1
|
Ren QL, Li XL, Tian T, Li S, Shi RY, Wang Q, Zhu Y, Wang M, Hu H, Liu JG. Application of Natural Medicinal Plants Active Ingredients in Oral Squamous Cell Carcinoma. Chin J Integr Med 2024; 30:852-864. [PMID: 38607612 DOI: 10.1007/s11655-024-3804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 04/13/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant cancer of the head and neck, with high morbidity and mortality, ranking as the sixth most common cancer in the world. The treatment of OSCC is mainly radiotherapy, chemotherapy and surgery, however, the prognosis of patients is still poor and the recurrence rate is high. This paper reviews the range of effects of natural medicinal plant active ingredients (NMPAIs) on OSCC cancer, including the types of NMPAIs, anti-cancer mechanisms, involved signaling pathways, and clinical trials. The NMPAIs include terpenoids, phenols, flavonoids, glycosides, alkaloids, coumarins, and volatile oils. These active ingredients inhibit proliferation, induce apoptosis and autophagy, inhibit migration and invasion of OSCC cells, and regulate cancer immunity to exert anti-cancer effects. The mechanism involves signaling pathways such as mitogen-activated protein kinase, phosphatidylinositol 3 kinase/protein kinase B, nuclear factor kappa B, miR-22/WNT1/β-catenin and Nrf2/Keap1. Clinically, NMPAIs can inhibit the growth of OSCC, and the combined drug is more effective. Natural medicinal plants are promising candidates for the treatment of OSCC.
Collapse
Affiliation(s)
- Qun-Li Ren
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiao-Lan Li
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Tian Tian
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Shuang Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Rong-Yi Shi
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Qian Wang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Yuan Zhu
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Miao Wang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan Hu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jian-Guo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
2
|
Yang C, Chen W, Ye B, Nie K. An overview of 6-shogaol: new insights into its pharmacological properties and potential therapeutic activities. Food Funct 2024; 15:7252-7270. [PMID: 38287779 DOI: 10.1039/d3fo04753a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Ginger (Zingiber officinale Roscoe) has traditionally been used as a cooking spice and herbal medicine for treating nausea and vomiting. More recently, ginger was found to effectively reduce the risk of diseases such as gastroenteritis, migraine, gonarthritis, etc., due to its various bioactive compounds. 6-Shogaol, the pungent phenolic substance in ginger, is the most pharmacologically active among such compounds. The aim of the present study was to review the pharmacological characteristic of 6-shogaol, including the properties of anti-inflammatory, antioxidant and antitumour, and its corresponding molecular mechanism. With its multiple mechanisms, 6-shogaol is considered a beneficial natural compound, and therefore, this review will shed some light on the therapeutic role of 6-shogaol and provide a theoretical basis for the development and clinical application of 6-shogaol.
Collapse
Affiliation(s)
- Chenglu Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Weijian Chen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Binbin Ye
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Ke Nie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Figueroa‐González G, Quintas‐Granados LI, Reyes‐Hernández OD, Caballero‐Florán IH, Peña‐Corona SI, Cortés H, Leyva‐Gómez G, Habtemariam S, Sharifi‐Rad J. Review of the anticancer properties of 6-shogaol: Mechanisms of action in cancer cells and future research opportunities. Food Sci Nutr 2024; 12:4513-4533. [PMID: 39055196 PMCID: PMC11266911 DOI: 10.1002/fsn3.4129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer is a major global health challenge that affects every nation and accounts for a large portion of the worldwide disease burden. Furthermore, cancer cases will rise significantly in the next few decades. The Food and Drug Administration has approved more than 600 drugs for treating diverse types of cancer. However, many conventional anticancer medications cause side effects, and drug resistance develops as the treatment proceeds with a concomitant impact on patients' quality of life. Thus, exploring natural products with antitumor properties and nontoxic action mechanisms is essential. Ginger (Zingiber officinale Roscoe) rhizome has a long history of use in traditional medicine, and it contains biologically active compounds, gingerols and shogaols. The main ginger shogaol is 6-shogaol, whose concentration dramatically increases during the processing of ginger, primarily due to the heat-induced conversion of 6-gingerol. Some studies have demonstrated that 6-shogaol possesses biological and pharmacological properties, such as antioxidant, anti-inflammatory, and anticancer activities. The mechanism of action of 6-shogaol as an anticancer drug includes induction of paraptosis, induction of apoptosis, increase in the production of reactive oxygen species, induction of autophagy, and the inhibition of AKT/mTOR signaling. Despite this knowledge, the mechanism of action of 6-shogaol is not fully understood, and the scientific data on its therapeutic dose, safety, and toxicity are not entirely described. This review article examines the potential of 6-shogaol as an anticancer drug, addressing the limitations of current medications; it covers 6-shogaol's attributes, mechanism of action in cancer cells, and opportunities for future research.
Collapse
Affiliation(s)
- Gabriela Figueroa‐González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Laura Itzel Quintas‐Granados
- Colegio de Ciencias y Humanidades, Plantel CuautepecUniversidad Autónoma de la Ciudad de MéxicoCiudad de MéxicoMexico
| | - Octavio Daniel Reyes‐Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Isaac H. Caballero‐Florán
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Sheila I. Peña‐Corona
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de GenómicaInstituto Nacional de Rehabilitación Luis Guillermo Ibarra IbarraCiudad de MexicoMexico
| | - Gerardo Leyva‐Gómez
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKCentral Avenue, Chatham‐MaritimeKentME4 4TBUK
| | | |
Collapse
|
4
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
5
|
Jia Y, Li X, Meng X, Lei J, Xia Y, Yu L. Anticancer perspective of 6-shogaol: anticancer properties, mechanism of action, synergism and delivery system. Chin Med 2023; 18:138. [PMID: 37875983 PMCID: PMC10594701 DOI: 10.1186/s13020-023-00839-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Cancer is a malignant disease that has plagued human beings all the time, but the treatment effect of commonly used anticancer drugs in clinical practice is not ideal by reason of their drug tolerance and Strong adverse reactions to patients. Therefore, it is imperative to find effective and low-toxic anticancer drugs. Many research works have shown that natural products in Chinese herbal medicine have great anticancer potential, such as 6-shogaol, a monomer composition obtained from Chinese herbal ginger, which has been confirmed by numerous in vitro or vivo studies to be an excellent anti-cancer active substance. In addition, most notably, 6-shogaol has different selectivity for normal and cancer cells during treatment, which makes it valuable for further research and clinical development. Therefore, this review focus on the anti-cancer attributes, the mechanism and the regulation of related signaling pathways of 6-shogaol. In addition, its synergy with commonly used anticancer drugs, potential drug delivery systems and prospects for future research are discussed. This is the first review to comprehensively summarize the anti-cancer mechanism of 6-shogaol, hoping to provide a theoretical basis and guiding significance for future anti-cancer research and clinical development of 6-shogaol.
Collapse
Affiliation(s)
- Yaoxia Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xing Li
- Jianyang Chinese Medicine Hospital, Chengdu, 641400, China
| | - Xiangqi Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Jinjie Lei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Yangmiao Xia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Lingying Yu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| |
Collapse
|
6
|
Thiruvengadam R, Kim JH. Therapeutic strategy for oncovirus-mediated oral cancer: A comprehensive review. Biomed Pharmacother 2023; 165:115035. [PMID: 37364477 DOI: 10.1016/j.biopha.2023.115035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Oral cancer is a neoplastic disorder of the oral cavities, including the lips, tongue, buccal mucosa, and lower and upper gums. Oral cancer assessment entails a multistep process that requires deep knowledge of the molecular networks involved in its progression and development. Preventive measures including public awareness of risk factors and improving public behaviors are necessary, and screening techniques should be encouraged to enable early detection of malignant lesions. Herpes simplex virus (HSV), human papillomavirus (HPV), Epstein-Barr virus (EBV), and Kaposi sarcoma-associated herpesvirus (KSHV) are associated with other premalignant and carcinogenic conditions leading to oral cancer. Oncogenic viruses induce chromosomal rearrangements; activate signal transduction pathways via growth factor receptors, cytoplasmic protein kinases, and DNA binding transcription factors; modulate cell cycle proteins, and inhibit apoptotic pathways. In this review, we present an up-to-date overview on the use of nanomaterials for regulating viral proteins and oral cancer as well as the role of phytocompounds on oral cancer. The targets linking oncoviral proteins and oral carcinogenesis were also discussed.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
7
|
Peng S, Yu S, Zhang J, Zhang J. 6-Shogaol as a Novel Thioredoxin Reductase Inhibitor Induces Oxidative-Stress-Mediated Apoptosis in HeLa Cells. Int J Mol Sci 2023; 24:ijms24054966. [PMID: 36902397 PMCID: PMC10003455 DOI: 10.3390/ijms24054966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Inhibition of thioredoxin reductase (TrxR) is a crucial strategy for the discovery of antineoplastic drugs. 6-Shogaol (6-S), a primary bioactive compound in ginger, has high anticancer activity. However, its potential mechanism of action has not been thoroughly investigated. In this study, we demonstrated for the first time that 6-S, a novel TrxR inhibitor, promoted oxidative-stress-mediated apoptosis in HeLa cells. The other two constituents of ginger, 6-gingerol (6-G) and 6-dehydrogingerduone (6-DG), have a similar structure to 6-S but fail to kill HeLa cells at low concentrations. 6-Shogaol specifically inhibits purified TrxR1 activity by targeting selenocysteine residues. It also induced apoptosis and was more cytotoxic to HeLa cells than normal cells. The molecular mechanism of 6-S-mediated apoptosis involves TrxR inhibition, followed by an outburst of reactive oxygen species (ROS) production. Furthermore, TrxR knockdown enhanced the cytotoxic sensitivity of 6-S cells, highlighting the physiological significance of targeting TrxR by 6-S. Our findings show that targeting TrxR by 6-S reveals a new mechanism underlying the biological activity of 6-S and provides meaningful insights into its action in cancer therapeutics.
Collapse
Affiliation(s)
- Shoujiao Peng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shaopeng Yu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junmin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Correspondence: (J.Z.); (J.Z.)
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (J.Z.); (J.Z.)
| |
Collapse
|
8
|
Kim TW, Lee HG. 6-Shogaol Overcomes Gefitinib Resistance via ER Stress in Ovarian Cancer Cells. Int J Mol Sci 2023; 24:ijms24032639. [PMID: 36768961 PMCID: PMC9916959 DOI: 10.3390/ijms24032639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
In women, ovary cancer is already the fifth leading cause of mortality worldwide. The use of cancer therapies, such as surgery, radiotherapy, and chemotherapy, may be a powerful anti-cancer therapeutic strategy; however, these therapies still have many problems, including resistance, toxicity, and side effects. Therefore, natural herbal medicine has the potential to be used for cancer therapy because of its low toxicity, fewer side effects, and high success. This study aimed to investigate the anti-cancer effect of 6-shogaol in ovarian cancer cells. 6-shogaol induces ER stress and cell death via the reduction in cell viability, the increase in LDH cytotoxicity, caspase-3 activity, and Ca2+ release, and the upregulation of GRP78, p-PERK, p-eIF2α, ATF-4, CHOP, and DR5. Moreover, 6-shogaol treatment medicates endoplasmic reticulum (ER) stress and cell death by upregulating Nox4 and releasing ROS. The knockdown of Nox4 in ovarian cancer cells inhibits ER stress and cell death by blocking the reduction in cell viability and the enhancement of LDH cytotoxicity, caspase-3 activity, Ca2+, and ROS release. In gefitinib-resistant ovarian cancer cells, A2780R and OVCAR-3R, 6-shogaol/gefitinib overcomes gefitinib resistance by inhibiting EMT phenomena such as the reduction in E-cadherin, and the increase in N-cadherin, vimentin, Slug, and Snail. Therefore, our results suggest that 6-shogaol exerts a potential anti-cancer effect in ovarian cancer and combination treatment with 6-shogaol and gefitinib may provide a novel anti-tumor therapeutic strategy in gefitinib-resistant ovarian cancer.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, Gyeongju 38066, Republic of Korea
- Correspondence:
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Li N, Li X, Deng L, Yang H, Gong Z, Wang Q, Pan D, Zeng S, Chen J. 6-Shogaol inhibits the proliferation, apoptosis, and migration of rheumatoid arthritis fibroblast-like synoviocytes via the PI3K/AKT/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154562. [PMID: 36610124 DOI: 10.1016/j.phymed.2022.154562] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/02/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLSs) are essential for joint destruction in rheumatoid arthritis (RA). 6-Shogaol, a phenolic extract isolated from ginger, has been found to have potential benefits in the treatment of diverse inflammatory and immune disorders. However, the role of 6-shogaol in RA has yet to be explored. PURPOSE To reveal the effect of 6-shogaol on RA FLSs and MH7A cells and to investigate the molecular mechanism of 6-shogao in RA. METHODS We performed MTT, EdU, cell apoptosis, cell migration and invasion, RT-qPCR, western blot analysis, and immunofluorescence to elucidate the effect of 6-shogaol on the proliferation, apoptosis, and migration of RA FLSs and MH7A cells and revealed its modulation of the PI3K/AKT/NF-κB pathway. The in vivo therapeutic effect of 6-shogaol was verified in mice with collagen-induced arthritis (CIA). RESULTS 6-Shogaol suppressed proliferation, migration, and invasion, and induced apoptosis in RA FLSs and MH7A cells. 6-Shogaol also reduced the production of TNF-α, IL-1β, IL-6, IL-8, MMP-2, and MMP-9. Molecular analysis revealed that 6-shogaol inhibited the PI3K/AKT/NF-κB pathway by activating PPAR-γ. Treatment with 6-shogaol ameliorated joint destruction of mice with CIA. CONCLUSION This study revealed that 6-shogaol inhibited proliferation, migration, invasion, cytokine, and MMPs production, and induced apoptosis in RA FLSs via the PI3K/AKT/NF-κB pathway, providing a new natural potential drug for future RA treatments.
Collapse
Affiliation(s)
- Nan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Haixin Yang
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Zhaohui Gong
- Department of Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiang Wang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang City, Yangjiang 529500, China
| | - Dongmei Pan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Mulati S, Jiang R, Wang J, Tao Y, Zhang W. 6-Shogaol Exhibits a Promoting Effect with Tax via Binding HSP60 in Non-Small-Cell Lung Cancer. Cells 2022; 11:cells11223678. [PMID: 36429106 PMCID: PMC9688423 DOI: 10.3390/cells11223678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a prevalent malignant tumor with high morbidity and mortality rates worldwide. Although surgical resection, adjuvant radiotherapy/chemotherapy, and targeted molecular therapy are the cornerstones of NSCLC treatment, NSCLC is associated with high recurrence rates and drug resistance. This study analyzed the potential targets and pathways of 6-Shogaol (6-SH) in NSCLC, showing that 6-SH binds to heat-shock 60 kDa protein (HSP60) in A549 cells, induces cell apoptosis, and arrests the cell cycle possibly by disrupting the mitochondrial function. HSP60 was identified as the target of 6-SH and 6-SH-induced HSP60 degradation which was mediated by the proteasome. The binding of 6-SH with HSP60 altered its stability, inhibited the ERK, Stat3, PI3K, Akt, and mTOR signaling pathways, and Tax acted synergistically with 6-SH, indicating that 6-SH could be developed as a potential therapeutic agent for an NSCLC treatment.
Collapse
|