1
|
Sharma V, Sharma P, Singh B. Functionalization of almond gum through covalent and non-covalent interactions for biomedical applications. Int J Biol Macromol 2025; 292:139364. [PMID: 39743093 DOI: 10.1016/j.ijbiomac.2024.139364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The versatile properties of carbohydrate polymers make them a relevant, promising precursor to design innovative materials for use in biomedical applications. Recent research mainly focuses on the development of the polysaccharide based functional materials. Hydrogel derived materials are a source of great motivation for the development of drug delivery (DD) carriers with inherent therapeutic potential. Herein, almond gum-based hydrogels were synthesized for the delivery of the anticancer drug methotrexate after impregnation to improve the DD profile. Hydrogels were characterized by FESEM, EDS, AFM, 13C NMR, FTIR, TGA, DSC, XRD, mechanical strength & biomedical assay. The optimized network hydrogel exhibited a mesh size of 19.764 mm and a cross-linking density of 5.002 × 10-5 mol/cm3 of the hydrogels. Morphological features revealed irregular, uneven internal morphology of hydrogels in FE-SEM. The inclusion of sulphated and amide polymers in hydrogels was found in elemental composition (C = 60.72 %, O = 29.79 %, N = 6.63 % and S = 2.86 %) of hydrogels inferred from EDS. Spectroscopic characterization by FT-IR and 13C NMR confirmed the inclusion of PVP and PVSA through grafting reaction. The crosslinked product formed was found thermally stable and amorphous in nature through TGA and XRD analysis. The sustained release was found through supramolecular interactions and release complied a non-Fickian mechanism for drug diffusion (n = 0.73) and the release profile was best described by the Hixson-Crowell kinetic model in colonic pH. The hydrogels were mucoadhesive in nature and required 144 ± 10.54 mN force for the separation of hydrogels from the mucosal surface during the adhesion test. Hydrogel illustrated antioxidant activity (32.68 ± 0.83 μg GAE) during their radical scavenging test by FC reagent assay. Drug encapsulated hydrogels demonstrated antimicrobial efficacy against microbes. The results of physico-chemical and biomedical properties of hydrogels suggested their suitability for biomedical uses.
Collapse
Affiliation(s)
- Vikrant Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| | - Priyanka Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| |
Collapse
|
2
|
Martins M, Stanisic D, Santos CD. Effect of microencapsulation on antioxidant activities of Eugenia punicifolia (Kunth) DC hydroethanolic extracts. AN ACAD BRAS CIENC 2024; 96:e20240184. [PMID: 39570170 DOI: 10.1590/0001-3765202420240184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 11/22/2024] Open
Abstract
Eugenia punicifolia (Kunth) DC (Myrtaceae) is a folk medicinal plant in the Brazilian Cerrado with antioxidant, anti-inflammatory, antinociceptive, antiulcerogenic activities, etc., usually attributed to its phenolic compounds. Since these compounds are sensitive to heat and light, and to increase their applications, Hydroethanolic Extracts E. punicifolia (HEEP, EtOH:H2O 70% v/v) were encapsulated by freeze-drying in xanthan gum (mesh 80, HEEPX80; mesh 200, HEEPX200) in ratio 1:1(w/w). Flavonoids had the highest encapsulation efficiency in HEEPX80, with a total flavonoid content of 55.56%. The release profile at different pH levels showed that pH = 4.5, a relevant antioxidant activity for HEEPX80 and HEEPX200. Also, in HEEP-modified release, higher antioxidant activity was observed in more acidic media (pH 4.5) than in a more neutral medium (pH 7.4). From these results, we could infer that HEEP encapsulations with Xanthan gum could be a good alternative for preserving antioxidants in these extracts.
Collapse
Affiliation(s)
- Manoela Martins
- Universidade de Campinas - UNICAMP, Departamento de Engenharia de Alimentos, Leμeb - Laboratório de Bioprocessos e Engenharia Metabólica, Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Danijela Stanisic
- Universidade de Campinas - UNICAMP, Departamento de Química Orgânica, Instituto de Química, Laboratório de Química Biológica, Rua Monteiro Lobato, 270, 13083-862 Campinas, SP, Brazil
| | - Catarina Dos Santos
- Universidade Estadual Paulista - UNESP, Departamento de Ciências Biológicas, Laboratório de Química da UNESP-Assis (LAQUA), Campus de Assis-SP, Av. Dom Antônio, 2100, 19806-900 Assis, SP, Brazil
| |
Collapse
|
3
|
Usmanova A, Brazhnikova Y, Omirbekova A, Kistaubayeva A, Savitskaya I, Ignatova L. Biopolymers as Seed-Coating Agent to Enhance Microbially Induced Tolerance of Barley to Phytopathogens. Polymers (Basel) 2024; 16:376. [PMID: 38337265 DOI: 10.3390/polym16030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Infections of agricultural crops caused by pathogen ic fungi are among the most widespread and harmful, as they not only reduce the quantity of the harvest but also significantly deteriorate its quality. This study aims to develop unique seed-coating formulations incorporating biopolymers (polyhydroxyalkanoate and pullulan) and beneficial microorganisms for plant protection against phytopathogens. A microbial association of biocompatible endophytic bacteria has been created, including Pseudomonas flavescens D5, Bacillus aerophilus A2, Serratia proteamaculans B5, and Pseudomonas putida D7. These strains exhibited agronomically valuable properties: synthesis of the phytohormone IAA (from 45.2 to 69.2 µg mL-1), antagonistic activity against Fusarium oxysporum and Fusarium solani (growth inhibition zones from 1.8 to 3.0 cm), halotolerance (5-15% NaCl), and PHA production (2.77-4.54 g L-1). A pullulan synthesized by Aureobasidium pullulans C7 showed a low viscosity rate (from 395 Pa·s to 598 Pa·s) depending on the concentration of polysaccharide solutions. Therefore, at 8.0%, w/v concentration, viscosity virtually remained unchanged with increasing shear rate, indicating that it exhibits Newtonian flow behavior. The effectiveness of various antifungal seed coating formulations has been demonstrated to enhance the tolerance of barley plants to phytopathogens.
Collapse
Affiliation(s)
- Aizhamal Usmanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Yelena Brazhnikova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Anel Omirbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Aida Kistaubayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Irina Savitskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Lyudmila Ignatova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| |
Collapse
|
4
|
Sun M, Ma P, Chen C, Pang Z, Huang Y, Liu X, Wang P. Physiochemical characteristics, morphology, and lubricating properties of size-specific whey protein particles by acid or ion aggregation. Int J Biol Macromol 2023; 252:126346. [PMID: 37586622 DOI: 10.1016/j.ijbiomac.2023.126346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
To investigate the influence of particle characteristics on their lubricating capacity, microparticles of controlled size (~300, ~700, and ~1900 nm) were prepared from whey proteins using two different approaches: reducing the pH and increasing the calcium ion concentration. The physiochemical, morphological, and tribological properties of the two types of particles were determined. Both treatments pronouncedly decreased the absolute value of zeta-potential and surface hydrophobicity of whey proteins, with calcium ions showing a more severe effect on zeta-potential. The viscosity of the particle suspensions increased with particle size, and ion-induced samples showed higher viscosity than acid-induced ones. Morphology investigation revealed that particle aggregation and irregularity increased with particle size increase. Distinct lubricating behaviors were observed for the two particle types within different size ranges. Viscosity played a more important role in lubrication when the particle size was small, while particle characteristics became more dominant for large particles.
Collapse
Affiliation(s)
- Mengya Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Peipei Ma
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Cunshe Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Zhihua Pang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yating Huang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Garcia E Silva LL, da Silva CAS, Santana RDC. Rheology of dispersions and emulsions composed of chia mucilage and the application of chia in food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5585-5592. [PMID: 35396743 DOI: 10.1002/jsfa.11921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/13/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Chia mucilage (CM) is an emerging resource in food applications. However, the mechanism of this biopolymer as a stabilizer/emulsifier ingredient has not yet been well defined. A non-uniform viscoelastic tridimensional network was observed on emulsions with CM, while the surface activity of the CM ingredient has been associated with its protein content. To understand its functionality in food, this review focused on discussing and summarizing the rheological properties of dispersions and emulsions composed of CM under different conditions, such as pH, temperature, salt content, and mucilage content. For example, emulsions and dispersions with CM showed pseudoplastic behavior. An increase in the CM concentration increased the viscosity and the consistency index and decreased the behavior index. The consistency index of dispersions with CM increased with pH. The future evaluation of emulsions and dispersions properties, such as viscoelastic properties and microstructure, is particularly important for the successful use of CM in the food industry. The principal studies have evaluated the use of CM in dairy and meat systems as an emulsifier, stabilizer, or lipid replacer. The nutritional quality of the products with CM was maintained or improved, but sometimes an undesirable darkening was observed. Future evaluation of the cold extraction method of CM might improve the color and overall sensory acceptability of food products with CM. Integrated chia seed processing, including mucilage, oil, and protein extraction could be carried out to make chia seed industrial processing viable. © 2022 Society of Chemical Industry.
Collapse
|
6
|
Stabilizing Properties of Chia Seed Mucilage on Dispersions and Emulsions at Different pHs. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09742-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Safdar B, Pang Z, Liu X, Jatoi MA, Rashid MT. Rheological and tribological nature of flaxseed gum influenced by concentration and temperature and its application as a coating agent for potato chips. J Food Sci 2022; 87:2058-2071. [PMID: 35411576 DOI: 10.1111/1750-3841.16114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
Abstract
Influence of different concentrations (0.5, 1.0, 2.0, and 3.0% w/v) and temperatures (4, 25, 50, and 75°C) on particle size distribution (PSD) and rheological and tribological characteristics of flaxseed gum (FSG) solutions was investigated. Besides, FSG dispersions (0.5, 1.0, and 2.0% w/v) were used as edible coating and their influence on the quality parameters (oil uptake, moisture loss, texture, and sensory properties) of fried potato chips was studied. All FSG dispersions revealed shear-thinning nature and viscous properties (as G″ > G') that were more dominant at higher concentrations and lower temperatures. The power-law model presented a good fit in demonstrating the flow behavior of FSG dispersions. Concentration was the variable that affected the tribology of FSG dispersions, while temperature had little effect on the tribology. Particle size distribution was increased with the increasing concentration of FSG. FSG dispersions as an edible coating effectively reduced the moisture loss, oil uptake, and hardness properties of potato chips. Practical Application Profiling the influence of concentration and temperature on the rheology and tribology of flaxseed gum is particularly valuable during food processing. The results predict the physical properties of coated potato chips that can support the potential application of flaxseed gum as a coating agent. Today's consumers prefer healthier food products with low caloric, higher fiber content, functional properties, and sensory qualities. Food industries can use FSG as a low-cost natural coating material in terms of economic benefits, consumer acceptance, and providing an inordinate potential both for its protective effect and carrying functional compounds such as antioxidants in their coating matrix.
Collapse
Affiliation(s)
- Bushra Safdar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Zhihua Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
| | | | | |
Collapse
|
8
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. Effects of the Hofmeister anion series salts on the rheological properties of Sesbania cannabina galactomannan. Int J Biol Macromol 2021; 188:350-358. [PMID: 34389383 DOI: 10.1016/j.ijbiomac.2021.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
Sesbania cannabina galactomannan (2%) solutions added with strongly hydrated ions (Na2CO3, NaH2PO4, NaCl) and weakly hydrated ions (NaNO3) at different ionic strengths were rheologically characterized. The four selected salts dramatically decreased the intrinsic viscosity of galactomannan solution in the following order of effectiveness: Na2CO3 < NaH2PO4 < NaCl < NaNO3. This conforms effectively to the Hofmeister anion series. Moreover, salt addition increased the viscosity of galactomannan solution when the ionic strength was 1 mmol/kg, which related to an increased occurrence of intermolecular interactions. As increasing ionic strength, galactomannan chains may tend to contract or expand due to the presence of strongly or weakly hydrated ions, thereby decreasing the viscosity. These phenomena were demonstrated by zeta potential measurement and again observed in dynamic viscoelasticity measurement. Overall, this property can be used to manipulate the rheological properties of galactomannan in food gums to obtain gums of high quality for enhancing consumer goods.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
9
|
Jurak M, Wiącek AE, Ładniak A, Przykaza K, Szafran K. What affects the biocompatibility of polymers? Adv Colloid Interface Sci 2021; 294:102451. [PMID: 34098385 DOI: 10.1016/j.cis.2021.102451] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
In recent decades synthetic polymers have gained increasing popularity, and nowadays they are an integral part of people's daily lives. In addition, owing to their competitive advantage and being susceptible to modification, polymers have stimulated the fast development of innovative technologies in many areas of science. Biopolymers are of particular interest in various branches of medicine, such as implantology of bones, cartilage and skin tissues as well as blood vessels. Biomaterials with such specific applications must have appropriate mechanical and strength characteristics and above all they must be compatible with the surrounding tissues, human blood and its components, i.e. exhibit high hemo- and biocompatibility, low or no thrombo- and carcinogenicity, foreign body response (host response), appropriate osteoconduction, osteoinduction and mineralization. For biocompatibility improvement many surface treatment techniques have been utilized leading to fabricate the polymer biomaterials of required properties, also at nanoscale. This review paper discusses the most important physicochemical and biological factors that affect the biocompatibility, thus the reaction of the living organism after insertion of the polymer-based biomaterials, i.e. surface modification and/or degradation, surface composition (functional groups and charge), size and shapes, hydrophilic-hydrophobic character, wettability and surface free energy, topography (roughness, stiffness), crystalline and amorphous structure, nanostructure, cell adhesion and proliferation, cellular uptake. Particularly, the application of polysaccharides (chitosan, cellulose, starch) in the tissue engineering is emphasized.
Collapse
|
10
|
Carvalho R, Pedrosa C, Leal A, Palermo L, Mansur C. Extraction, characterization and rheological behavior of galactomannans in high salinity and temperature conditions. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1930748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Raíssa Carvalho
- Laboratório de Macromoléculas e Colóides na Indústria de Petróleo, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Engenharia Metalúrgica e de Materiais-PEMM/COPPE, Universidade Federal do Rio de Janeiro, Brazil
| | - Carolina Pedrosa
- Laboratório de Macromoléculas e Colóides na Indústria de Petróleo, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alyce Leal
- Laboratório de Macromoléculas e Colóides na Indústria de Petróleo, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Palermo
- Laboratório de Macromoléculas e Colóides na Indústria de Petróleo, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Mansur
- Laboratório de Macromoléculas e Colóides na Indústria de Petróleo, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Engenharia Metalúrgica e de Materiais-PEMM/COPPE, Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Sharma P, Sharma S, Ramakrishna G, Srivastava H, Gaikwad K. A comprehensive review on leguminous galactomannans: structural analysis, functional properties, biosynthesis process and industrial applications. Crit Rev Food Sci Nutr 2020; 62:443-465. [DOI: 10.1080/10408398.2020.1819196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Priya Sharma
- National Institute for Plant Biotechnology, ICAR, New Delhi, India
| | - Sandhya Sharma
- National Institute for Plant Biotechnology, ICAR, New Delhi, India
| | - G. Ramakrishna
- National Institute for Plant Biotechnology, ICAR, New Delhi, India
| | | | - Kishor Gaikwad
- National Institute for Plant Biotechnology, ICAR, New Delhi, India
| |
Collapse
|
12
|
Mohanan A, Nickerson MT, Ghosh S. Utilization of pulse protein-xanthan gum complexes for foam stabilization: The effect of protein concentrate and isolate at various pH. Food Chem 2020; 316:126282. [PMID: 32062576 DOI: 10.1016/j.foodchem.2020.126282] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 01/07/2020] [Accepted: 01/21/2020] [Indexed: 11/23/2022]
Abstract
The present study examines the foaming behavior of pea and faba bean protein concentrates and isolates and explores the impact of pH and protein-polysaccharide complexation on overrun and foam stability. Foams were prepared with 5 wt% proteins with and without 0.25 wt% xanthan gum (XG) at pH 3, 5, 7 and 9. Most foams were unstable without XG. With XG foaming properties of protein concentrates were better than isolates. Irrespective of protein type and content, all protein-XG foams at pH 3 destabilized due to large insoluble complexes, however, at pH 5 foams were stable due to smaller size of insoluble complexes. Both the protein concentrate-XG foams were stable at pH 7 and 9 due to optimum viscosity and surface tension of the soluble complexes. Overall, the study revealed that the overrun and stability of pulse protein foams can be significantly improved by adding XG and controlling their intermolecular interactions as a function of pH.
Collapse
Affiliation(s)
- Athira Mohanan
- Department of Food and Bioproduct Sciences, University of Saskatchewan 51 Campus Drive, Saskatoon, SK S7N5A8, Canada
| | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan 51 Campus Drive, Saskatoon, SK S7N5A8, Canada
| | - Supratim Ghosh
- Department of Food and Bioproduct Sciences, University of Saskatchewan 51 Campus Drive, Saskatoon, SK S7N5A8, Canada.
| |
Collapse
|
13
|
Effects of concentration and NaCl on rheological behaviors of konjac glucomannan solution under large amplitude oscillatory shear (LAOS). Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Hamdani AM, Wani IA, Bhat NA. Gluten free cookies from rice-chickpea composite flour using exudate gums from acacia, apricot and karaya. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100541] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Influence of different salts on rheological and functional properties of basil (Ocimum bacilicum L.) seed gum. Int J Biol Macromol 2020; 149:101-107. [PMID: 31987951 DOI: 10.1016/j.ijbiomac.2020.01.170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/21/2022]
Abstract
In this paper, the influence of a variety of salts (NaCl, CaCl2, and KCl) at different concentrations (0, 0.1, 0.5 and 1% w/w) on rheological and functional properties of basil seed gum (BSG) were investigated. BSG produced a high viscosity solution with yield stress, which was a function of salt type and concentration. In all samples, viscosity decreased as the electrostatic interactions between the BSG chains altered by salts. Flow behavior index increased by salt addition, which shows BSG had weaker shear-thinning behavior and worse mouthfeel in the presence of salts. The viscoelasticity of BSG strongly influenced by the addition of salt type as well as concentration. Larger cations (Ca+2) shield the electrostatic interaction between BSG chains more strongly compared to smaller cations as they have larger hydrated radius. As a result divalent salts decreased the viscosity and viscoelasticity more significantly. Emulsion capacity improved by salts addition, especially at high concentrations of salts. The foam capacity increased in the presence of CaCl2 and KCl increased foaming capacity of BSG. The results suggest that the addition of the different types of salt can alter or modify the rheological and functional properties of BSG, depending on the salt concentration.
Collapse
|
16
|
Vieira J, Mantovani R, Raposo M, Coimbra M, Vicente A, Cunha R. Effect of extraction temperature on rheological behavior and antioxidant capacity of flaxseed gum. Carbohydr Polym 2019; 213:217-227. [DOI: 10.1016/j.carbpol.2019.02.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 01/20/2023]
|
17
|
Ma Y, Hao J, Zhao K, Ju Y, Hu J, Gao Y, Du F. Biobased polymeric surfactant: Natural glycyrrhizic acid-appended homopolymer with multiple pH-responsiveness. J Colloid Interface Sci 2019; 541:93-100. [DOI: 10.1016/j.jcis.2019.01.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|
18
|
Effect of polymer concentration and solution pH on viscosity affecting integrity of a polysaccharide coat of compression coated tablets. Int J Biol Macromol 2019; 125:922-930. [PMID: 30553857 DOI: 10.1016/j.ijbiomac.2018.12.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
Tablets, compression coated with certain polysaccharides and intended for colon delivery, retain the integrity of the coat for an initial period of about 6 h (lag period) beyond which (post-lag period) the coat is degraded by colonic enzymes to induce drug release. This work was undertaken to investigate the factors which influence the integrity of the coat during the lag period. Core tablets containing two model drugs were compression coated with various amounts of carboxymethyl locust bean gum (CMLBG). In-vitro release of drugs, erosion of coat, and steady shear viscosity of CMLBG solutions having different concentrations and solution pH were determined. The viscosity of CMLBG that depended primarily on CMLBG concentration and partly on solution pH was responsible for erosion and integrity of the coat in the lag period. Evaluation of polymer viscosity could describe the integrity of coat of a polysaccharide coated tablet in the lag period.
Collapse
|
19
|
Rheological characterization of fenugreek gum and comparison with other galactomannans. Int J Biol Macromol 2018; 119:486-495. [DOI: 10.1016/j.ijbiomac.2018.07.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022]
|