatments. Moreover, xenon treatment group showed augmented plasma levels of IL-6 cytokines (∼5 fold) on day-35 post-ischemia, while no change was noticed in the IL-1β, IL-4, IL-10, IL-13 and MCP-1 levels. Our data highlights the safety, behavioral recovery and reversal of post-stroke brain injury following xenon-liposome treatment in an extended ischemic model. These results show the potential for this treatment strategy to be translated to patients with stroke.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; presently Manoj P. Dandekar is affiliated with Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Xing Yin
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Tao Peng
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Sridevi Devaraj
- Department of Pathology & Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; CIBQA, Universidad Bernardo O'Higgins. Santiago, Chile
| | - David D McPherson
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; Center for Clinical and Translational Sciences at The University of Texas Health Science Center at Houston, TX, USA
| | - Shao-Ling Huang
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
21
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
22
|
Averina OV, Poluektova EU, Marsova MV, Danilenko VN. Biomarkers and Utility of the Antioxidant Potential of Probiotic Lactobacilli and Bifidobacteria as Representatives of the Human Gut Microbiota. Biomedicines 2021; 9:1340. [PMID: 34680457 PMCID: PMC8533434 DOI: 10.3390/biomedicines9101340] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Lactobacilli and bifidobacteria are an important part of human gut microbiota. Among numerous benefits, their antioxidant properties are attracting more and more attention. Multiple in vivo and in vitro studies have demonstrated that lactobacilli and bifidobacteria, along with their cellular components, possess excellent antioxidant capacity, which provides a certain degree of protection to the human body against diseases associated with oxidative stress. Recently, lactobacilli and bifidobacteria have begun to be considered as a new source of natural antioxidants. This review summarizes the current state of research on various antioxidant properties of lactobacilli and bifidobacteria. Special emphasis is given to the mechanisms of antioxidant activity of these bacteria in the human gut microbiota, which involve bacterial cell components and metabolites. This review is also dedicated to the genes involved in the antioxidant properties of lactobacilli and bifidobacteria strains as indicators of their antioxidant potential in human gut microbiota. Identification of the antioxidant biomarkers of the gut microbiota is of great importance both for creating diagnostic systems for assessing oxidative stress and for choosing strategies aimed at restoring the normal functioning of the microbiota and, through it, restoring human health. In this review, the practical application of probiotic strains with proven antioxidant properties to prevent oxidative stress is also considered.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Mariya V. Marsova
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
- Institute of Ecology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
23
|
The Role of Gut Microbiota and Gut-Brain Interplay in Selected Diseases of the Central Nervous System. Int J Mol Sci 2021; 22:ijms221810028. [PMID: 34576191 PMCID: PMC8471822 DOI: 10.3390/ijms221810028] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome has attracted increasing attention from researchers in recent years. The microbiota can have a specific and complex cross-talk with the host, particularly with the central nervous system (CNS), creating the so-called “gut–brain axis”. Communication between the gut, intestinal microbiota, and the brain involves the secretion of various metabolites such as short-chain fatty acids (SCFAs), structural components of bacteria, and signaling molecules. Moreover, an imbalance in the gut microbiota composition modulates the immune system and function of tissue barriers such as the blood–brain barrier (BBB). Therefore, the aim of this literature review is to describe how the gut–brain interplay may contribute to the development of various neurological disorders, combining the fields of gastroenterology and neuroscience. We present recent findings concerning the effect of the altered microbiota on neurodegeneration and neuroinflammation, including Alzheimer’s and Parkinson’s diseases, as well as multiple sclerosis. Moreover, the impact of the pathological shift in the microbiome on selected neuropsychological disorders, i.e., major depressive disorders (MDD) and autism spectrum disorder (ASD), is also discussed. Future research on the effect of balanced gut microbiota composition on the gut–brain axis would help to identify new potential opportunities for therapeutic interventions in the presented diseases.
Collapse
|
24
|
Wu H, Chiou J. Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke. Nutrients 2021; 13:2878. [PMID: 34445037 PMCID: PMC8401746 DOI: 10.3390/nu13082878] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Among cardiovascular diseases (CVDs), a major cause of morbidity and mortality worldwide, coronary heart disease and stroke are the most well-known and extensively studied. The onset and progression of CVD is associated with multiple risk factors, among which, gut microbiota has received much attention in the past two decades. Gut microbiota, the microbial community colonizing in the gut, plays a prominent role in human health. In particular, gut dysbiosis is directly related to many acute or chronic dysfunctions of the cardiovascular system (CVS) in the host. Earlier studies have demonstrated that the pathogenesis of CVD is strongly linked to intestinal microbiota imbalance and inflammatory responses. Probiotics and prebiotics conferring various health benefits on the host are emerging as promising therapeutic interventions for many diseases. These two types of food supplements have the potential to alleviate the risks of CVD through improving the levels of several cardiovascular markers, such as total and low-density lipoprotein (LDL) cholesterol, high sensitivity C-reactive protein (hs-CRP), and certain cytokines involved in the inflammatory response. In this review, we focus mainly on the preventive effects of probiotics and prebiotics on CVD via rebalancing the structural and functional changes in gut microbiota and maintaining immune homeostasis.
Collapse
Affiliation(s)
- Haicui Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China;
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jiachi Chiou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China;
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
25
|
Wei M, Huang Q, Liu Z, Luo Y, Xia J. Intestinal Barrier Dysfunction Participates in the Pathophysiology of Ischemic Stroke. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:401-416. [PMID: 33749565 DOI: 10.2174/1871527320666210322115808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
The gastrointestinal tract is a major organ for the body to absorb nutrients, water and electrolytes. At the same time, it is a tight barrier to resist the invasion of harmful substances and maintain the homeostasis of the internal environment. Destruction of the intestinal barrier is linked to the digestive system, cardiovascular system, endocrine system and other systemic diseases. Mounting evidence suggests that ischemic stroke not only changes the intestinal microbes, but also increases the permeability of the intestinal barrier, leading to bacterial translocation, infection, and even sepsis. The intestinal barrier, as part of the gut-brain axis, has also been proven to participate in the pathophysiological process of ischemic stroke. However, little attention has been paid to it. Since ischemic stroke is a major public health issue worldwide, there is an urgent need to know more about the disease for better prevention, treatment and prognosis. Therefore, understanding the pathophysiological relationship between ischemic stroke and the intestinal barrier will help researchers further uncover the pathophysiological mechanism of ischemic stroke and provide a novel therapeutic target for the treatment of ischemic stroke. Here, we review the physiology and pathology between ischemic stroke and intestinal barrier based on related articles published in the past ten years about the relationship between ischemic stroke, stroke risk factors and intestinal flora, intestinal barrier, and discuss the following parts: the intestinal barrier; possible mechanisms of intestinal barrier destruction in ischemic stroke; intestinal barrier destruction caused by stroke-related risk factors; intestinal barrier dysfunction in ischemic stroke; targeting the intestinal barrier to improve stroke; conclusions and perspectives.
Collapse
Affiliation(s)
- Minping Wei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Yunfang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| |
Collapse
|
26
|
Huang Q, Yu F, Liao D, Xia J. Microbiota-Immune System Interactions in Human Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:509-526. [PMID: 32713337 DOI: 10.2174/1871527319666200726222138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Recent studies implicate microbiota-brain communication as an essential factor for physiology and pathophysiology in brain function and neurodevelopment. One of the pivotal mechanisms about gut to brain communication is through the regulation and interaction of gut microbiota on the host immune system. In this review, we will discuss the role of microbiota-immune systeminteractions in human neurological disorders. The characteristic features in the development of neurological diseases include gut dysbiosis, the disturbed intestinal/Blood-Brain Barrier (BBB) permeability, the activated inflammatory response, and the changed microbial metabolites. Neurological disorders contribute to gut dysbiosis and some relevant metabolites in a top-down way. In turn, the activated immune system induced by the change of gut microbiota may deteriorate the development of neurological diseases through the disturbed gut/BBB barrier in a down-top way. Understanding the characterization and identification of microbiome-immune- brain signaling pathways will help us to yield novel therapeutic strategies by targeting the gut microbiome in neurological disease.
Collapse
Affiliation(s)
- Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Di Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China,Hunan Clinical Research Center for Cerebrovascular Disease, Changsha, China
| |
Collapse
|
27
|
Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res 2019; 148:104403. [PMID: 31425750 DOI: 10.1016/j.phrs.2019.104403] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 01/07/2023]
Abstract
The gut microbiota and its short chain fatty acid (SCFA) metabolites have been established to play an important protective role against neurodegenerative diseases. Our previous study demonstrated that cerebral ischemic stroke triggers dysfunctional gut microbiota and increased intestinal permeability. In this study, we aimed to clarify the mechanism by which gut microbiota and SCFAs can treat cerebral ischemic stroke in rat middle cerebral artery occlusion models and use the information to develop new therapies. Our results show that oral administration of non-absorbable antibiotics reduced neurological impairment and the cerebral infarct volume, relieved cerebral edemas, and decreased blood lipid levels by altering the gut microbiota. We also found that ischemic stroke decreased intestinal levels of SCFAs. And that transplanting fecal microbiota rich in these metabolites was an effective means of treating the condition. Compared with other SCFAs, butyric acid showed the highest negative correlation with ischemic stroke. Supplementation with butyric acid treated models of ischemic stroke effectively by remodeling the gut microbiota, enriching the beneficial Lactobacillus, and repairing the leaky gut. In conclusion, interfering with the gut microbiota by transplanting fecal bacteria rich in SCFAs and supplementing with butyric acid were found to be effective treatments for cerebral ischemic stroke.
Collapse
|
28
|
Acute remote ischemic preconditioning alleviates free radical injury and inflammatory response in cerebral ischemia/reperfusion rats. Exp Ther Med 2019; 18:1953-1960. [PMID: 31410157 PMCID: PMC6676222 DOI: 10.3892/etm.2019.7797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022] Open
Abstract
Remote ischemic preconditioning (IPreC) is an effective strategy to defend against cerebral ischemia/reperfusion (IR) injury; however, its mechanisms remain to be elucidated. The aim of the present study was to investigate the effect of IPreC on brain tissue following cerebral ischemia, as well as the underlying mechanisms. Adult male Sprague-Dawley rats were treated with IPreC for 72 h prior to the induction of transient cerebral ischemia and reperfusion. The results demonstrated that IPreC reduced the area of cerebral infarction in the IR rats by 2,3,5-triphenyl-tetrazolium chloride staining. In addition, cell apoptosis was markedly suppressed by IPreC with an increased expression of B-cell lymphoma 2 (Bcl-2)/Bcl-2-associatd X protein using Terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assay and western blot analysis. IR induced a decrease in the level of superoxide dismutase, and IPreC significantly suppressed increased levels of malondialdehyde, lactate dehydrogenase and nitric oxide. The expression of CD11b and CD18 was markedly inhibited by IpreC unsing flow cytometry. Furthermore, IPreC markedly decreased the release of pro-inflammatory factors interleukin (IL)-6 and IL-1β, and enhanced the level of anti-inflammatory factors (IL-10 and IL-1 receptor antagonist) by ELISA assay. Finally, IPreC reduced the levels of transforming growth factor-β-activated kinase 1, phosphorylated-P65/P65, and tumor necrosis factor-α, indicating that the nuclear factor-κB pathway was involved in IPreC-mediated protection against cerebral ischemia. Taken together, the results suggested that IPreC decreased ischemic brain injury through alleviating free radical injury and the inflammatory response in cerebral IR rats.
Collapse
|
29
|
Spielman LJ, Gibson DL, Klegeris A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int 2018; 120:149-163. [PMID: 30114473 DOI: 10.1016/j.neuint.2018.08.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/08/2023]
Abstract
The number of bacterial cells living within the human body is approximately equal to, or greater than, the total number of human cells. This dynamic population of microorganisms, termed the human microbiota, resides mainly within the gastrointestinal tract. It is widely accepted that highly diverse and stable microbiota promote overall human health. Colonization of the gut with maladaptive and pathogenic microbiota, a state also known as dysbiosis, is associated with a variety of peripheral diseases ranging from type 2 diabetes mellitus to cardiovascular and inflammatory bowel disease. More recently, microbial dysbiosis has been associated with a number of brain pathologies, including autism spectrum disorder, Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), suggesting a direct or indirect communication between intestinal bacteria and the central nervous system (CNS). In this review, we illustrate two pathways implicated in the crosstalk between gut microbiota and CNS involving 1) the vagus nerve and 2) transmission of signaling molecules through the circulatory system and across the blood-brain barrier (BBB). We summarize the available evidence of the specific changes in the intestinal microbiota, as well as microorganism-induced modifications to intestinal and BBB permeability, which have been linked to several neurodegenerative disorders including ALS, AD, and PD. Even though each of these diseases arises from unique pathogenetic mechanisms, all are characterized, at least in part, by chronic neuroinflammation. We provide an interpretation for the substantial evidence that healthy intestinal microbiota have the ability to positively regulate the neuroimmune responses in the CNS. Even though the evidence is mainly associative, it has been suggested that bacterial dysbiosis could contribute to an adverse neuroinflammatory state leading to increased risk of neurodegenerative diseases. Thus, developing strategies for regulating and maintaining healthy intestinal microbiota could be a valid approach for lowering individual risk and prevalence of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Deanna Lynn Gibson
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, Canada
| |
Collapse
|