1
|
SanchesTrevizol J, Dionizio A, Delgado AQ, Ventura TMO, da Silva Ribeiro CF, Rabelo Buzalaf N, Bosqueiro JR, Buzalaf MAR. Optimized protocol for shotgun label-free proteomic analysis of pancreatic islets. Biol Methods Protoc 2024; 9:bpae003. [PMID: 38405023 PMCID: PMC10893585 DOI: 10.1093/biomethods/bpae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Pancreatic islets are crucial in diabetes research. Consequently, this protocol aims at optimizing both the protein-extraction process and the proteomic analysis via shotgun methods for pancreatic islets. Six protocols were tested, combining three types of chemical extraction with two mechanical extraction methods. Furthermore, two protocols incorporated a surfactant to enhance enzymatic cleavage. The steps involved extraction and concentration of protein, protein quantification, reduction, alkylation, digestion, purification and desalination, sample concentration to ∼1 µl, and proteomic analysis using the mass spectrometer. The most effective protocol involves either a milder chemical extraction paired with a more intensive mechanical process, or a more robust chemical extraction paired with a gentle mechanical process, tailored to the sample's characteristics. Additionally, it was observed that the use of a surfactant proved ineffective for these types of samples. Protocol 5 was recently used with success to examine metabolic changes in pancreatic islets of non-obese diabetic mice exposed to low doses of fluoride ions (F-) and the primary pathways altered by the treatment.
Collapse
Affiliation(s)
- Juliana SanchesTrevizol
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | | - Nathalia Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - José Roberto Bosqueiro
- Department of Physical Education, Faculty of Science, São Paulo State University, Bauru, São Paulo, Brazil
| | | |
Collapse
|
2
|
Nagendra AH, Ray A, Chaudhury D, Mitra A, Ranade AV, Bose B, Shenoy P. S. Sodium fluoride induces skeletal muscle atrophy via changes in mitochondrial and sarcomeric proteomes. PLoS One 2022; 17:e0279261. [PMID: 36548359 PMCID: PMC9779014 DOI: 10.1371/journal.pone.0279261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Sodium Fluoride (NaF) can change the expression of skeletal muscle proteins. Since skeletal muscle is rich in mitochondrial and contractile (sarcomeric) proteins, these proteins are sensitive to the effects of NaF, and the changes are dose-and time-dependent. In the current study, we have analysed the effect of high concentrations of NaF (80ppm) on mouse skeletal muscle at two different time points, i.e., 15 days and 60 days. At the end of the experimental time, the animals were sacrificed, skeletal muscles were isolated, and proteins were extracted and subjected to bioinformatic (Mass Spectrometric) analysis. The results were analysed based on changes in different mitochondrial complexes, contractile (sarcomeric) proteins, 26S proteasome, and ubiquitin-proteasome pathway. The results showed that the mitochondrial proteins of complex I, II, III, IV and V were differentially regulated in the groups treated with 80ppm of NaF for 15 days and 60 days. The network analysis indicated more changes in mitochondrial proteins in the group treated with the higher dose for 15 days rather than 60 days. Furthermore, differential expression of (sarcomeric) proteins, downregulation of 26S proteasome subunits, and differential expression in proteins related to the ubiquitin-proteasome pathway lead to muscle atrophy. The differential expression might be due to the adaptative mechanism to counteract the deleterious effects of NaF on energy metabolism. Data are available via ProteomeXchange with identifier PXD035014.
Collapse
Affiliation(s)
- Apoorva H. Nagendra
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| | - Animikh Ray
- Father Muller Research Centre, Father Muller Medical College, Father Muller Charitable Institutions, Kankanady, Mangalore, Karnataka, India
| | - Debajit Chaudhury
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| | - Akash Mitra
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| | - Anu Vinod Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| | - Sudheer Shenoy P.
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| |
Collapse
|
3
|
Varani J, McClintock SD, Knibbs RN, Harber I, Zeidan D, Jawad-Makki MAH, Aslam MN. Liver Protein Expression in NASH Mice on a High-Fat Diet: Response to Multi-Mineral Intervention. Front Nutr 2022; 9:859292. [PMID: 35634402 PMCID: PMC9130755 DOI: 10.3389/fnut.2022.859292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Male MS-NASH mice were maintained on a high-fat diet for 16 weeks with and without red algae-derived minerals. Obeticholic acid (OCA) was used as a comparator in the same strain and diet. C57BL/6 mice maintained on a standard (low-fat) rodent chow diet were used as a control. At the end of the in-life portion of the study, body weight, liver weight, liver enzyme levels and liver histology were assessed. Samples obtained from individual livers were subjected to Tandem Mass Tag labeling / mass spectroscopy for protein profile determination. As compared to mice maintained on the low-fat diet, all high-fat-fed mice had increased whole-body and liver weight, increased liver enzyme (aminotransferases) levels and widespread steatosis / ballooning hepatocyte degeneration. Histological evidence for liver inflammation and collagen deposition was also present, but changes were to a lesser extent. A moderate reduction in ballooning degeneration and collagen deposition was observed with mineral supplementation. Control mice on the high-fat diet alone demonstrated multiple protein changes associated with dysregulated fat and carbohydrate metabolism, lipotoxicity and oxidative stress. Cholesterol metabolism and bile acid formation were especially sensitive to diet. In mice receiving multi-mineral supplementation along with the high-fat diet, there was reduced liver toxicity as evidenced by a decrease in levels of several cytochrome P450 enzymes and other oxidant-generating moieties. Additionally, elevated expression of several keratins was also detected in mineral-supplemented mice. The protein changes observed with mineral supplementation were not seen with OCA. Our previous studies have shown that mice maintained on a high-fat diet for up to 18 months develop end-stage liver injury including hepatocellular carcinoma. Mineral-supplemented mice were substantially protected against tumor formation and other end-state consequences of high-fat feeding. The present study identifies early (16-week) protein changes occurring in the livers of the high-fat diet-fed mice, and how the expression of these proteins is influenced by mineral supplementation. These findings help elucidate early protein changes that contribute to end-stage liver injury and potential mechanisms by which dietary minerals may mitigate such damage.
Collapse
Affiliation(s)
- James Varani
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shannon D McClintock
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Randall N Knibbs
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Isabelle Harber
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Dania Zeidan
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Muhammad N Aslam
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Fernandes MS, Sabino-Arias IT, Dionizio A, Fabricio MF, Trevizol JS, Martini T, Azevedo LB, Valentine RA, Maguire A, Zohoori FV, L. Amaral S, Buzalaf MAR. Effect of Physical Exercise and Genetic Background on Glucose Homeostasis and Liver/Muscle Proteomes in Mice. Metabolites 2022; 12:metabo12020117. [PMID: 35208192 PMCID: PMC8878675 DOI: 10.3390/metabo12020117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
We compared the parameters related to glucose homeostasis, and liver and muscle proteomes in fluorosis-susceptible (A/J; S) and fluorosis-resistant (129P3/J; R) mice in response to fluoride (F) exposure and exercise. Ninety male mice (45 R-mice and 45 S-mice) were randomized into three groups: (SI; RI) No-F, No-Exercise, (SII; RII) 50 ppm F, No-Exercise, (SIII; RIII) 50 ppm F, Exercise. Overall, mean F concentrations in the plasma and femur were significantly higher in R-mice compared with S-mice. In R-mice, exercise resulted in an increase in F accumulation in the femur. In S-mice, the mean plasma glucose level was significantly higher in Group II compared with Groups I and III. There was an increase in liver proteins involved in energy flux and antioxidant enzymes in non-exercise groups (I, II) of S-mice in comparison with the corresponding groups of R-mice. The results also showed a decrease in muscle protein expression in Group I S-mice compared with their R-mice counterparts. In conclusion, the findings suggest an increased state of oxidative stress in fluorosis-susceptible mice that might be exacerbated by the treatment with F. In addition, fluorosis-susceptible mice have plasma glucose levels higher than fluorosis-resistant mice on exposure to F, and this is not affected by exercise.
Collapse
Affiliation(s)
- Mileni S. Fernandes
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Isabela T. Sabino-Arias
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Aline Dionizio
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Mayara F. Fabricio
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (M.F.F.); (S.L.A.)
| | - Juliana S. Trevizol
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Tatiana Martini
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Liane B. Azevedo
- School of Human and Health Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Ruth A. Valentine
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK; (R.A.V.); (A.M.)
| | - Anne Maguire
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK; (R.A.V.); (A.M.)
| | - Fatemeh V. Zohoori
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
- Correspondence: (F.V.Z.); (M.A.R.B.)
| | - Sandra L. Amaral
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (M.F.F.); (S.L.A.)
| | - Marília A. R. Buzalaf
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
- Correspondence: (F.V.Z.); (M.A.R.B.)
| |
Collapse
|
5
|
Guimaraes de Souza Melo C, Nelisis Zanoni J, Raquel Garcia de Souza S, Zignani I, de Lima Leite A, Domingues Heubel A, Vanessa Colombo Martins Perles J, Afonso Rabelo Buzalaf M. Global Proteomic Profile Integrated to Quantitative and Morphometric Assessment of Enteric Neurons: Investigation of the Mechanisms Involved in the Toxicity Induced by Acute Fluoride Exposure in the Duodenum. Neurotox Res 2021; 39:800-814. [PMID: 33689147 DOI: 10.1007/s12640-020-00296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/20/2020] [Accepted: 10/11/2020] [Indexed: 10/21/2022]
Abstract
The enteric nervous system is responsible for controlling the gastrointestinal tract (GIT) functions. Enteric neuropathies are highly correlated to the development of several intestinal disturbances. Fluoride (F) is extensively applied for dental health improvement and its ingestion can promote systemic toxicity with mild to severe GIT symptomatology and neurotoxicity. Although F harmful effects have been published, there is no information regarding noxiousness of a high acute F exposure (25 mg F/kg) on enteric neurons and levels of expression of intestinal proteins in the duodenum. Quantitative proteomics of the duodenum wall associated to morphometric and quantitative analysis of enteric neurons displayed F effects of a high acute exposure. F-induced myenteric neuroplasticity was characterized by a decrease in the density of nitrergic neurons and morphometric alterations in the general populations of neurons, nitrergic neurons, and substance P varicosities. Proteomics demonstrated F-induced alterations in levels of expression of 356 proteins correlated to striated muscle cell differentiation; generation of precursor metabolites and energy; NADH and glutathione metabolic process and purine ribonucleoside triphosphate biosynthesis. The neurochemical role of several intestinal proteins was discussed specially related to the modulation of enteric neuroplasticity. The results provide a new perspective on cell signaling pathways of gastrointestinal symptomatology promoted by acute F toxicity.
Collapse
Affiliation(s)
| | | | | | - Isabela Zignani
- Department of Morphophysiological Sciences, State University of Maringá, Paraná, Brazil
| | - Aline de Lima Leite
- Department of Biological Sciences, School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | |
Collapse
|
6
|
Khan ZN, Sabino IT, de Souza Melo CG, Martini T, da Silva Pereira HAB, Buzalaf MAR. Liver Proteome of Mice with Distinct Genetic Susceptibilities to Fluorosis Treated with Different Concentrations of F in the Drinking Water. Biol Trace Elem Res 2019; 187:107-119. [PMID: 29705835 DOI: 10.1007/s12011-018-1344-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/10/2018] [Indexed: 02/02/2023]
Abstract
Appropriate doses of fluoride (F) have therapeutic action against dental caries, but higher levels can cause disturbances in soft and mineralized tissues. Interestingly, the susceptibility to the toxic effects of F is genetically determined. This study evaluated the effects of F on the liver proteome of mice susceptible (A/J) or resistant (129P3/J) to the effects of F. Weanling male A/J (n = 12) and 129P3/J (n = 12) mice were housed in pairs and assigned to two groups given low-F food and drinking water containing 15 or 50 ppm F for 6 weeks. Liver proteome profiles were examined using nano-LC-ESI-MS/MS. Difference in expression among the groups was determined using the PLGS software. Treatment with the lower F concentration provoked more pronounced alterations in fold change in liver proteins in comparison to the treatment with the higher F concentration. Interestingly, most of the proteins with fold change upon treatment with 15 ppm F were increased in the A/J mice compared with their 129P3/J counterparts, suggesting an attempt of the former to fight the deleterious effects of F. However, upon treatment with 50 ppm F, most proteins with fold change were decreased in the A/J mice compared with their 129P3/J counterparts, especially proteins related to oxidative stress and protein folding, which might be related to the higher susceptibility of the A/J animals to the deleterious effects of F. Our findings add light into the mechanisms underlying genetic susceptibility to fluorosis.
Collapse
Affiliation(s)
- Zohaib Nisar Khan
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Isabela Tomazini Sabino
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Carina Guimarães de Souza Melo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Tatiana Martini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Heloísa Aparecida Barbosa da Silva Pereira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
- Department of Genetics and Evolution, Center of Biological Sciences and the Health, Federal University of São Carlos, Washington Luis, Km 235, São Carlos, São Paulo, 13560-970, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil.
| |
Collapse
|