1
|
Kesim Y, Ceroni F, Damián A, Blanco-Kelly F, Ayuso C, Williamson K, Paquis-Flucklinger V, Bax DA, Plaisancié J, Rieubland C, Chamlal M, Cortón M, Chassaing N, Calvas P, Ragge NK. Clinical and genetic analysis further delineates the phenotypic spectrum of ALDH1A3-related anophthalmia and microphthalmia. Eur J Hum Genet 2023; 31:1175-1180. [PMID: 36997679 PMCID: PMC10545824 DOI: 10.1038/s41431-023-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Biallelic pathogenic variants in ALDH1A3 are responsible for approximately 11% of recessively inherited cases of severe developmental eye anomalies. Some individuals can display variable neurodevelopmental features, but the relationship to the ALDH1A3 variants remains unclear. Here, we describe seven unrelated families with biallelic pathogenic ALDH1A3 variants: four compound heterozygous and three homozygous. All affected individuals had bilateral anophthalmia/microphthalmia (A/M), three with additional intellectual or developmental delay, one with autism and seizures and three with facial dysmorphic features. This study confirms that individuals with biallelic pathogenic ALDH1A3 variants consistently manifest A/M, but additionally display neurodevelopmental features with significant intra- and interfamilial variability. Furthermore, we describe the first case with cataract and highlight the importance of screening ALDH1A3 variants in nonconsanguineous families with A/M.
Collapse
Affiliation(s)
- Yesim Kesim
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Fabiola Ceroni
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alejandra Damián
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Kathy Williamson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | - Dorine A Bax
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Julie Plaisancié
- INSERM U1214, ToNIC, Université Toulouse III, Toulouse, France
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
| | - Claudine Rieubland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mostafa Chamlal
- Department of Pediatrics, RAZI-CLINIC Hospital, Tangier, Morocco
| | - Marta Cortón
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Nicolas Chassaing
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
| | - Patrick Calvas
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, CHU Toulouse, Toulouse, France
| | - Nicola K Ragge
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
- Department of Clinical Genetics, West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Foundation Trust, Birmingham, UK.
| |
Collapse
|
2
|
A novel missense variant c.71G > T (p.Gly24Val) of the CRYBA4 gene contributes to autosomal-dominant congenital cataract in a Chinese family. Int Ophthalmol 2023; 43:43-50. [PMID: 35840783 DOI: 10.1007/s10792-022-02386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the potential genetic defects in a five-generation Chinese family with autosomal dominant congenital cataract (ADCC). METHODS Whole exome sequencing was performed to search the variants in the candidate genes associated with congenital cataract. Sanger sequencing was used to validate the variants and examine their co-segregation in the patients and their relatives. The potential effect of the variants was analyzed using several bioinformatic methods and further examined through Western blotting and co-immunoprecipitation. RESULTS A missense variant c. 71 G > T (p. Gly24Val) in the CRYBA4 gene, a known ADCC candidate gene, was identified to be heterozygously present in the patients and co-segregate with cataract in the family. The mutation was absent in all of the searched databases, including our in-house exome sequences of 10,000 Chinese. The alignments of the amino acid sequences of CRYBA4 in a variety of species revealed that the amino acid residue Gly24 was evolutionarily highly conserved, and the in silico analysis predicted that the missense mutation of Gly24Val was damaging for the protein structure and function of CRYBA4. Then, the in vitro expression analysis further revealed that the Gly24Val mutation in CRYBA4 inhibited its binding with CRYBB1. The impaired interaction of β-crystallin proteins may affect their water-solubility and contribute to the formation of precipitates in lens fiber cells. CONCLUSION We identified a novel missense variant in the CRYBA4 gene as a pathogenic mutation of ADCC in a Chinese family. Our finding expanded the CRYBA4 variation spectrum associated with congenital cataracts.
Collapse
|
3
|
Dehghan Tezerjani M, Fathi Dizaji B, Metanat Z, Vahidi Mehrjardi MY. Incomplete penetrance of autosomal recessive anophthalmia in a large consanguineous family. Ophthalmic Genet 2021; 42:787-789. [PMID: 34287093 DOI: 10.1080/13816810.2021.1955276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Masoud Dehghan Tezerjani
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Behdokht Fathi Dizaji
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Metanat
- Provincial Clinical Genetic Counseling Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
4
|
Hu S, Zhang H, Liu Y, Liu M, Li J, Liao S. Whole-exome sequencing of de novo genetic variants in a Chinese family with a sporadic case of congenital nonsyndromic hearing loss. F1000Res 2021; 10:61. [PMID: 34567527 PMCID: PMC8422347 DOI: 10.12688/f1000research.27739.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Background: We examined the genetic variants of a Chinese family with a 22-month-old infant with sporadic non-syndromic sensorineural hearing loss (NSHL). Methods: The whole-exome sequence data in the family, especially the de novo variants presented in the patient, were analyzed and the effect of the disease-causing genetic variants on the protein expression level and cellular localization were examined by cell-based functional assay. Results: The infant had no known NSHL-causing variants, except two compound heterozygous variants in connexin26 gene GJB2; one was the c.79G>A, c.341A>G haplotype from the asymptomatic mother who was benign, and the other was a de novo pathogenic c.262G>C (p.A88P). In vitro, GJB2 with c.262G>C was weakly expressed and displayed a punctate distribution in the cytoplasm and cytomembrane, while wild type GJB2 was robustly expressed in the cytomembrane. We deduced that the de novo pathogenic GJB2 c.262G>C exacerbated loss-of-function in the context of leaky variants c.79G>A, c.341A>G in the patient. Interestingly, further analysis of exome sequences revealed that the occurrence of de novo pathogenic variants in the infant was frequent. Among the total~47,000 variants, 143 were de novo in the patient, whereas among all 74 variants predicted to be pathogenic/likely pathogenic, 21 were heterozygous and two were homozygous de novo. The occurrence rate of de novo deleterious variants was much higher (31.1%, 23/74) than that in total (0.34%, 143/47,000). It is notable that most genes with de novo deleterious variants were environment-sensitive, such as GJB2, MNK1, MNK2, MUC4, RAD21 and DNA copy number variations. Conclusions: The full picture of genetic variants in the exome might help us to interpret the NSHL-causing variants. More research is needed into the causes of de novo deleterious variants and gene-environment interactions in congenital NSHL.
Collapse
Affiliation(s)
- Sijing Hu
- Diabetes Center & Institute of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China, 610072, China
| | - Hao Zhang
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital,, West China Medical School, Sichuan University,, Chengdu, China, 610041, China
| | - Yunqiang Liu
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital,, West China Medical School, Sichuan University,, Chengdu, China, 610041, China
| | - Mohan Liu
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital,, West China Medical School, Sichuan University,, Chengdu, China, 610041, China
| | - Jingjing Li
- Diabetes Center & Institute of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China, 610072, China
| | - Shunyao Liao
- Diabetes Center & Institute of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China, 610072, China
| |
Collapse
|
5
|
Hu S, Zhang H, Liu Y, Liu M, Li J, Liao S. Whole-exome sequencing of de novo genetic variants in a Chinese family with a sporadic case of congenital nonsyndromic hearing loss. F1000Res 2021; 10:61. [PMID: 34567527 PMCID: PMC8422347 DOI: 10.12688/f1000research.27739.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 04/04/2024] Open
Abstract
Background: We examined the genetic variants of a Chinese family with a 22-month-old infant with sporadic non-syndromic sensorineural hearing loss (NSHL). Methods: The whole-exome sequence data in the family, especially the de novo variants presented in the patient, were analyzed and the effect of the disease-causing genetic variants on the protein expression level and cellular localization were examined by cell-based functional assay. Results: The infant had no known NSHL-causing variants, except two compound heterozygous variants in connexin26 gene GJB2; one was the c.79G>A, c.341A>G haplotype from the asymptomatic mother which was benign, and the other was a de novo pathogenic c.262G>C (p.A88P). In vitro, GJB2 with c.262G>C was weakly expressed and displayed a punctate distribution in the cytoplasm and cytomembrane, while wild type GJB2 was robustly expressed in the cytomembrane. We deduced that the de novo pathogenic GJB2 c.262G>C exacerbated loss-of-function in the context of leaky variants c.79G>A, c.341A>G in the patient. Interestingly, further analysis of exome sequences revealed that the occurrence of de novo pathogenic variants in the infant was frequent. Among the total~47,000 variants, 143 were de novo in the patient, whereas among all 74 variants predicted to be pathogenic/likely pathogenic, 21 were heterozygous and two were homozygous de novo. The occurrence rate of de novo deleterious variants was much higher (31.1%, 23/74) than that in total (0.34%, 143/47,000). It is notable that most genes with de novo deleterious variants were environment-sensitive, such as GJB2, MNK1, MNK2, MUC4, RAD21 and DNA copy number variations. Conclusions: The full picture of genetic variants in the exome might help us to interpret the NSHL-causing variants. More research is needed into the causes of de novo deleterious variants and gene-environment interactions in congenital NSHL.
Collapse
Affiliation(s)
- Sijing Hu
- Diabetes Center & Institute of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China, 610072, China
| | - Hao Zhang
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital,, West China Medical School, Sichuan University,, Chengdu, China, 610041, China
| | - Yunqiang Liu
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital,, West China Medical School, Sichuan University,, Chengdu, China, 610041, China
| | - Mohan Liu
- Department of Medical Genetics and Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital,, West China Medical School, Sichuan University,, Chengdu, China, 610041, China
| | - Jingjing Li
- Diabetes Center & Institute of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China, 610072, China
| | - Shunyao Liao
- Diabetes Center & Institute of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China, 610072, China
| |
Collapse
|
6
|
Nedelec B, Rozet JM, Fares Taie L. Genetic architecture of retinoic-acid signaling-associated ocular developmental defects. Hum Genet 2019; 138:937-955. [DOI: 10.1007/s00439-019-02052-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
|
7
|
Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet 2019; 138:799-830. [PMID: 30762128 DOI: 10.1007/s00439-019-01977-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.
Collapse
|
8
|
Lin S, Harlalka GV, Hameed A, Reham HM, Yasin M, Muhammad N, Khan S, Baple EL, Crosby AH, Saleha S. Novel mutations in ALDH1A3 associated with autosomal recessive anophthalmia/microphthalmia, and review of the literature. BMC MEDICAL GENETICS 2018; 19:160. [PMID: 30200890 PMCID: PMC6131798 DOI: 10.1186/s12881-018-0678-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/02/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Autosomal recessive anophthalmia and microphthalmia are rare developmental eye defects occurring during early fetal development. Syndromic and non-syndromic forms of anophthalmia and microphthalmia demonstrate extensive genetic and allelic heterogeneity. To date, disease mutations have been identified in 29 causative genes associated with anophthalmia and microphthalmia, with autosomal dominant, autosomal recessive and X-linked inheritance patterns described. Biallelic ALDH1A3 gene variants are the leading genetic causes of autosomal recessive anophthalmia and microphthalmia in countries with frequent parental consanguinity. METHODS This study describes genetic investigations in two consanguineous Pakistani families with a total of seven affected individuals with bilateral non-syndromic clinical anophthalmia. RESULTS Using whole exome and Sanger sequencing, we identified two novel homozygous ALDH1A3 sequence variants as likely responsible for the condition in each family; missense mutation [NM_000693.3:c.1240G > C, p.Gly414Arg; Chr15:101447332G > C (GRCh37)] in exon 11 (family 1), and, a frameshift mutation [NM_000693.3:c.172dup, p.Glu58Glyfs*5; Chr15:101425544dup (GRCh37)] in exon 2 predicted to result in protein truncation (family 2). CONCLUSIONS This study expands the molecular spectrum of pathogenic ALDH1A3 variants associated with anophthalmia and microphthalmia, and provides further insight of the key role of the ALDH1A3 in human eye development.
Collapse
Affiliation(s)
- Siying Lin
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Gaurav V Harlalka
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Abdul Hameed
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 44000, Pakistan
| | - Hadia Moattar Reham
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Emma L Baple
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
| |
Collapse
|
9
|
Vidya NG, Rajkumar S, Vasavada AR. Genetic investigation of ocular developmental genes in 52 patients with anophthalmia/microphthalmia. Ophthalmic Genet 2018; 39:344-352. [DOI: 10.1080/13816810.2018.1436184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nair Gopinathan Vidya
- Department of Molecular Genetics & Biochemistry, Iladevi Cataract & IOL Research Centre, Ahmedabad, India
- Research scholar, Manipal University, Karnataka
| | - Sankaranarayanan Rajkumar
- Department of Molecular Genetics & Biochemistry, Iladevi Cataract & IOL Research Centre, Ahmedabad, India
| | - Abhay R. Vasavada
- Department of Cataract and Refractive Surgery, Raghudeep Eye Hospital, Ahmedabad, India
| |
Collapse
|