1
|
E J, Liu SY, Ma DN, Zhang GQ, Cao SL, Li B, Lu XH, Luo HY, Bao L, Lan XM, Fu RG, Zheng YL. Nanopore-based full-length transcriptome sequencing for understanding the underlying molecular mechanisms of rapid and slow progression of diabetes nephropathy. BMC Med Genomics 2024; 17:246. [PMID: 39379958 PMCID: PMC11463056 DOI: 10.1186/s12920-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) has been a major factor in the outbreak of end-stage renal disease for decades. As the underlying mechanisms of DN development remains unclear, there is no ideal methods for the diagnosis and therapy. OBJECTIVE We aimed to explore the key genes and pathways that affect the rate progression of DN. METHODS Nanopore-based full-length transcriptome sequencing was performed with serum samples from DN patients with slow progression (DNSP, n = 5) and rapid progression (DNRP, n = 6). RESULTS Here, transcriptome proclaimed 22,682 novel transcripts and obtained 45,808 simple sequence repeats, 1,815 transcription factors, 5,993 complete open reading frames, and 1,050 novel lncRNA from the novel transcripts. Moreover, a total of 341 differentially expressed transcripts (DETs) and 456 differentially expressed genes (DEGs) between the DNSP and DNRP groups were identified. Functional analyses showed that DETs mainly involved in ferroptosis-related pathways such as oxidative phosphorylation, iron ion binding, and mitophagy. Moreover, Functional analyses revealed that DEGs mainly involved in oxidative phosphorylation, lipid metabolism, ferroptosis, autophagy/mitophagy, apoptosis/necroptosis pathway. CONCLUSION Collectively, our study provided a full-length transcriptome data source for the future DN research, and facilitate a deeper understanding of the molecular mechanisms underlying the differences in fast and slow progression of DN.
Collapse
Affiliation(s)
- Jing E
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shun-Yao Liu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| | - Dan-Na Ma
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
| | - Guo-Qing Zhang
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Shi-Lu Cao
- Department of Nephrology, Chengdu first people's hospital, Chengdu, Sichuan, 610000, China
| | - Bo Li
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Hua Lu
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
| | - Hong-Yan Luo
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
| | - Li Bao
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
| | - Xiao-Mei Lan
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatrics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Rong-Guo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Ya-Li Zheng
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China.
| |
Collapse
|
2
|
Liu W, Hu XC, Huang H, He MT. Hsa_circ_0006260 Mediates Trophoblast Function by Fibronectin Type III Domains Containing Protein 5 via Interacting with miR-770-5p. Biochem Genet 2024:10.1007/s10528-024-10789-3. [PMID: 38642175 DOI: 10.1007/s10528-024-10789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
A series of studies have confirmed the relationship between circular RNAs (circRNAs) and metabolic diseases. Hsa_circ_0006260 has been reported to be lowly expressed in the placenta of gestational diabetes mellitus (GDM) patients, but the underlying mechanism and its biological functions remain obscure. Placental tissues were collected from 37 pregnant women with normal glucose tolerance (NGT) and 37 pregnant women with GDM. Expression changes of hsa_circ_0006260 in placentas and high glucose (HG)-stimulated HTR-8/SVneo cells were detected using real-time quantitative polymerase chain reaction. Cell viability and migration were determined by cell counting and transwell assays, respectively. Measurement of cytokines was done by enzyme-linked immunosorbent assay. Cell apoptosis was estimated by flow cytometry assay. The molecular mechanisms were identified using dual-luciferase reporter and RNA-binding protein immunoprecipitation assays. Hsa_circ_0006260 expression was remarkably lowered in GDM patient-derived placentas and HG-stimulated HTR-8/SVneo cells. Functionally, hsa_circ_0006260 overexpression weakened HG-mediated repression of HTR-8/SVneo cell viability and migration, as well as promotion of HTR-8/SVneo cell inflammatory response and apoptosis. Mechanistically, hsa_circ_0006260 functioned as a miR-770-5p decoy to mediate fibronectin type III domains containing protein 5 (FNDC5) expression. Ectopic expression of miR-770-5p weakened hsa_circ_0006260 overexpression-mediated repression of HG-induced HTR-8/SVneo cell dysfunction. Also, FNDC5 knockdown lessened miR-770-5p overexpression-mediated promotion of HG-induced HTR-8/SVneo cell dysfunction. Our findings manifested a novel mechanism by which hsa_circ_0006260 could lower HG-induced HTR-8/SVneo cell dysfunction by upregulating FNDC5 via binding to miR-770-5p, which shed new light on circRNA mediated GDM pathogenesis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Obstetrics, Haikou Hospital of the Maternal and Child Health, No. 6 Wentan Road, Qiongshan District, Haikou, 570000, Hainan, China.
| | - Xiao-Chun Hu
- Department of Cardiovascular Medicine, Hainan Provincial People's Hospital, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - He Huang
- Department of Obstetrics, Haikou Hospital of the Maternal and Child Health, No. 6 Wentan Road, Qiongshan District, Haikou, 570000, Hainan, China
| | - Meng-Ting He
- Department of Obstetrics, Haikou Hospital of the Maternal and Child Health, No. 6 Wentan Road, Qiongshan District, Haikou, 570000, Hainan, China
| |
Collapse
|
3
|
Khalilian S, Hosseini Imani SZ, Hosseini SA, Ghafouri-Fard S. The important role of miR-770 as a novel potential diagnostic and therapeutic target for human cancer and other diseases. Pathol Res Pract 2023; 248:154586. [PMID: 37267769 DOI: 10.1016/j.prp.2023.154586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
MicroRNA-770 (miR-770) is an RNA gene, located on chromosome 14q32.2. It has important effects on the pathobiology of cancers and other human diseases. It is known to be a tumor suppressor in breast cancer, ovarian cancer, gastric cancer, non-small cell lung cancer, prostate cancer, and glioblastoma. In colorectal adenocarcinoma and oral squamous cell carcinoma, miR-770 is regarded as an oncogenic miRNA. In several disorders, miR-770 dysregulation has been recognized as a potential biomarker for disease diagnosis and prognosis. Dysregulation of miR-770 has also been demonstrated in non-malignant human disorders, including Alzheimer's disease, dilated cardiomyopathy, diabetic nephropathy, Hirschsprung's disease, osteoarthritis, silicosis, and type 2 diabetes mellitus. In the current review, we have obtained the miR-770 target genes, ontology, and related pathways. We have also provided a comprehensive review of miR-770 in both malignant and non-malignant disorders and explained its possible therapeutic implications.
Collapse
Affiliation(s)
- Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Hosseini Imani
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN Office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
The Potential Diagnostic Value of Immune-Related Genes in Interstitial Fibrosis and Tubular Atrophy after Kidney Transplantation. J Immunol Res 2022; 2022:7212852. [PMID: 35755170 PMCID: PMC9232312 DOI: 10.1155/2022/7212852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background Inflammation within areas of interstitial fibrosis and tubular atrophy (IF/TA) is associated with kidney allograft failure. The aim of this study was to reveal new diagnostic markers of IF/TA based on bioinformatics analysis. Methods Raw data of IF/TA samples after kidney transplantation and control samples after kidney transplantation were extracted from the Gene Expression Omnibus (GEO) database (GSE76882 and GSE120495 datasets), and genes that were differentially expressed between the two groups (DEGs) were screened. Gene Set Enrichment Analysis (GSEA), ESTIMATE and single sample GSEA (ssGSEA), least absolute shrinkage and selection operator (LASSO) regression analysis, and competing endogenous RNA (ceRNA) network were used to analyze the data. Results The results of GSEA revealed that multiple immune-related pathways were enriched in the IF/TA group, and subsequent immune landscape analysis also showed that the IF/TA group had higher immune and stromal scores and up to 15 types of immune cells occupied them, such as B cells, cytotoxic cells, and T cells. LASSO regression analysis selected 6 (including ANGPTL3, APOH, LTF, FCGR2B, HLA-DQA2, and EGF) out of 14 DE-IRGs as diagnostic genes to construct a diagnostic model. Then, receiver operating characteristic (ROC) curve analysis showed the powerful diagnostic value of the model, and the area under the curve (AUC) of a single diagnostic gene was greater than 0.75. The results of ingenuity pathway analysis (IPA) also indicated that DEGs were involved in the immune system and kidney disease-related pathways. Finally, we found multiple miRNAs that could regulate diagnostic genes from the ceRNA network. Conclusion This study identified 6 IF/TA-related genes, which might be used as a new diagnosis model in the clinical practice.
Collapse
|
5
|
Modes of podocyte death in diabetic kidney disease: an update. J Nephrol 2022; 35:1571-1584. [PMID: 35201595 DOI: 10.1007/s40620-022-01269-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
Abstract
Diabetic kidney disease (DKD) accounts for a large proportion of end-stage renal diseases that require renal replacement therapies including dialysis and transplantation. Therefore, it is critical to understand the occurrence and development of DKD. Podocytes are mainly injured during the development of DKD, ultimately leading to their extensive death and loss. In turn, the injury and death of glomerular podocytes are also the main culprits of DKD. This review introduces the characteristics of podocytes and summarizes the modes of their death in DKD, including apoptosis, autophagy, mitotic catastrophe (MC), anoikis, necroptosis, and pyroptosis. Apoptosis is characterized by nuclear condensation and the formation of apoptotic bodies, and it exerts a different effect from autophagy in mediating DKD-induced podocyte loss. MC mediates a faulty mitotic process while anoikis separates podocytes from the basement membrane. Moreover, pyroptosis activates inflammatory factors to aggravate podocyte injuries whilst necroptosis drives signaling cascades, such as receptor-interacting protein kinases 1 and 3 and mixed lineage kinase domain-like, ultimately promoting the death of podocytes. In conclusion, a thorough knowledge of the modes of podocyte death in DKD can help us understand the development of DKD and lay the foundation for strategies in DKD disease therapy.
Collapse
|
6
|
Yuan J, Li P, Pan H, Xu Q, Xu T, Li Y, Wei D, Mo Y, Zhang Q, Chen J, Ni C. miR-770-5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112372. [PMID: 34082245 DOI: 10.1016/j.ecoenv.2021.112372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Silicosis is a devastating interstitial lung disease arising from long-term exposure to inhalable silica. Regrettably, no therapy currently can effectively reverse the silica-induced fibrotic lesion. Emerging evidence has indicated that the dysregulation of microRNAs is involved in silica-induced pulmonary fibrosis. The aim of this study is to explore the expression pattern and underlying mechanisms of miR-770-5p in silica-induced pulmonary fibrosis. Consistent with our previous miRNA microarray analysis, the results of qRT-PCR showed that miR-770-5p expression was downregulated in silica-induced pulmonary fibrosis in humans and animal models. Administration of miR-770-5p agomir significantly reduced the fibrotic lesions in the lungs of mice exposed to silica dust. MiR-770-5p also exhibited a dramatic reduction in TGF-β1-activated human pulmonary fibroblasts (MRC-5). Transfection of miR-770-5p mimics significantly decreased the viability, migration ability, and S/G0 phase distribution, as well as the expression of fibronectin, collagen I, and α-SMA in TGF-β1-treated MRC-5 cells. Transforming growth factor-β receptor 1 (TGFBR1) was confirmed as a direct target of regulation by miR-770-5p. The expression of TGFBR1 was significantly increased in pulmonary fibrosis. Knockdown of TGFBR1 blocked the transduction of the TGF-β1 signaling pathway and attenuated the activation of MRC-5 cells, while overexpression of TGFBR1 effectively restored the activation of MRC-5 cells inhibited by miR-770-5p. Together, our results demonstrated that miR-770-5p exerted an anti-fibrotic effect in silica-induced pulmonary fibrosis by targeting TGFBR1. Targeting miR-770-5p might provide a new therapeutic strategy to prevent the abnormal activation of pulmonary fibroblasts in silicosis.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ping Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Honghong Pan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Qi Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tiantian Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Dong Wei
- The Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214003, China
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Jingyu Chen
- The Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214003, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
7
|
Xu M, Yi M, Li N. MicroRNA-17-5p restrains the dysfunction of Ang-II induced podocytes by suppressing secreted modular calcium-binding protein 2 via NF-κB and TGFβ signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:1402-1411. [PMID: 33835671 DOI: 10.1002/tox.23136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Glomerulonephritis, also known as nephritis syndrome (nephritis for short), is a common kidney disease. Previous research has proved that microRNAs (miRNAs) frequently regulate various diseases including nephritis. Nonetheless, the biological function and molecular mechanism of miR-17-5p are unclear in nephritis. In the current study, RT-qPCR analysis showed that miR-17-5p was downregulated in Ang II-induced podocytes. Also, according to the results from RT-qPCR analysis, CCK-8 assay, flow cytometric analysis, western blot analysis, and ELISA miR-17-5p elevation alleviated Ang II-induced podocyte injury. Besides, luciferase reporter assay, western blot and RT-qPCR analyses revealed that SMOC2 was targeted by miR-17-5p in Ang II-induced podocytes. Additionally, rescue assays demonstrated that overexpressed SMOC2 counteracted the influence of overexpressed miR-17-5p on cell injury of Ang II-induced podocytes. Moreover, our data suggested that miR-17-5p-SMOC2 axis regulated TGFβ and NF-κB signaling activation in Ang II-induced podocytes. SMOC2 regulated cell viability, apoptosis and extracellular matrix (ECM) deposition in Ang II-induced podocytes via TGFβ signaling, and SMOC2 regulated inflammation in Ang II-induced podocytes through NF-κB signaling. Overall, our study demonstrated that miRNA-17-5p restrained the dysfunction of Ang-II induced podocytes by suppressing SMOC2 via the NF-κB and TGFβ signaling.
Collapse
Affiliation(s)
- Mingzhu Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Mengqiu Yi
- Intensive Care Unit, Songyuan Jilin Oilfield Hospital, Jilin, China
| | - Na Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Jilin, China
| |
Collapse
|
8
|
Wang M, Wei J, Ji T, Zang K. miRNA-770-5p expression is upregulated in patients with type 2 diabetes and miRNA-770-5p knockdown protects pancreatic β-cell function via targeting BAG5 expression. Exp Ther Med 2021; 22:664. [PMID: 33986829 PMCID: PMC8112148 DOI: 10.3892/etm.2021.10096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miR)-770-5p expression is increased in patients with type 2 diabetes mellitus (T2DM) compared with healthy controls; however, the roles and molecular mechanism underlying miR-770-5p in T2DM are not completely understood. In the present study, the reverse transcription-quantitative PCR (RT-qPCR) results indicated that miR-770-5p expression was significantly increased and Bcl-2 associated athanogene 5 (BAG5) expression was significantly decreased in the serum of patients with T2DM compared with healthy volunteers. TargetScan and a dual luciferase reporter gene system were used to predict and verify BAG5 as a target gene of miR-770-5p. Additionally, the RT-qPCR results demonstrated that miR-770-5p expression was significantly increased and BAG5 expression was significantly decreased in uric acid (UA)-treated Min6 cells compared with control cells. Min6 cells were transfected with miR-770-5p inhibitor and BAG5-small interfering (si)RNA to alter expression levels. The results indicated that miR-770-5p negatively regulated BAG5. The effect of miR-770-5p knockdown on UA-induced pancreatic β-cell damage and dysfunction was subsequently assessed. Min6 cells were transfected with miR-770-5p inhibitor or miR-770-5p inhibitor + BAG5-siRNA for 48 h, followed by treatment with or without 5 mg/dl UA for 24 h. Cell viability, apoptosis, apoptosis-related factor expression levels and insulin secretion were assessed. The results demonstrated that UA treatment significantly reduced cell viability, increased cell apoptosis and reduced insulin secretion in Min6 cells compared with the control group. miR-770-5p inhibitor significantly attenuated UA-induced injury and dysfunction of Min6 cells, whereas BAG5 knockdown abolished the protective effects of miR-770-5p inhibitor on UA-damaged Min6 cells. In conclusion, miR-770-5p was highly expressed in the serum of patients with T2DM compared with healthy volunteers. In UA-treated pancreatic β-cells, compared with the inhibitor control group, miR-770-5p knockdown regulated the expression of apoptosis-related genes, increased cell viability, inhibited cell apoptosis and increased insulin secretion by targeting BAG5. Therefore, the present study suggested that miR-770-5p inhibitor may serve a protective role in T2DM.
Collapse
Affiliation(s)
- Min Wang
- Department of Critical Care Medicine, The First Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jilou Wei
- Department of Critical Care Medicine, The First Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Ting Ji
- Department of Critical Care Medicine, The First Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Kui Zang
- Department of Critical Care Medicine, The First Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
9
|
Zhang Y, Jiang H, Dou S, Zhang B, Qi X, Li J, Zhou Q, Li W, Chen C, Wang Q, Xie L. Comprehensive analysis of differentially expressed microRNAs and mRNAs involved in diabetic corneal neuropathy. Life Sci 2020; 261:118456. [PMID: 32956661 DOI: 10.1016/j.lfs.2020.118456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022]
Abstract
AIMS Corneal nerve fibers are derived from the ophthalmic division of the trigeminal ganglion (TG). Here, by sequencing of microRNAs (miRNAs) and messenger RNAs (mRNAs) from diabetic and normal TG tissues, we aimed to uncover potential miRNAs, mRNAs, and the network of their interactions involved in the pathogenesis of diabetic corneal neuropathy. MAIN METHODS We performed RNA sequencing to systematically screen out differentially expressed miRNAs and mRNAs in TG tissues from diabetic and normal mice. Functional enrichment analyses were performed to illustrate the biological functions of differentially expressed mRNAs (DEmRNAs). Following this, miRNA-mRNA regulatory networks were built by means of bioinformatics methods to suggest regulatory role for miRNAs in the pathogenesis of diabetic corneal neuropathy. Finally, the credibility of the sequencing-based results was validated using qRT-PCR. KEY FINDINGS Sequencing analyses disclosed that 68 miRNAs and 114 mRNAs were differentially expressed in diabetic TG tissues compared with normal TG samples. The functional analyses showed that DEmRNAs participated in diabetes-related biological processes. After applying an optimized approach to predict miRNA-mRNA pairs, a miRNA-mRNA interacting network was inferred. Subsequently, the expression and correlation of miR-350-5p and Mup20, miR-592-5p and Angptl7 as well as miR-351-5p and Elovl6 were preliminarily validated. SIGNIFICANCE Our study provides a systematic characterization of miRNA and mRNA expression in the TG during diabetic corneal neuropathy and will contribute to the development of clinical diagnostic and therapeutic strategies for diabetic corneal neuropathy.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Hui Jiang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Shengqian Dou
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Bin Zhang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Xia Qi
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Jing Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Qingjun Zhou
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Weina Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Qun Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China.
| | - Lixin Xie
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China.
| |
Collapse
|