1
|
Agger AE, Samara A, Geng T, Olstad OK, Reseland JE. Mimicking and in vitro validating chronic inflammation in human gingival fibroblasts. Arch Oral Biol 2024; 169:106113. [PMID: 39447377 DOI: 10.1016/j.archoralbio.2024.106113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE The aim of this study was to identify and validate in vitro conditions that may mimic the translational, cytokine and chemokine profiles observed in human inflamed gingiva in vivo. DESIGN Primary human gingiva fibroblast cells (HFIB-G) were cultured under serum starvation conditions (0 - 10 %), supplemented with increasing lipopolysaccharide (LPS) concentrations (0.1, 1, or 10 µg/ml) from two bacterial strains E. coli and P. gingivalis and 0.1, 1, or 10 ng/ml recombinant interleukin 1β (IL-1β), alone or in combinations. The levels of cytokines/chemokines were measured in the cell culture medium by Luminex, and gene expression was quantified by Affymetrix microarrays at 24, 48 and 72 h. RESULTS Inflammation markers were not elevated after stimulation with P. gingivalis LPS, while E. coli LPS and IL-1β individually increased the secretion of interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) to the cell culture medium. IL-1β administration also increased the secretion of several factors, including tumor necrosis factor (TNFα). However, the combination of 1 µg/ml E. coli LPS, 1 ng/ml IL-1β and serum starvation led to increased secretion of IL-6, TNFα, in addition to other factors found in inflamed tissue. Gene expression analyses revealed that this combination not only enhanced the expression interleukins/chemokines genes but also T helper cell signaling and matrix metalloproteinases. CONCLUSION Serum reduction in cell culture medium together with the administration of E. coli LPS and IL-1β resulted in gene expression and secreted cytokine/chemokine profiles similar to that found in vivo during chronic inflammation.
Collapse
Affiliation(s)
- Anne Eriksson Agger
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway; FUTURE, Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway.
| | - Athina Samara
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway; FUTURE, Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway.
| | - Tianxiang Geng
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway.
| | | | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway; FUTURE, Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Puletic M, Velikic G, Maric DM, Supic G, Maric DL, Radovic N, Avramov S, Vojvodic D. Clinical Efficacy of Extracellular Vesicle Therapy in Periodontitis: Reduced Inflammation and Enhanced Regeneration. Int J Mol Sci 2024; 25:5753. [PMID: 38891939 PMCID: PMC11171522 DOI: 10.3390/ijms25115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Periodontitis, a prevalent inflammatory condition, affects the supporting structures of teeth, leading to significant oral health challenges. Traditional treatments have primarily focused on mechanical debridement, antimicrobial therapy, and surgery, which often fail to restore lost periodontal structures. Emerging as a novel approach in regenerative medicine, extracellular vesicle (EV) therapy, including exosomes, leverages nano-sized vesicles known for facilitating intercellular communication and modulating physiological and pathological processes. This study is a proof-of-concept type that evaluates the clinical efficacy of EV therapy as a non-surgical treatment for stage I-III periodontitis, focusing on its anti-inflammatory and regenerative potential. The research involved seven patients undergoing the therapy, and seven healthy individuals. Clinical parameters, including the plaque index, bleeding on probing, probing depth, and attachment level, were assessed alongside cytokine levels in the gingival crevicular fluid. The study found significant improvements in clinical parameters, and a marked reduction in pro-inflammatory cytokines post-treatment, matching the levels of healthy subjects, underscoring the therapy's ability to not only attenuate inflammation and enhance tissue regeneration, but also highlighting its potential in restoring periodontal health. This investigation illuminates the promising role of EV therapy in periodontal treatment, advocating for a shift towards therapies that halt disease progression and promote structural and functional restoration of periodontal tissues.
Collapse
Affiliation(s)
- Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26101 Pancevo, Serbia; (M.P.); (D.M.M.); (N.R.); (S.A.)
| | - Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Faculty of Stomatology Pancevo, University Business Academy, 26101 Pancevo, Serbia; (M.P.); (D.M.M.); (N.R.); (S.A.)
- Department for Research and Development, Clinic Orto MD-Parks Hospital, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nikola Radovic
- Faculty of Stomatology Pancevo, University Business Academy, 26101 Pancevo, Serbia; (M.P.); (D.M.M.); (N.R.); (S.A.)
| | - Stevan Avramov
- Faculty of Stomatology Pancevo, University Business Academy, 26101 Pancevo, Serbia; (M.P.); (D.M.M.); (N.R.); (S.A.)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Sitarek P, Kowalczyk T, Śliwiński T, Hatziantoniou S, Soulintzi N, Pawliczak R, Wieczfinska J. Leonotis nepetifolia Transformed Root Extract Reduces Pro-Inflammatory Cytokines and Promotes Tissue Repair In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4706. [PMID: 36981614 PMCID: PMC10048264 DOI: 10.3390/ijerph20064706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Inflammation is closely related to asthma and its defining feature: airway remodeling. The aim of this study was to determine the effects of extracts of normal (NR) and transformed (TR) Leonotis nepetifolia roots on respiratory cells and against the gingival epithelium. Extracts from NR and TR roots were added to lung fibroblast, bronchial epithelial and gingival fibroblast cell lines, in the presence of HRV-16 infection, to determine their impact on inflammation. The expression of inflammatory cytokines (IL-6, IL-1β, GM-CSF and MCAF) as well as total thiol contents were assessed. The TR extract inhibited rhinovirus-induced IL-6 and IL-1β expression in all tested airway cells (p < 0.05). Additionally, the extract decreased GM-CSF expression in bronchial epithelial cells. The tested extracts had positive effects on total thiol content in all tested cell lines. The TR root extract demonstrated wound healing potential. While both tested extracts exhibited anti-inflammatory and antioxidative effects, they were stronger for the TR extract, possibly due to higher concentrations of beneficial metabolites such as phenols and flavonoids. Additionally, wound healing activity was demonstrated for the TR root extract. These results suggest that TR root extract may become a promising therapeutic agent in the future.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Nikolitsa Soulintzi
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Rafal Pawliczak
- Department of Immunopathology, Medical University of Lodz, Zeligowskiego 7/9, Bldg 2, Rm 177, 90-752 Lodz, Poland
| | - Joanna Wieczfinska
- Department of Immunopathology, Medical University of Lodz, Zeligowskiego 7/9, Bldg 2, Rm 177, 90-752 Lodz, Poland
| |
Collapse
|
4
|
Expression of Macrophage Polarization Markers against the Most Prevalent Serotypes of Aggregatibacter actinomycetemomitans. Microorganisms 2022; 10:microorganisms10071384. [PMID: 35889103 PMCID: PMC9318388 DOI: 10.3390/microorganisms10071384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium with seven serotypes (a–g) according to the structure of its LPS, has been defined as one of the most important pathogens in the development of a dysbiotic periodontal biofilm and the onset of periodontitis (an inflammatory chronic disease of the tissues around the teeth), where the serotype b is characterized as the most virulent compared with the other serotypes. The aim of this study was to evaluate the expression of the macrophage polarization markers M0, M1, and M2 against A. actinomycetemcomitans. Methods: THP-1 cells were infected with A. actinomycetemcomitans serotypes a, b, and c. The expression of CD11b, CD4, CD14, and CD68 for M0; IL-6, HLA/DRA, and CXCL10 for M21, and IL-10, CD163, fibronectin-1 or FN1, and CCL17 was evaluated by qPCR at 2 and 24 h after infection. Results: An increase in the expression of these molecules was induced by all serotypes at both times of infection, showing higher levels of expression to the M1 panel at 2 and 24 h compared to other markers. Conclusions: A. actinomycetemcomitans has a role in the macrophage polarization to the M1 phenotype in a non-serotype-dependent manner.
Collapse
|
5
|
Apitherapy and Periodontal Disease: Insights into In Vitro, In Vivo, and Clinical Studies. Antioxidants (Basel) 2022; 11:antiox11050823. [PMID: 35624686 PMCID: PMC9137511 DOI: 10.3390/antiox11050823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Periodontal diseases are caused mainly by inflammation of the gums and bones surrounding the teeth or by dysbiosis of the oral microbiome, and the Global Burden of Disease study (2019) reported that periodontal disease affects 20-50% of the global population. In recent years, more preference has been given to natural therapies compared to synthetic drugs in the treatment of periodontal disease, and several oral care products, such as toothpaste, mouthwash, and dentifrices, have been developed comprising honeybee products, such as propolis, honey, royal jelly, and purified bee venom. In this study, we systematically reviewed the literature on the treatment of periodontitis using honeybee products. A literature search was performed using various databases, including PubMed, Web of Science, ScienceDirect, Scopus, clinicaltrials.gov, and Google Scholar. A total of 31 studies were reviewed using eligibility criteria published between January 2016 and December 2021. In vitro, in vivo, and clinical studies (randomized clinical trials) were included. Based on the results of these studies, honeybee products, such as propolis and purified bee venom, were concluded to be effective and safe for use in the treatment of periodontitis mainly due to their antimicrobial and anti-inflammatory activities. However, to obtain reliable results from randomized clinical trials assessing the effectiveness of honeybee products in periodontal treatment with long-term follow-up, a broader sample size and assessment of various clinical parameters are needed.
Collapse
|