1
|
Wang K, Xu L, Ma J, Zhou Y, Jiang Y, Zha J, Cai Y, He J, Jiang J, Qiu J, Mu Y. Characterization of cotinine degradation in a newly isolated Gram-negative strain Pseudomonas sp. JH-2. Arch Microbiol 2024; 206:316. [PMID: 38904699 DOI: 10.1007/s00203-024-04036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
Cotinine, the primary metabolite of nicotine in the human body, is an emerging pollutant in aquatic environments. It causes environmental problems and is harmful to the health of humans and other mammals; however, the mechanisms of its biodegradation have been elucidated incompletely. In this study, a novel Gram-negative strain that could degrade and utilize cotinine as a sole carbon source was isolated from municipal wastewater samples, and its cotinine degradation characteristics and kinetics were determined. Pseudomonas sp. JH-2 was able to degrade 100 mg/L (0.56 mM) of cotinine with high efficiency within 5 days at 30 ℃, pH 7.0, and 1% NaCl. Two intermediates, 6-hydroxycotinine and 6-hydroxy-3-succinoylpyridine (HSP), were identified by high-performance liquid chromatography and liquid chromatograph mass spectrometer. The draft whole genome sequence of strain JH-2 was obtained and analyzed to determine genomic structure and function. No homologs of proteins predicted in Nocardioides sp. JQ2195 and reported in nicotine degradation Pyrrolidine pathway were found in strain JH-2, suggesting new enzymes that responsible for cotinine catabolism. These findings provide meaningful insights into the biodegradation of cotinine by Gram-negative bacteria.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiale Ma
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Zhou
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinhu Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zha
- Taizhou Center for Disease Prevention and Control, Taizhou, 225300, China
| | - Yanqiu Cai
- Taizhou Center for Disease Prevention and Control, Taizhou, 225300, China
| | - Jian He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiandong Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yang Mu
- Taizhou Center for Disease Prevention and Control, Taizhou, 225300, China.
| |
Collapse
|
2
|
Li J, Wang H, Chen H, Li X, Liu Y, Hou H, Hu Q. Cell death induced by nicotine in human neuroblastoma SH-SY5Y cells is mainly attributed to cytoplasmic vacuolation originating from the trans-Golgi network. Food Chem Toxicol 2024; 185:114431. [PMID: 38176581 DOI: 10.1016/j.fct.2023.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Humans are usually exposed to nicotine through the use of tobacco products. Although it is generally believed that nicotine is relatively harmless in tobacco consumption, it is, in fact, a toxic substance that warrants careful consideration of its potential toxicity. However, the current understanding of the neurotoxicity of nicotine is still very limited. In this study, we aim to reveal the toxic risk of nicotine to key target neuronal cells and its potential toxic mechanisms. The results showed that nicotine induced cell death, ROS increase, mitochondrial membrane potential decrease, and DNA damage in SH-SY5Y human neuroblastoma cells at millimolar concentrations, but did not cause toxic effects at the physiological concentration. These toxic effects were accompanied by cytoplasmic vacuolation. The inhibition of cytoplasmic vacuolation by bafilomycin A1 greatly reduced nicotine-induced cell death, indicating that cytoplasmic vacuolation is the key driving factor of cell death. These cytoplasmic vacuoles originated from the trans-Golgi network (TGN) and expressed microtubule-associated protein 1 light chain 3-II (LC3-II) and lysosomal associated membrane protein 1(LAMP1). The presence of LC3-II and LAMP1 within these vacuoles serves as evidence of compromised TGN structure and function. These findings provide valuable new insights into the potential neurotoxic risk and mechanisms of nicotine.
Collapse
Affiliation(s)
- Jun Li
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China; University of Science and Technology of China, Hefei, 230000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Hongjuan Wang
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Huan Chen
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Xiao Li
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China.
| | - Qingyuan Hu
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China; University of Science and Technology of China, Hefei, 230000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Szulc J, Nizioł J, Ruman T, Kuźniar A, Nowak A, Okrasa M, Nowak I, Szponar B, Kuberski S. Biological and chemical contamination of illegal, uncontrolled refuse storage areas in Poland. ENVIRONMENTAL RESEARCH 2023; 228:115825. [PMID: 37011789 DOI: 10.1016/j.envres.2023.115825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/12/2023] [Accepted: 03/31/2023] [Indexed: 05/16/2023]
Abstract
This study focused on assessing the microbiological and chemical contamination of air, soil and leachate in uncontrolled refuse storage areas in central Poland. The research included an analysis of the number of microorganisms (culture method), endotoxin concentration (gas chromatography-mass spectrometry), heavy metals level (atomic absorption spectrometry), elemental characteristics (elemental analyser), cytotoxicity assessment against A-549 (human lung) and Caco-2 (human colon adenocarcinoma) cell lines (PrestoBlue™ test) and toxic compound identification (ultra-high-performance liquid chromatography-quadrupole time-of-flight ultrahigh-resolution mass spectrometry). Microbial contamination differed depending on the dump and the group of tested microorganisms. The number of bacteria was: 4.3 × 102 - 1.8 × 103 CFU m-3 (air); 1.1 × 103 - 1.2 × 106 CFU mL-1 (leachate); 1.0 × 106 - 3.9 × 106 CFU g-1 (soil). Respectively, for air and soil the number of fungi was: 2.2 × 102 - 4.6 × 102 CFU m-3; 1.8 × 102 - 3.9 × 103 CFU g-1. Metal levels (Fe, Mn, Pb, Zn, Al, Hg, Cd, Cu, Cr) were higher than in the control sample; however, the average concentrations did not exceed the permissible standards. The cytotoxicity of soil and leachate samples depended on the dump, sample and cell line tested. The leachates were more cytotoxic than soil extracts. Compounds belonging to pesticides, surfactants and biocides, chemicals and/or polymer degradation products, medicinal drugs and insect repellents were found. The detection of potential pathogens in the air, soil and leachate, the presence of toxic compounds and the confirmation of the cytotoxic effect of leachate and soil on human cell lines justify the need for further research on the risks posed by illegal dumps. These studies should aim at developing a unified assessment method and a method to minimise the risk of contaminants spreading in the environment, including harmful biological agents.
Collapse
Affiliation(s)
- Justyna Szulc
- Department of Environmental Biotechnology, Lodz University of Technology, Łódź, 90-530, Poland.
| | - Joanna Nizioł
- Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, 35-959, Poland.
| | - Tomasz Ruman
- Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, 35-959, Poland.
| | - Anna Kuźniar
- Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, 35-959, Poland.
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Łódź, 90-530, Poland.
| | - Małgorzata Okrasa
- Department of Personal Protective Equipment, Central Institute for Labour Protection - National Research Institute, Łódź, 90-133, Poland.
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, Łódź, 90-232, Poland.
| | - Bogumiła Szponar
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, 53-113, Poland.
| | - Sławomir Kuberski
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Łódź, 93-005, Poland.
| |
Collapse
|
4
|
Kenchappa PG, Karthik Y, Vijendra PD, Hallur RLS, Khandagale AS, Pandurangan AK, Jayanna SG, Alshehri MA, Alasmari A, Sayed S, Shantaram M, Mushtaq M. In vitro evaluation of the neuroprotective potential of Olea dioica against Aβ peptide-induced toxicity in human neuroblastoma SH-SY5Y cells. Front Pharmacol 2023; 14:1139606. [PMID: 37234712 PMCID: PMC10205999 DOI: 10.3389/fphar.2023.1139606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative disease, associated with the hastening of ROS, acetylcholinesterase (AChE) activity, and amyloid β peptides plaques in the brain. The limitations and side effects of existing synthetic drugs incline toward natural sources. In the present communication active principles of methanolic extract of Olea dioica Roxb, leaves are explored as an antioxidant, AChE inhibitor, and anti-amyloidogenic. Furthermore, neuroprotection against the amyloid beta-peptide has been studied. The bioactive principles were identified by GC-MS and LC-MS and further subjected to antioxidant (DPPH and FRAP) and neuroprotection (AChE inhibition, ThT binding, and MTT assay, DCFH-DA and lipid peroxidation (LPO) assay using neuroblastoma (SHSY-5Y) cell lines) assays. Methanolic extract of O. dioica Roxb, leaves was found to contain polyphenols and flavonoids. In vitro assays exhibited potential antioxidant and anti-AChE (˃50%) activities. ThT binding assay indicated protection against amyloid-beta aggregation. MTT assay, Aβ1-40 (10 µM) with extract increase the cell viability (˃50%) and showed significant cytotoxicity to SHSY-5Y cells. ROS level (˃25%) significantly decreased in the Aβ1-40 (10 µM) + extract (15 and 20 μM/mL) and LPO assay (˃50%) suggesting prevention of cell damage. Results advocate that O. dioica leaves are a good source of antioxidants, anti-AChE, and anti-amyloidogenic compounds which may be further evaluated as a natural medicine for the treatment of AD.
Collapse
Affiliation(s)
- Pratap G. Kenchappa
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Kodagu, Karnataka, India
| | - Yalpi Karthik
- Department of Studies and Research in Microbiology, Jnana Kaveri Campus, Mangalore University, Kodagu, Karnataka, India
| | - Poornima D. Vijendra
- Department of Studies in Food Technology, Davangere University, Davangere, Karnataka, India
| | - Raghavendra L. S. Hallur
- Center for Biotechnology, Pravara Institute of Medical Sciences (Deemed to Be University), Ahmednagar, Maharashtra, India
| | - Ajay S. Khandagale
- SDM Research Institute for Biomedical Sciences (SDMRIBS) Shree Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - Ashok K. Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Sathisha G. Jayanna
- Department of Biochemistry, Jnanasahyadri, Kuvempu University, Shivamogga, Karnataka, India
| | | | - Abdulrahman Alasmari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| | - Manjula Shantaram
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Kodagu, Karnataka, India
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
5
|
Maity A, Mondal A, Kundu S, Shome G, Misra R, Singh A, Pal U, Mandal AK, Bera K, Maiti NC. Naringenin-Functionalized Gold Nanoparticles and Their Role in α-Synuclein Stabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7231-7248. [PMID: 37094111 DOI: 10.1021/acs.langmuir.2c03259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Misfolding and self-assembly of several intrinsically disordered proteins into ordered β-sheet-rich amyloid aggregates emerged as hallmarks of several neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here we show how the naringenin-embedded nanostructure effectively retards aggregation and fibril formation of α-synuclein, which is strongly associated with the pathology of Parkinson's-like diseases. Naringenin is a polyphenolic compound from a plant source, and in our current investigation, we reported the one-pot synthesis of naringenin-coated spherical and monophasic gold nanoparticles (NAR-AuNPs) under optimized conditions. The average hydrodynamic diameter of the produced nanoparticle was ∼24 nm and showed a distinct absorption band at 533 nm. The zeta potential of the nanocomposite was ∼-22 mV and indicated the presence of naringenin on the surface of nanoparticles. Core-level XPS spectrum analysis showed prominent peaks at 84.02 and 87.68 eV, suggesting the zero oxidation state of metal in the nanostructure. Additionally, the peaks at 86.14 and 89.76 eV were due to the Au-O bond, induced by the hydroxyl groups of the naringenin molecule. The FT-IR analysis further confirmed strong interactions of the molecule with the gold nanosurface via the phenolic oxygen group. The composite surface was found to interact with monomeric α-synuclein and caused a red shift in the nanoparticle absorption band by ∼5 nm. The binding affinity of the composite nanostructure toward α-synuclein was in the micromolar range (Ka∼ 5.02 × 106 M-1) and may produce a protein corona over the gold nanosurface. A circular dichroism study showed that the nanocomposite can arrest the conformational fluctuation of the protein and hindered its transformation into a compact cross-β-sheet conformation, a prerequisite for amyloid fibril formation. Furthermore, it was found that naringenin and its nanocomplex did not perturb the viability of neuronal cells. It thus appeared that engineering of the nanosurface with naringenin could be an alternative strategy in developing treatment approaches for Parkinson's and other diseases linked to protein conformation.
Collapse
Affiliation(s)
- Anupam Maity
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Animesh Mondal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Gourav Shome
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Rajdip Misra
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Aakriti Singh
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Kaushik Bera
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Department of Chemistry, The Heritage School, 994 Chowbaga Road, Anandapur, East Kolkata Twp, Kolkata 700107, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
6
|
Esplugas R, Linares V, Bellés M, Domingo JL, Schuhmacher M. In vitro neurotoxic potential of emerging flame retardants on neuroblastoma cells in an acute exposure scenario. Toxicol In Vitro 2023; 87:105523. [PMID: 36427757 DOI: 10.1016/j.tiv.2022.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Since 2004, some legacy flame retardants (FRs) were restricted or removed from the European markets due to their concern on human health. Both organophosphorus FRs (OPFRs) and novel brominated FRs (NBFRs) have replaced them because they are presumably safer and less persistent emerging FRs (EFRs) and their exposure is currently occurring in indoor environments at high levels. Little is known about the neurotoxic potential risk of these EFRs in humans. The present study was aimed at assessing the acute neurotoxicity potential of Tris(1, 3-dichloro-2-propyl)phosphate (TDCPP), triphenyl phosphate (TPhP), Bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) on human neuroblastoma cells (SH-SY5Y). SH-SY5Y were exposed to these EFRs at low concentrations -ranging 2.5-20 μM. during 2-24 h. We investigated viability, mitochondrial function, oxidative stress, inflammatory response, as well as neural plasticity and development. The results have demonstrated that selected EFRs (TDCPP, TPhP, EH-TBB and BEH-TBP) did not impair neural function on SH-SY5Y as acute response. To the best of our knowledge, this has been the first study focused on evaluating the neural affection of TPhP on SH-SY5Y cells and of EH-TBB and BEH-TBP on neural cells. We also assessed for the first time almost all endpoints after FR exposure on neural cell lines.
Collapse
Affiliation(s)
- Roser Esplugas
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira I Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Victoria Linares
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Montserrat Bellés
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Schuhmacher
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira I Virgili, Tarragona, Spain
| |
Collapse
|
7
|
Dalberto D, Garcia ALH, De Souza MR, Picinini J, Soares S, De Souza GMS, Chytry P, Dias JF, Salvador M, Da Silva FR, Da Silva J. Dry tobacco leaves: an in vivo and in silico approach to the consequences of occupational exposure. Mutagenesis 2023; 38:120-130. [PMID: 36738258 DOI: 10.1093/mutage/gead003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Exposure of tobacco workers handling dried tobacco leaves has been linked to an increased risk of toxicity and respiratory illness due to the presence of nicotine and other chemicals. This study aimed to evaluate the DNA damage caused by the exposure of tobacco growers during the dry leaf classification process and the relation to cellular mechanisms. A total of 86 individuals participated in the study, divided into a group exposed to dry tobacco (n = 44) and a control group (n = 42). Genotoxicity was evaluated using the alkaline comet assay and lymphocyte micronucleus (MN) assay (CBMN-Cyt), and measurement of telomere length. The levels of oxidative and nitrosative stress were evaluated through the formation of thiobarbituric acid reactive species, and nitric oxide levels, respectively. The inorganic elements were measured in the samples using particle-induced X-ray emission method. The combination of variables was demonstrated through principal component analysis and the interactions were expanded through systems biology. Comet assay, MN, death cells, thiobarbituric acid reactive species, and nitrosative stress showed a significant increase for all exposed groups in relation to the control. Telomere length showed a significant decrease for exposed women and total exposed group in relation to men and control groups, respectively. Bromine (Br) and rubidium (Rb) in the exposed group presented higher levels than control groups. Correlations between nitrate and apoptosis; Br and MN and necrosis; and Rb and telomeres; besides age and DNA damage and death cells were observed. The systems biology analysis demonstrated that tobacco elements can increase the nuclear translocation of NFKB dimers inducing HDAC2 expression, which, associated with BRCA1 protein, can potentially repress transcription of genes that promote DNA repair. Dry tobacco workers exposed to dry leaves and their different agents showed DNA damage by different mechanisms, including redox imbalance.
Collapse
Affiliation(s)
- Daiana Dalberto
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ana L H Garcia
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.,Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Canoas, RS, Brazil
| | - Melissa R De Souza
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana Picinini
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Solange Soares
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Guilherme M S De Souza
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paola Chytry
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Johnny F Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mirian Salvador
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul (UCS), RS, Brazil
| | - Fernanda R Da Silva
- Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Canoas, RS, Brazil
| | - Juliana Da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.,Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Canoas, RS, Brazil
| |
Collapse
|
8
|
Rajkumar M, Vimala K, Tamiliniyan DD, Thangaraj R, Jaganathan R, Kumaradhas P, Kannan S. Gelatin/polyvinyl alcohol loaded magnesium hydroxide nanocomposite attenuates neurotoxicity and oxidative stress in Alzheimer's disease induced rats. Int J Biol Macromol 2022; 222:2122-2143. [DOI: 10.1016/j.ijbiomac.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
|
9
|
Dalberto D, Alves J, Garcia ALH, de Souza MR, Abella AP, Thiesen FV, Salvador M, Santos Branco CD, Marroni N, Bona S, Schemitt E, Da Silva FR, Da Silva J. Exposure in the tobacco fields: Genetic damage and oxidative stress in tobacco farmers occupationally exposed during harvest and grading seasons. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503485. [PMID: 35649679 DOI: 10.1016/j.mrgentox.2022.503485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Agricultural workers engaged in tobacco cultivation are constantly exposed to large amounts of harmful agents, such as pesticides and nicotine. Furthermore, most of the flue-cured tobacco leaves are manually graded exposing workers to agents such as tobacco-specific nitrosamines. This study aimed to evaluate genetic damage and oxidative stress in tobacco farmers occupationally exposed during the harvest and grading seasons. We obtained data on DNA damage detected in Comet assay in blood cells and micronucleus experiment with buccal cells from 241 individuals. The serum cotinine levels and nitrates were also evaluated. The Comet Assay results showed a showed an increased visual score for males and females during harvest time and tobacco grading. An increase of micronucleated and binucleated cells was observed in the grading group compared to the control and harvest groups. The oxidative stress measurements showed a clear increase of thiobarbituric acid reactive substances (TBARS) in tobacco farmers during harvest time, and trolox equivalent antioxidant capacity (TEAC) in individuals during harvest and grading time compared to the controls. Significant increases of the cotinine levels were observed during the harvest and grading period (harvest>grading), and nitrates for the grading period compared to the control. In this study, tobacco farmers presented compromised DNA integrity associated with enhanced oxidative stress levels.
Collapse
Affiliation(s)
- Daiana Dalberto
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Jodel Alves
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ana Letícia Hilário Garcia
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil; Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Canoas, RS, Brazil
| | - Melissa Rosa de Souza
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Angélica Pich Abella
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Flávia V Thiesen
- Toxicology Institute, Catholic Pontificial University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Mirian Salvador
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul (UCS), RS, Brazil
| | | | - Norma Marroni
- PPG Biological Sciences - Physiology and PPG Medicine - Medical Sciences at UFRGS, Porto Alegre, RS, Brazil; Laboratory of Pneumological Sciences and Inflammation - Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Silvia Bona
- PPG Biological Sciences - Physiology and PPG Medicine - Medical Sciences at UFRGS, Porto Alegre, RS, Brazil
| | - Elizangela Schemitt
- PPG Biological Sciences - Physiology and PPG Medicine - Medical Sciences at UFRGS, Porto Alegre, RS, Brazil
| | | | - Juliana Da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil; Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Canoas, RS, Brazil.
| |
Collapse
|
10
|
Mesaik MA, Khalid A, Abdalla AN, Sultana S, Youssef AR, Ahmed IE, Mohammed YI, Mirghani HO, Rehman ZU, Alhazmi HA, Al Bratty M. GC-MS and Cellular Toxicity Studies on Smokeless-Tobacco Show Alerting Cytotoxic effect on Human Gingiva and Lung Fibroblasts. JOURNAL OF SPECTROSCOPY 2022; 2022:1-10. [DOI: 10.1155/2022/4005935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Smokeless tobacco (SLT) has been reported to have deleterious effects on the health of its users. This study aims to analyze the constituents of locally collected SLT sample extracts (S1–S11) from Tabuk region of Saudi Arabia using GC-MS and investigate their cytotoxic effect on human gingival fibroblasts (hGFs), normal human fibroblasts (MRC5), and two cancer cell lines (HT29 and HepG2) using MTT assay. GC-MS results showed that pyridine, 3-(1-methyl-1H-pyrrol-2-yl)-, tetracyclo[4.4.1.1(7,10).0(2,5)]dodec-3-en-11-ol, and cotinine were found in S1, while ethyl iso-allocholate was traced in S2. Compounds 9,12-octadecadienoic acid, ethyl ester, 7-methyl-Z-tetradecen-1-ol acetate, cis-10-heptadecenoic acid and octadecanoic acid, ethyl ester, and nicotine traces were found in S4, while compound 3,7,11,15-tetramethyl-2-hexadecen-1-ol, tetradecamethyl-hexasiloxane, and phytol in S5. Additionally, octadecamethyl cyclononasiloxane, oleic acid, and trimethylsilyl ester were found in S6 and S9, respectively. Interestingly, extracts S4, S10, and S6 were the most cytotoxic to the normal fibroblasts (hGF and MRC5, with low selectivity index: <1), compared with doxorubicin and with their effect on the cancerous cells (HT29 and HepG2). Various components detected in SLT samples were carcinogenic, including nicotine and its derivatives, hexadecanoic acid, 1,2-benzenedicarboxylic acid, and octadecanoic acid. The present study showed that the cytotoxic and possibly carcinogenic effects of the SLT samples on gingiva and lung cells are attributed to many compounds and not only nicotine derivatives, all of which could create health threats for SLT users and lead to various types of cancers, including oral, lung, colon, and liver cancers.
Collapse
Affiliation(s)
- M. Ahmed Mesaik
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2424, Khartoum 11111, Sudan
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdel-Rahman Youssef
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Microbiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Izzaddinn E. Ahmed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Yassin I. Mohammed
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Hyder O. Mirghani
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Zia ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
11
|
Huber I, Pandur E, Sipos K, Barna L, Harazin A, Deli MA, Tyukodi L, Gulyás-Fekete G, Kulcsár G, Rozmer Z. Novel cyclic C 5-curcuminoids penetrating the blood-brain barrier: Design, synthesis and antiproliferative activity against astrocytoma and neuroblastoma cells. Eur J Pharm Sci 2022; 173:106184. [PMID: 35413433 DOI: 10.1016/j.ejps.2022.106184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
Novel series of cyclic C5-curcuminoids 17a-j and 19-22 were prepared as cytotoxic agents and evaluated against human neuroblastoma (SH-SY5Y) or human grade IV astrocytoma (CCF-STTG1) cell lines in low (∼0.1 nM - 10 nM) concentrations. Among the tested 21 derivatives, 16 displayed potent antiproliferative activity with IC50 values in the low nanomolar to picomolar range (IC50 = 7.483-0.139 nM). Highly active compounds like N-monocarboxylic derivative 19b with IC50 = 0.139 nM value against neuroblastoma and N-alkyl substituted 11 with IC50 = 0.257 nM against astrocytoma proved some degree of selectivity toward non-cancerous astrocytes and kidney cells. This potent anticancer activity did not show a strong correlation with experimental logPTLC values, but the most potent antiproliferative molecules 11-13 and 19-22 are belonging to discrete subgroups of the cyclic C5-curcuminoids. Compounds 12, 17c and 19b were subjected to blood-brain barrier (BBB) penetration studies, too. The BBB was revealed to be permeable for all of them but, as the apparent permeability coefficient (Papp) values mirrored, in different ratios. Lower toxicity of 12, 17c and 19b was observed toward primary rat brain endothelial cells of the BBB model, which means they remained undamaged under 10 µM concentrations. Penetration depends, at least in part, on albumin binding of 12, 17c and 19b and the presence of monocarboxylic acid transporters in the case of 19b. Permeation through the BBB and albumin binding, we described here, is the first example of cyclic C5-curcuminoids as to our knowledge.
Collapse
Affiliation(s)
- Imre Huber
- Department of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary.
| | - Edina Pandur
- Department of Pharmaceutical Biology, University of Pécs, Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, University of Pécs, Pécs, Hungary
| | - Lilla Barna
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Harazin
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Levente Tyukodi
- Department of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| | | | - Győző Kulcsár
- Department of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Rozmer
- Department of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| |
Collapse
|
12
|
Garcia ALH, Matzenbacher CA, Soares S, Rohr P, da Silva J. Fluorosilicic acid and cotinine, separately and in combination, induce genotoxicity and telomeric reduction in human osteoblast cell line MG63. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503474. [PMID: 35483789 DOI: 10.1016/j.mrgentox.2022.503474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Skeletal fluorosis is a severe case in which bone deformations and bone tissue weakening occur due to excessive fluorine deposition. Recently, data on smoking have been published that smoke constituents can indirectly influence bone mass and interfere in the metabolism of fluorides in humans. Thus, the present in vitro study aimed to assess the genetic instability in human osteoblast MG63 cells exposed to fluorosilicic acid (FA) and cotinine (COT), separately and in combination, in concentrations found in human plasma. For this, cell cytotoxicity was performed by MTT assay; DNA damage was performed by alkaline comet assay (CA), modified by repair endonucleases (+FPG); micronuclei test (MN) using CBMN-Cyt assay; and telomere length (TL) by qPCR in MG63 cells. No cytotoxicity was observed for all concentrations tested in this study. Alkaline CA results showed a significant increase in DNA damage at all FA concentrations (0.03125-0.300 mg/L), in the two highest concentrations of COT (125 and 250 ng/mL), and the highest concentration of FA+COT (0.300 mg/L+250 ng/mL). Alkaline CA+FPG test was used to detect oxidized nucleobases, which occurred at the two highest concentrations of FA, COT, and FA+COT. Micronuclei test showed an increase in the frequency of MN at all concentrations of FA (0.075-0.300 mg/L) except in the lowest concentration (0.03125 mg/L), in the two highest concentrations of COT (125 and 250 ng/mL), and all concentrations of FA+COT. There was no significant difference in nuclear division index, binucleated cells, nucleoplasmic bridge, and nuclear bud. A TL reduction was observed in cells treated with the highest concentrations of FA alone (0.300 mg/L) and FA+COT (0.300 mg/L+250 ng/mL). Finally, our study showed that FA and COT (mainly alone) at concentrations found in human plasma induced oxidative damage and genetic instability in human osteoblast cells.
Collapse
Affiliation(s)
- Ana L H Garcia
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health) and PPGGTA (Postgraduate Program in Genetics and Applied Toxicology), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS, Brazil.
| | - Cristina A Matzenbacher
- Federal University of Rio Grande do Sul, Department of Genetics, C.P. 15053, 91501-970 Porto Alegre, RS, Brazil
| | - Solange Soares
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health) and PPGGTA (Postgraduate Program in Genetics and Applied Toxicology), 92425-900, Canoas, RS, Brazil
| | - Paula Rohr
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Juliana da Silva
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health) and PPGGTA (Postgraduate Program in Genetics and Applied Toxicology), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS, Brazil.
| |
Collapse
|
13
|
Dalberto D, Nicolau CC, Rosa De Sousa M, Garcia ALH, Boaretto F, Picada JN, De Souza GMS, Chytry P, Dias JF, Feistel CC, Ferraz ABF, Grivicich I, Da Silva J. Genotoxic effect induced by dried nicotiana tabacum leaves from tobacco barns (kiln-houses) in chinese hamster lung fibroblast cells (V79). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:689-701. [PMID: 34034641 DOI: 10.1080/15287394.2021.1930619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nicotiana tabacum is the most cultivated tobacco species in the state of Rio Grande do Sul, Brazil. Workers who handle the plant are exposed to the leaf components during the harvesting process and when separating and classifying the dried leaves. In addition to nicotine, after the drying process, other components may be found including tobacco-specific nitrosamines, polycyclic aromatic hydrocarbons, as well as pesticides residues. The objective of this study was to examine the genotoxicity attributed to the aqueous extract of dried tobacco leaves obtained from tobacco barns using Chinese hamster lung fibroblast cells (V79) as a model system by employing alkaline comet assay, micronucleus (MN) and Ames test. MTT assay was used to assess cytotoxicity and establish concentrations for this study. Data demonstrated cell viability > 85% for concentrations of 0.625-5 mg/ml while the comet assay indicated a significant increase in DNA damage at all concentrations tested. A significant elevation of MN and nuclear buds (NBUD) was found for 5 mg/ml compared to control and other dry tobacco leaves concentrations (0.625-2.5 mg/ml). Mutagenicity was not found using the Salmonella/Microsome test (TA98, TA100, and TA102 strains) with and without metabolic activation. The concentration of inorganic elements was determined employing the PIXE technique, and 13 inorganic elements were detected. Using CG/MS nicotine amounts present were 1.56 mg/g dry tobacco leaf powder. Due to the observed genotoxicity in V79 cells, more investigations are needed to protect the health of tobacco workers exposed daily to this complex mixture of toxic substances present in dry tobacco leaves.
Collapse
Affiliation(s)
- Daiana Dalberto
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Caroline Cardoso Nicolau
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Melissa Rosa De Sousa
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ana Letícia Hilário Garcia
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Fernanda Boaretto
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | | | - Paola Chytry
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cleverson Costa Feistel
- Pharmacognosy and Phytochemistry Laboratory. Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Alexandre Barros Falcão Ferraz
- Pharmacognosy and Phytochemistry Laboratory. Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology. Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana Da Silva
- Laboratory of Genetic Toxicology, Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| |
Collapse
|
14
|
Mansuri ML, Sharma G, Parihar P, Dube KT, Sharma T, Parihar A, Parihar MS. Increased oxidative stress and mitochondrial impairments associated with increased expression of TNF-α and caspase-3 in palmitic acid-induced lipotoxicity in myoblasts. J Biochem Mol Toxicol 2021; 35:e22744. [PMID: 33604948 DOI: 10.1002/jbt.22744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 11/07/2022]
Abstract
Saturated fatty acids, whose circulating levels are markedly increased in the body, significantly affect the growth and functions of skeletal muscle. These fatty acids may exert a detrimental effect on the undifferentiated skeletal myoblasts that may adversely affect their differentiation. In the present study, the exposure of myoblasts to excess palmitic acid caused an elevation of tumor necrosis factor-α expression and an increase in reactive oxygen species levels consistent with the enhanced inflammation and oxidative stress. Various concentrations of palmitic acid significantly decreased the mitochondrial membrane potential, induced the programmed cell death by an increase in the caspase-3 expression, and DNA fragmentation in the myoblasts. These findings suggest that the increased concentrations of saturated fatty acid in the myoblasts increase lipotoxicity by increasing inflammation and oxidative stress, decreasing the mitochondrial function, and inducing apoptosis.
Collapse
Affiliation(s)
- Mohammad Lukman Mansuri
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, Madhya Pradesh, India
| | - Garima Sharma
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, Madhya Pradesh, India
| | - Priyanka Parihar
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, Madhya Pradesh, India
| | - Kirti Tiwari Dube
- Department of Zoology, Government Holkar Science College, Indore, Madhya Pradesh, India
| | - Tejasweta Sharma
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, Madhya Pradesh, India
| | | | - Mordhwaj Singh Parihar
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, Madhya Pradesh, India.,Bioexons LLC, Seattle, Washington, USA
| |
Collapse
|
15
|
Alves J, Da Silva FR, Kahl V, Reyes J, Lima E, Abreu MB, Thiesen FV, Dos Santos DL, Salvador M, Dos Santos Branco C, Nersesyan A, Knasmuller S, Da Silva J. Impact of nicotine-induced green tobacco sickness on DNA damage and the relation with symptoms and alterations of redox status in tobacco farmers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111397. [PMID: 33007538 DOI: 10.1016/j.ecoenv.2020.111397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
During the harvest period, tobacco workers are exposed to nicotine and it is known that absorption of the alkaloid via the leaves causes green tobacco sickness (GST). We investigated if GST and its symptoms are associated with DNA damage and alterations of the redox status. DNA damage was measured in lymphocytes of tobacco workers and controls (n = 40/group) in single cell gel electrophoresis assays. Exposure to nicotine was determined by plasma cotinine measurements, alterations of the redox status by quantification of the total antioxidant capacity (TEAC) and of thiobarbituric acid reactive substances (TBARS). The symptoms of GTS included nausea, abdominal cramps, headache, vomiting and dizziness, and 50% of the workers had more than one symptom. Cotinine levels were enhanced in the workers (111 ng/mL); furthermore, the extent of DNA damage was ca. 3-fold higher than in the controls. This effect was more pronounced in participants with GST compared to healthy nicotine exposed workers and increased in individuals with specific symptoms (range 22-36%). TBARS levels did not differ between workers and unexposed controls, while TEAC values were even increased (by 14.3%). Contact with nicotine present in tobacco leaves causes GTS and leads to damage of the DNA; this effect is more pronounced in workers with GTS symptoms and is associated with alterations of the redox status. Damage of the genetic material which was found in the workers may lead to adverse long-term effects that are caused by genomic instability such as cancer and accelerated ageing.
Collapse
Affiliation(s)
- Jodel Alves
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Fernanda R Da Silva
- Posgraduate Program in Evaluation of Environmental Impacts, La Salle University (UniLaSalle), Canoas, RS, Brazil
| | - Vivian Kahl
- Telomere Length Regulation Unit, Children's Medical Research Institute (CMRI), Sydney, NSW, Australia
| | - Juliana Reyes
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Elisiane Lima
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Marina B Abreu
- Toxicology Institute, Catholic Pontificie University of Rio Grande do Sul (PUC), Porto Alegre, RS, Brazil
| | - Flávia V Thiesen
- Toxicology Institute, Catholic Pontificie University of Rio Grande do Sul (PUC), Porto Alegre, RS, Brazil
| | - Denise Leal Dos Santos
- Toxicology Institute, Catholic Pontificie University of Rio Grande do Sul (PUC), Porto Alegre, RS, Brazil
| | - Mirian Salvador
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul (UCS), RS, Brazil; Mestrado em Avaliação de Impactos Ambientais, Canoas, RS, Brazil
| | - Cátia Dos Santos Branco
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul (UCS), RS, Brazil; Mestrado em Avaliação de Impactos Ambientais, Canoas, RS, Brazil
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Siegfried Knasmuller
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Juliana Da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil; Posgraduate Program in Health and Human Development, La Salle University (UniLaSalle), Canoas, RS, Brazil.
| |
Collapse
|
16
|
Muruzabal D, Collins A, Azqueta A. The enzyme-modified comet assay: Past, present and future. Food Chem Toxicol 2020; 147:111865. [PMID: 33217526 DOI: 10.1016/j.fct.2020.111865] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The enzyme-modified comet assay was developed in order to detect DNA lesions other than those detected by the standard version (single and double strand breaks and alkali-labile sites). Various lesion-specific enzymes, from the DNA repair machinery of bacteria and humans, have been combined with the comet assay, allowing detection of different oxidized and alkylated bases as well as cyclobutane pyrimidine dimers, mis-incorporated uracil and apurinic/apyrimidinic sites. The enzyme-modified comet assay has been applied in different fields - human biomonitoring, environmental toxicology, and genotoxicity testing (both in vitro and in vivo) - as well as in basic research. Up to now, twelve enzymes have been employed; here we describe the enzymes and give examples of studies in which they have been applied. The bacterial formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII) have been extensively used while others have been used only rarely. Adding further enzymes to the comet assay toolbox could potentially increase the variety of DNA lesions that can be detected. The enzyme-modified comet assay can play a crucial role in the elucidation of the mechanism of action of both direct and indirect genotoxins, thus increasing the value of the assay in the regulatory context.
Collapse
Affiliation(s)
- Damián Muruzabal
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain
| | - Andrew Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Amaya Azqueta
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|