1
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
3
|
Mi W, Yang F, Li H, Xu X, Li L, Tan Q, Wang G, Zhang K, Tian F, Luo J, Xia J, Yuan K, Lu L, Deng J, Tian J, Zhang H. Efficacy, Safety, and Tolerability of Ansofaxine (LY03005) Extended-Release Tablet for Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled, Dose-Finding, Phase 2 Clinical Trial. Int J Neuropsychopharmacol 2021; 25:252-260. [PMID: 34747448 PMCID: PMC8929756 DOI: 10.1093/ijnp/pyab074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/05/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Ansofaxine (LY03005) extended-release tablet is a potential triple reuptake inhibitor of serotonin, norepinephrine, and dopamine. This study assessed the efficacy, safety, and appropriate dosage of ansofaxine for the treatment of major depressive disorder (MDD). METHODS A multicenter, randomized, double-blind, placebo-controlled, dose-finding, Phase 2 clinical trial was conducted in China. Eligible patients with MDD (18-65 years) were randomly assigned to receive fixed-dose ansofaxine extended-release tablets (40, 80, 120, or 160 mg/d) or placebo for 6 weeks. The primary outcome measure was a change in the total score on the 17-item Hamilton Depression Rating Scale from baseline to week 6. RESULTS A total of 260 patients were recruited from October 2015 to September 2017, and 255 patients received the study drug as follows: 40 mg (n = 52), 80 mg (n = 52), 120 mg (n = 51), and 160 mg (n = 51) ansofaxine and placebo (n = 49). Significant differences were found in mean changes in 17-item Hamilton Depression Rating Scale total scores at week 6 in the 4 ansofaxine groups vs placebo (-12.46; χ2 = -9.71, P = .0447). All doses of ansofaxine were generally well-tolerated. Treatment-related adverse events occurred in 141 patients (303 cases), yielding incidence rates of 51.92%, 65.38%, 56.86%, and 62.75% in the 40-, 80-, 120-, and 160-mg ansofaxine groups and 38.78% in the placebo group. CONCLUSION Active doses (40, 80, 120, and 160 mg/d) of ansofaxine in a controlled setting were safe, tolerated, and effective in improving depression symptoms in MDD patients.
Collapse
Affiliation(s)
- Weifeng Mi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Fude Yang
- Beijing Huilongguan Hospital, Beijing, China
| | - Huafang Li
- Shanghai Mental Health Center, Shanghai, China
| | - Xiufeng Xu
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lehua Li
- Second Xiangya Hospital of Central South University, Changsha, China
| | - Qingrong Tan
- First Affiliated Hospital of the Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | | | - Kerang Zhang
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Feng Tian
- Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiong Luo
- Beijing Anding Hospital of Capital Medical University, Beijing, China
| | - Jielai Xia
- Fourth Military Medical University of Chinese People’s Liberation Army, Statistical Analysis Teaching and Research Section, Xi’an, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China,Correspondence: Jiahui Deng, PhD, Institute of Mental Health and Peking University Sixth Hospital, 51 Huayuan Bei Road, Beijing 100191, China ()
| | | | - Hongyan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
4
|
Turner A, Baker A, Dean OM, Walker AJ, Dodd S, Cotton SM, Scott JG, Kavanagh BE, Ashton MM, Brown E, McGrath JJ, Berk M. Adjunctive Garcinia mangostana Linn. (Mangosteen) Pericarp for Schizophrenia: A 24-Week Double-blind, Randomized, Placebo Controlled Efficacy Trial: Péricarpe d'appoint Garcinia mangostana Linn (mangoustan) pour la schizophrénie : un essai d'efficacité de 24 semaines, à double insu, randomisé et contrôlé par placebo. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2021; 66:354-366. [PMID: 33355478 PMCID: PMC8172349 DOI: 10.1177/0706743720982437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Garcinia mangostana Linn. ("mangosteen") pericarp contains bioactive compounds that may target biological pathways implicated in schizophrenia. We conducted a double-blind randomized placebo-controlled trial evaluating the efficacy of adjunctive mangosteen pericarp, compared to placebo, in the treatment of schizophrenia. METHODS People diagnosed with schizophrenia or schizoaffective disorder (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition), recruited across 2 sites (Brisbane and Victoria, Australia), were randomized to receive 24 weeks of adjunctive mangosteen pericarp (1,000 mg/day) or matched placebo. The primary outcome measure was the Positive and Negative Symptom Scale total score. Secondary outcomes included positive and negative symptoms, general psychopathology, clinical global severity and improvement, participant reported overall improvement, depressive symptoms, functioning, quality of life, and safety data at 24 and 28 weeks (4 weeks postdiscontinuation). Data were collected from July 2016 to February 2019. RESULTS Baseline assessments were conducted on 148 people (mangosteen = 74, placebo = 74); data analyses were conducted on 136 (92%) participants with postbaseline data. The treatment group had significantly higher symptom severity compared to placebo, and both groups significantly improved on all symptom, functioning, and quality of life measures over time. No between-group differences were found for the rate of change between baseline and 24 or 28 weeks. CONCLUSION Despite promising preclinical and clinical work, our results do not support mangosteen pericarp extract as an adjunctive treatment for schizophrenia or schizoaffective disorder.
Collapse
Affiliation(s)
- Alyna Turner
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Andrea Baker
- 90131Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Australia
| | - Olivia M Dean
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Adam J Walker
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Seetal Dodd
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Susan M Cotton
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
- Orygen, Parkville, Australia
| | - James G Scott
- 90131Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Australia
- Metro North Mental Health Service, Herston, Queensland, Australia
- Mental Health Programme, QIMRBerghofer Medical Research Institute, Herston, Queensland, Australia
| | - Bianca E Kavanagh
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Melanie M Ashton
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ellie Brown
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
- Orygen, Parkville, Australia
| | - John J McGrath
- 90131Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Australia
- Queensland Brain Institute, 1974University of Queensland, St Lucia, Australia
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus V, Denmark
| | - Michael Berk
- 2104Deakin University, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Department of Psychiatry, University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
- Orygen, Parkville, Australia
| |
Collapse
|
5
|
Naß J, Abdelfatah S, Efferth T. Induction of stress resistance and extension of lifespan in Chaenorhabditis elegans serotonin-receptor knockout strains by withanolide A. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153482. [PMID: 33611213 DOI: 10.1016/j.phymed.2021.153482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Approximately 300 million people worldwide suffer from depression. The COVID-19 crisis may dramatically increase these numbers. Severe side effects and resistance development limit the use of standard antidepressants. The steroidal lactone withanolide A (WA) from Withania somnifera may be a promising alternative. Caenorhabditis elegans was used as model to explore WA's anti-depressive and anti-stress potential. METHODS C. elegans wildtype (N2) and deficient strains (AQ866, DA1814, DA2100, DA2109 and MT9772) were used to assess oxidative, osmotic or heat stress as measured by generation of reactive oxygen species (ROS), determination of lifespan, and mRNA expression of serotonin receptor (ser-1, ser-4, ser-7) and serotonin transporter genes (mod-5). The protective effect of WA was compared to fluoxetine as clinically established antidepressant. Additionally, WA's effect on lifespan was determined. Furthermore, the binding affinities and pKi values of WA, fluoxetine and serotonin as natural ligand to Ser-1, Ser-4, Ser-7, Mod-5 and their human orthologues proteins were calculated by molecular docking. RESULTS Baseline oxidative stress was higher in deficient than wildtype worms. WA and fluoxetine reduced ROS levels in all strains except MT9772. WA and fluoxetine prolonged survival times in wildtype and mutants under osmotic stress. WA but not fluoxetine increased lifespan of all heat-stressed C. elegans strains except DA2100. Furthermore, WA but not fluoxetine extended lifespan in all non-stressed C. elegans strains. WA also induced mRNA expression of serotonin receptors and transporters in wildtype and mutants. WA bound with higher affinity and lower pKi values to all C. elegans and human serotonin receptors and transporters than serotonin, indicating that WA may competitively displaced serotonin from the binding pockets of these proteins. CONCLUSION WA reduced stress and increased lifespan by ROS scavenging and interference with the serotonin system. Hence, WA may serve as promising candidate to treat depression.
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Biochemistry and Pharmacy, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Biochemistry and Pharmacy, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Biochemistry and Pharmacy, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
6
|
Do HTT, Cho J. Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer's Disease, Parkinson's Disease, and Depression with Pharmacokinetic and Safety Profiles. Int J Mol Sci 2020; 21:E6211. [PMID: 32867357 PMCID: PMC7504283 DOI: 10.3390/ijms21176211] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and depression are growing burdens for society globally, partly due to a lack of effective treatments. Mangosteen (Garcinia mangostana L.,) pericarp (MP) and its xanthones may provide therapeutic advantages for these disorders. In this review, we discuss potential therapeutic value of MP-derived agents in AD, PD, and depression with their pharmacokinetic and safety profiles. MP-derived agents have shown multifunctional effects including neuroprotective, antioxidant, and anti-neuroinflammatory actions. In addition, they target specific disease pathologies, such as amyloid beta production and deposition as well as cholinergic dysfunction in AD; α-synuclein aggregation in PD; and modulation of monoamine disturbance in depression. Particularly, the xanthone derivatives, including α-mangostin and γ-mangostin, exhibit potent pharmacological actions. However, low oral bioavailability and poor brain penetration may limit their therapeutic applications. These challenges can be overcome in part by administering as a form of MP extract (MPE) or using specific carrier systems. MPE and α-mangostin are generally safe and well-tolerated in animals. Furthermore, mangosteen-based products are safe for humans. Therefore, MPE and its bioactive xanthones are promising candidates for the treatment of AD, PD, and depression. Further studies including clinical trials are essential to decipher their efficacy, and pharmacokinetic and safety profiles in these disorders.
Collapse
Affiliation(s)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Gyeonggi 10326, Korea;
| |
Collapse
|
7
|
Lotter J, Möller M, Dean O, Berk M, Harvey BH. Studies on Haloperidol and Adjunctive α-Mangostin or Raw Garcinia mangostana Linn Pericarp on Bio-Behavioral Markers in an Immune-Inflammatory Model of Schizophrenia in Male Rats. Front Psychiatry 2020; 11:121. [PMID: 32296347 PMCID: PMC7136492 DOI: 10.3389/fpsyt.2020.00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia is a severe brain disorder that is associated with neurodevelopmental insults, such as prenatal inflammation, that introduce redox-immune-inflammatory alterations and risk for psychotic symptoms later in life. Nutraceuticals may offer useful adjunctive benefits. The aim of this study was to examine the therapeutic effects of Garcinia mangostana Linn (GML) and one of its active constituents, α-mangostin (AM), alone and as adjunctive treatment with haloperidol (HAL) on schizophrenia related bio-behavioral alterations in a maternal immune-activation (MIA) model. Sprague-Dawley dams were exposed to lipopolysaccharide (LPS) (n = 18) or vehicle (n = 3) on gestational days 15 and 16. Male offspring (n = 72) were treated from PND 52-66 with either vehicle, HAL (2 mg/kg), GML (50 mg/kg), HAL + GML, AM (20 mg/kg), or HAL + AM. Control dams and control offspring were treated with vehicle. In order to cover the mood-psychosis continuum, prepulse inhibition (PPI) of startle, open field test (locomotor activity), and the forced swim test (depressive-like behavior) were assessed on PND's 64-65, followed by assay of frontal-cortical lipid peroxidation and plasma pro-inflammatory cytokines, viz. interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α). MIA-induced deficits in sensorimotor gating were reversed by HAL and HAL + GML, but not GML and AM alone. MIA-induced depressive-like behavior was reversed by AM and GML alone and both in combination with HAL, with the combinations more effective than HAL. MIA-induced cortical lipid peroxidation was reversed by HAL and AM, with elevated IL-6 levels restored by GML, AM, HAL, and HAL + GML. Elevated TNF-α was only reversed by GML and HAL + GML. Concluding, prenatal LPS-induced psychotic- and depressive-like bio-behavioral alterations in offspring are variably responsive to HAL, GML, and AM, with depressive (but not psychosis-like) manifestations responding to GML, AM, and combinations with HAL. AM may be a more effective antioxidant than GML in vivo, although this does not imply an improved therapeutic response, for which trials are required.
Collapse
Affiliation(s)
- Jana Lotter
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Marisa Möller
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Olivia Dean
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Department of Psychiatry, The Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Brian H. Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Ashton MM, Dean OM, Walker AJ, Bortolasci CC, Ng CH, Hopwood M, Harvey BH, Möller M, McGrath JJ, Marx W, Turner A, Dodd S, Scott JG, Khoo JP, Walder K, Sarris J, Berk M. The Therapeutic Potential of Mangosteen Pericarp as an Adjunctive Therapy for Bipolar Disorder and Schizophrenia. Front Psychiatry 2019; 10:115. [PMID: 30918489 PMCID: PMC6424889 DOI: 10.3389/fpsyt.2019.00115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
New treatments are urgently needed for serious mental illnesses including bipolar disorder and schizophrenia. This review proposes that Garcinia mangostana Linn. (mangosteen) pericarp is a possible adjunctive therapeutic agent for these disorders. Research to date demonstrates that neurobiological properties of the mangosteen pericarp are well aligned with the current understanding of the pathophysiology of bipolar disorder and schizophrenia. Mangosteen pericarp has antioxidant, putative neuroprotective, anti-inflammatory, and putative mitochondrial enhancing properties, with animal studies demonstrating favorable pharmacotherapeutic benefits with respect to these disorders. This review summarizes evidence of its properties and supports the case for future studies to assess the utility of mangosteen pericarp as an adjunctive treatment option for mood and psychotic disorders.
Collapse
Affiliation(s)
- Melanie M. Ashton
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
| | - Olivia M. Dean
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Adam J. Walker
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Chiara C. Bortolasci
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Chee H. Ng
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
| | - Malcolm Hopwood
- Professorial Psychiatry Unit, Albert Road Clinic, University of Melbourne, Melbourne, VIC, Australia
| | - Brian H. Harvey
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy (Pharmacology), North West University, Potchefstroom, South Africa
| | - Marisa Möller
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy (Pharmacology), North West University, Potchefstroom, South Africa
| | - John J. McGrath
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Wolfgang Marx
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Alyna Turner
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - James G. Scott
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Metro North Mental Health, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jon-Paul Khoo
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jerome Sarris
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, VIC, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen Youth Health Research Centre, Parkville, VIC, Australia
| |
Collapse
|