1
|
Zhang C, Ji Y, Wang Q, Ruan L. MiR-629-5p May serve as a biomarker for pediatric acute respiratory distress syndrome and can regulate the inflammatory response. Pediatr Neonatol 2024:S1875-9572(24)00154-2. [PMID: 39277501 DOI: 10.1016/j.pedneo.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE Circulating microRNAs (miRNAs) are associated with pediatric acute respiratory distress syndromes (PARDS). This study analyzed the clinical significance and potential mechanism of microRNA (miR)-629-5p in PARDS. METHODS 82 children with PARDS and 82 controls were enrolled. Serum levels of miR-629-5p were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and its diagnostic significance with respect to for PARDS in children was assessed by the receiver operating characteristic (ROC). Kaplan-Meier curve and multivariate Cox regression were utilized to examine the prognostic significance of miR-629-5p. An in vitro cell model was established using lipopolysaccharide (LPS)-induced alveolar epithelial cells A549. The cell proliferation, apoptosis, and inflammatory factors were assessed using cell counting kit-8 (CCK-8), flow cytometry, and enzyme-linked immunosorbent assay (ELISA). miR-629-5p target genes were identified in the database and validated using the dual-luciferase report assay. RESULTS Serum miR-629-5p levels were significantly higher in children with PARDS than in controls (P < 0.05). miR-629-5p exhibited 86.6% sensitivity and 91.5% specificity in distinguishing children with PARDS. miR-629-5p was an independent risk factor for mortality, and high levels of miR-629-5p have a poor prognosis. LPS promoted apoptosis and overproduction of inflammatory factors in A549 and upregulated miR-629-5p expression (P < 0.05); however, they were partially reversed by the weakened miR-629-5p (P < 0.05). Syndecan-4 (SDC4) is a target of miR-629-5p. The inhibition of SDC4 induced by LPS can be alleviated through the reduction of miR-629-5p. CONCLUSION miR-629-5p serves as a diagnostic biomarker for children with PARDS and it is associated with poor prognosis. Diminished miR-629-5p may alleviate PARDS by targeting SDC4 to suppress apoptosis and inflammation of alveolar epithelial cells.
Collapse
Affiliation(s)
- Cuicui Zhang
- Pediatric Intensive Care Unit, Xingtai People's Hospital, Xingtai, 054000, China
| | - Yanan Ji
- Pediatric Intensive Care Unit, Xingtai People's Hospital, Xingtai, 054000, China
| | - Qin Wang
- Pediatric Intensive Care Unit, Xingtai People's Hospital, Xingtai, 054000, China
| | - Lianying Ruan
- Pediatric Intensive Care Unit, Xingtai People's Hospital, Xingtai, 054000, China.
| |
Collapse
|
2
|
Doghish AS, Hegazy M, Ismail A, El-Mahdy HA, Elsakka EGE, Elkhawaga SY, Elkady MA, Yehia AM, Abdelmaksoud NM, Mokhtar MM. A spotlight on the interplay of signaling pathways and the role of miRNAs in osteosarcoma pathogenesis and therapeutic resistance. Pathol Res Pract 2023; 245:154442. [PMID: 37031532 DOI: 10.1016/j.prp.2023.154442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Osteosarcoma (OS) is one of the most common bone cancers that constantly affects children, teenagers, and young adults. Numerous epigenetic elements, such as miRNAs, have been shown to influence OS features like progression, initiation, angiogenesis, and treatment resistance. The expression of numerous genes implicated in OS pathogenesis might be regulated by miRNAs. This effect is ascribed to miRNAs' roles in the invasion, angiogenesis, metastasis, proliferation, cell cycle, and apoptosis. Important OS-related mechanistic networks like the WNT/b-catenin signaling, PTEN/AKT/mTOR axis, and KRAS mutations are also affected by miRNAs. In addition to pathophysiology, miRNAs may influence how the OS reacts to therapies like radiotherapy and chemotherapy. With a focus on how miRNAs affect OS signaling pathways, this review seeks to show how miRNAs and OS are related.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
3
|
Radmanić L, Korać P, Gorenec L, Šimičić P, Bodulić K, Vince A, Lepej SŽ. Distinct Expression Patterns of Genes Coding for Biological Response Modifiers Involved in Inflammatory Responses and Development of Fibrosis in Chronic Hepatitis C: Upregulation of SMAD-6 and MMP-8 and Downregulation of CAV-1, CTGF, CEBPB, PLG, TIMP-3, MMP-1, ITGA-1, ITGA-2 and LOX. Medicina (B Aires) 2022; 58:medicina58121734. [PMID: 36556936 PMCID: PMC9785468 DOI: 10.3390/medicina58121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Objectives: The aim of this study was to analyze the expression of genes on transcriptomic levels involved in inflammatory immune responses and the development of fibrosis in patients with chronic hepatitis C. Materials and Methods: Expression patterns of 84 selected genes were analyzed with real-time quantitative RT PCR arrays in the peripheral blood of treatment-naive patients with chronic hepatitis C and healthy controls. The panel included pro- and anti-fibrotic genes, genes coding for extracellular matrix (EMC) structural constituents and remodeling enzymes, cell adhesion molecules, inflammatory cytokines, chemokines and growth factors, signal transduction members of the transforming growth factor- beta (TGF-ß) superfamily, transcription factors, and genes involved in epithelial to mesenchymal transition. Results: The expression of SMAD-6 coding for a signal transduction TGF-beta superfamily member as well as MMP-8 coding for an ECM protein were significantly increased in CHC patients compared with controls. Conclusions: Chronic hepatitis C was also characterized by a significant downregulation of a set of genes including CAV-1, CTGF, TIMP-3, MMP-1, ITGA-1, LOX, ITGA-2, PLG and CEBPB encoding various biological response modifiers and transcription factors. Our results suggest that chronic hepatitis C is associated with distinct patterns of gene expression modulation in pathways associated with the regulation of immune responses and development of fibrosis.
Collapse
Affiliation(s)
- Leona Radmanić
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Lana Gorenec
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| | - Petra Šimičić
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| | - Kristian Bodulić
- Research Department, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| | - Adriana Vince
- Department of Viral Hepatitis, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Snježana Židovec Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-2826-625
| |
Collapse
|
4
|
Chen X, Yu D, Zhou H, Zhang X, Hu Y, Zhang R, Gao X, Lin M, Guo T, Zhang K. The role of EphA7 in different tumors. Clin Transl Oncol 2022; 24:1274-1289. [PMID: 35112312 DOI: 10.1007/s12094-022-02783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 12/06/2022]
Abstract
Ephrin receptor A7 (EphA7) is a member of the Eph receptor family. It is widely involved in signal transduction between cells, regulates cell proliferation and differentiation, and participates in developing neural tubes and brain. In addition, EphA7 also has a dual role of tumor promoter and tumor suppressor. It can participate in cell proliferation, migration and apoptosis through various mechanisms, and affect tumor differentiation, staging and prognosis. EphA7 may be a potential diagnostic marker and tumor treatment target. This article reviews the effects of EphA7 on a variety of tumor biological processes and pathological characteristics, as well as specific effects and regulatory mechanisms.
Collapse
Affiliation(s)
- Xiangyi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Dechen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China. .,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China. .,Xigu District People's Hospital, Lanzhou, 730030, China.
| | - Xiaobo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Ruihao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Xidan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| | - Kun Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730030, China.,Gansu Key Laboratory of Bone and Joint Diseases, Lanzhou, 730030, China.,Xigu District People's Hospital, Lanzhou, 730030, China
| |
Collapse
|
5
|
Ren DY, Yuan XR, Tu CX, Shen JL, Li YW, Yan AH, Ru Y, Han HY, Yang YM, Liu Y, Li HY. Long Noncoding RNA 00472: A Novel Biomarker in Human Diseases. Front Pharmacol 2021; 12:726908. [PMID: 34987381 PMCID: PMC8722734 DOI: 10.3389/fphar.2021.726908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in human diseases. They control gene expression levels and influence various biological processes through multiple mechanisms. Functional abnormalities in lncRNAs are strongly associated with occurrence and development of various diseases. LINC00472, which is located on chromosome 6q13, is involved in several human diseases, particularly cancers of the breast, lung, liver, osteosarcoma, bladder, colorectal, ovarian, pancreatic and stomach. Importantly, LINC00472 can be used as a biomarker for breast cancer cell sensitivity to chemotherapeutic regimens, including doxorubicin. LINC00472 is regulated by microRNAs and several signaling pathways. However, the significance of LINC00472 in human diseases has not been clearly established. In this review, we elucidate on the significance of LINC00472 in various human diseases, indicating that LINC00472 may be a diagnostic, prognostic as well as therapeutic target for these diseases.
Collapse
Affiliation(s)
- Dan-yang Ren
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Xin-rong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-xia Tu
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Jian-ling Shen
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yun-wei Li
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Ai-hua Yan
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yi Ru
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Hui-yun Han
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yan-ming Yang
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Yan Liu
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| | - Hui-ying Li
- Pharmaceutical Preparation Section, Children’s Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Liu Y, Zhao S, Wang J, Zhu Z, Luo L, Xiang Q, Zhou M, Ma Y, Wang Z, Zhao Z. MiR-629-5p Promotes Prostate Cancer Development and Metastasis by Targeting AKAP13. Front Oncol 2021; 11:754353. [PMID: 34722307 PMCID: PMC8554144 DOI: 10.3389/fonc.2021.754353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer (PCa) has become the most frequently occurring cancer among western men according to the latest report, and patients’ prognosis is often poor in the event of tumor progression, therefore, many researches are devoted to exploring the molecular mechanism of PCa metastasis. MicroRNAs (miRNA) have proved to play an important role in this process. In present study, by combining clinical samples with public databases, we found that miR-629-5p increased to varying degrees in primary localized PCa tissues and metastatic PCa tissues compared with adjacent normal tissues, and bioinformatics analysis suggested that high level of miR-629-5p was related to poor prognosis. Functionally, miR-629-5p drove PCa cell proliferation, migration and invasion in vitro, and promoted growth of PCa cells in vivo. Moreover, A-kinase Anchor Protein 13 (AKAP13) was screened as a direct target of miR-629-5p, that expression was negatively correlated with the malignant phenotype of tumor cells. In the end, through verification in clinical specimens, we found that AKAP13 could be independently used as a clinical prognostic indicator. Overall, the present study indicates that miR-629-5p plays an oncogenic role in PCa by targeting AKAP13, which provides a new idea for clinical diagnosis and treatment of complex refractory PCa.
Collapse
Affiliation(s)
- Yangzhou Liu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jiamin Wang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Zhiguo Zhu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lianmin Luo
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Qian Xiang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Mingda Zhou
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Yuxiang Ma
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Zuomin Wang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Zhigang Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Zhao H, Zhang M, Yang X, Song D. Overexpression of Long Non-Coding RNA MIR22HG Represses Proliferation and Enhances Apoptosis via miR-629-5p/TET3 Axis in Osteosarcoma Cells. J Microbiol Biotechnol 2021; 31:1331-1342. [PMID: 34373436 PMCID: PMC9705835 DOI: 10.4014/jmb.2106.06028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
In this study, we evaluated the mechanism of long non-coding RNA MIR22 host gene (LncRNA MIR22HG) in osteosarcoma cells. Forty-eight paired osteosarcoma and adjacent tissues samples were collected and the bioinformatic analyses were performed. Target genes and potential binding sites of MIR22HG, microRNA (miR)-629-5p and tet methylcytosine dioxygenase 3 (TET3) were predicted by Starbase and TargetScan V7.2 and confirmed by dual-luciferase reporter assay. Cell Counting Kit-8, colony formation and flow cytometry assays were utilized to determine the viability, proliferation and apoptosis of transfected osteosarcoma cells. Pearson's analysis was introduced for the correlation analysis between MIR22HG and miR-629-5p in osteosarcoma tissue. Relative expressions of MIR22HG, miR-629-5p and TET3 were measured by quantitative real-time polymerase chain reaction or Western blot. MiR-629-5p could competitively bind with and was negatively correlated with MIR22HG, the latter of which was evidenced by the high expression of miR-629-5p and low expression of MIR22HG in osteosarcoma tissues. Overexpressed MIR22HG repressed the viability and proliferation but enhanced apoptosis of osteosarcoma cells, which was reversed by miR-629-5p upregulation. TET3 was the target gene of miR-629-5p, and the promotive effects of upregulated miR-629-5p on the viability and proliferation as well as its repressive effect on apoptosis were abrogated via overexpressed TET3. To sum up, overexpressed MIR22HG inhibits the viability and proliferation of osteosarcoma cells, which was achieved via regulation of the miR-629-5p/TET3 axis.
Collapse
Affiliation(s)
- Haoliang Zhao
- Orthopedics Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Ming Zhang
- Orthopedics Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Xuejing Yang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99 Longcheng Street, Xiaodian District, Taiyuan City, Shanxi Province 030032, P.R. China
| | - Dong Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99 Longcheng Street, Xiaodian District, Taiyuan City, Shanxi Province 030032, P.R. China,Corresponding author Phone: +86-0351-8368114 E-mail:
| |
Collapse
|