1
|
Crispim BDA, Bernardi RC, Rodrigues da Luz S, Nascimento HDS, Dantas FGDS, Oliveira KMPD, Schibichewski MS, Cardoso CAL, Barufatti A. Alternative biological models for evaluation of the toxic, genotoxic and mutagenic potential of Ectatomma brunneum Smith venom. Toxicon 2025; 255:108256. [PMID: 39862931 DOI: 10.1016/j.toxicon.2025.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The venom of Ectatomma brunneum is considered promising for drugs development. Therefore, it is important to evaluate its toxic potential and genetic instability using biological assays. To this end, toxicity assays were performed with Artemia salina, cytotoxicity and genotoxicity with Allium cepa and mutagenicity with Ames. The results indicated toxicity to A. salina, and no cytotoxic, genotoxic or mutagenic potential at concentrations equal to or lower than 500 μg/mL for the other tests.
Collapse
Affiliation(s)
- Bruno do Amaral Crispim
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil; State University of Tocantins (UNITINS), Rua Planalto, 601, Centro - CEP, 77960-000, Augustinópolis, TO, Brazil.
| | - Rafaella Caroline Bernardi
- Center of Studies in Natural Resources, State University of Mato Grosso do Sul (UEMS), Dourados-Itahum Highway, Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil
| | - Sabrina Rodrigues da Luz
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil
| | - Hélina Dos Santos Nascimento
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil
| | - Fabiana Gomes da Silva Dantas
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil
| | - Kelly Mari Pires de Oliveira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil
| | - Marina Stefanes Schibichewski
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil
| | - Cláudia Andrea Lima Cardoso
- Center of Studies in Natural Resources, State University of Mato Grosso do Sul (UEMS), Dourados-Itahum Highway, Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil
| | - Alexeia Barufatti
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil; Faculty of Exact Sciences and Technology, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil
| |
Collapse
|
2
|
Assugeni IOS, Bazon ML, Pinto LM, Mainente LAB, Brochetto-Braga MR, de Lima Zollner R, Fernandes LGR. Recombinant antigen 5 from Polybia paulista wasp venom (Hymenoptera, Vespidae): Antigen-specific antibody production and functional profile of CD4 + T cells in the immune response. J Immunol Methods 2023; 522:113557. [PMID: 37689389 DOI: 10.1016/j.jim.2023.113557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Polybia paulista is a neotropical social wasp related to severe accidents and allergic reactions cases, including anaphylaxis, in southeastern Brazil. Antigen 5 (Poly p 5) is a major allergenic protein from its venom with potential use for component-resolved diagnostic. Therefore, the previous characterization of the immune response profile triggered by Poly p 5 should be evaluated. Recombinant Poly p 5 (rPoly p 5) was used to sensitize BALB/c mice with six weekly intradermal doses, and the specific antibody production and the functional profile of CD4+ T cells were assessed. rPoly p 5 induced the production of specific immunoglobulins (sIg) sIgE, sIgG1 and sIgG2a, which could recognize natural Poly p 5 presented in the venom of four different wasp species. rPoly p 5 stimulated in vitro the CD4+ T cells from immunized mice, which showed a significant proliferative response. These antigen-specific CD4+T cells produced IFN-γ and IL-17A cytokines and increased ROR-γT transcription factor expression. No differences between the control group and sensitized mice were found in IL-4 production and GATA-3 and T-bet expression. Interestingly, increased CD25+FoxP3+ regulatory T cells (Tregs) frequency was observed in the splenocyte cell cultures from rPoly p 5 immunized mice after the in vitro stimulation with both P. paulista venom extract and rPoly p 5. Here we showed that rPoly p 5 induces antigen-specific antibodies capable of recognizing Antigen 5 in the venom of four wasp species and modulates antigen-specific CD4+ T cells to IFN-γ production response associated with a Th17 profile in sensitized mice. These findings emphasize the potential use of rPoly p 5 as an essential source of a major wasp allergen with significant immunological properties.
Collapse
Affiliation(s)
- Isabela Oliveira Sandrini Assugeni
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | - Murilo Luiz Bazon
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | - Lucas Machado Pinto
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | | | - Márcia Regina Brochetto-Braga
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology (LIT), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology (LIT), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
3
|
Shedding Lights on Crude Venom from Solitary Foraging Predatory Ant Ectatomma opaciventre: Initial Toxinological Investigation. Toxins (Basel) 2022; 14:toxins14010037. [PMID: 35051015 PMCID: PMC8781531 DOI: 10.3390/toxins14010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/17/2023] Open
Abstract
Some species of primitive predatory ants, despite living in a colony, exercise their hunting collection strategy individually; their venom is painful, paralyzing, digestive, and lethal for their prey, yet the toxins responsible for these effects are poorly known. Ectatomma opaciventre is a previously unrecorded solitary hunting ant from the Brazilian Cerrado. To overcome this hindrance, the present study performed the in vitro enzymatic, biochemical, and biological activities of E. opaciventre to better understand the properties of this venom. Its venom showed several proteins with masses ranging from 1-116 kDa, highlighting the complexity of this venom. Compounds with high enzymatic activity were described, elucidating different enzyme classes present in the venom, with the presence of the first L-amino acid oxidase in Hymenoptera venoms being reported. Its crude venom contributes to a state of blood incoagulability, acting on primary hemostasis, inhibiting collagen-induced platelet aggregation, and operating on the fibrinolysis of loose red clots. Furthermore, the E. opaciventre venom preferentially induced cytotoxic effects on lung cancer cell lines and three different species of Leishmania. These data shed a comprehensive portrait of enzymatic components, biochemical and biological effects in vitro, opening perspectives for bio-pharmacological application of E. opaciventre venom molecules.
Collapse
|
4
|
dos Santos AT, Cruz GS, Baptista GR. Anti-inflammatory activities of arthropod peptides: a systematic review. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200152. [PMID: 34795699 PMCID: PMC8564866 DOI: 10.1590/1678-9199-jvatitd-2020-0152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Peptides obtained from different animal species have gained importance recently due to research that aims to develop biopharmaceuticals with therapeutic potential. In this sense, arthropod venoms have drawn attention, not only because of their toxicity but mainly for the search for molecules with various bioactivities, including anti-inflammatory activity. The purpose of the present study is to gather data available in the literature on new peptides derived from arthropod species with anti-inflammatory potential. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Studies on peptides from arthropods that display anti-inflammatory activity were retrieved from PubMed, Scopus, Web of Science, and Google Scholar databases. The bibliographic research started in 2020 and searched papers without a limit on the publication date. The articles were analyzed using a search string containing the following terms: "Peptides" and "Anti-inflammatory", in combinations such as "Ant", "Bee", "Wasp", "Crab", "Shrimp", "Scorpion", "Spider", "Tick" and "Centipedes". Besides, a search was carried out in the databases with the terms: "Peptides", "Antitumor", or "Anticancer", and "Arthropods". Articles that met the inclusion and exclusion criteria totalized 171, and these served for data extraction. Additionally, the present review included anti-inflammatory peptides with anticancer properties. Peptides with confirmed anti-inflammatory activity were from insects (ants, bees, and wasps), crustaceans (shrimp and crabs), arachnids (scorpions, spiders, and ticks), and centipedes. These arthropod peptides act mainly by decreasing pro-inflammatory cytokines as analyzed in vitro and in vivo. Some showed significant antineoplastic activity, working in essential cellular pathways against malignant neoplasms.
Collapse
Affiliation(s)
- Ariane Teixeira dos Santos
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gabriela Silva Cruz
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gandhi Rádis Baptista
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| |
Collapse
|
5
|
Al-Tamimi J, Ebaid H, Hassan I, Alhazza IM, Hailan W, Al-Khalifa M. Samsum ant venom protects against carbon tetrachloride-induced acute spleen toxicity in vivo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31138-31150. [PMID: 33598840 DOI: 10.1007/s11356-020-12252-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Many active molecules used in the development of new drugs are produced by ants. Present study assessed antioxidant and anti-inflammatory properties of Samsum ant venom (SAV) extract in carbon tetrachloride (CCL4)-induced spleen toxicity. Toxicity and oxidative stress were measured in four experimental groups: a negative control group without any treatment, a positive control group (CCl4-treated rats; a single dose of 1 ml/kg CCL4), an experimental group of CCl4-treated rats co-treated daily with SAV (100 μl), and a group to determine safe use with rats treated only with SAV (100 μl) daily for 3 weeks. CCl4-treatment led to an elevation in toxicity and oxidative stress. CCl4 significantly elevated malondialdehyde (MDA) levels, as well as expression of inhibitor of κB (IκB) and tumor necrosis factor-α (TNF-α) proteins. On the other hand, a decrease in glutathione (GSH) and catalase (CAT) levels were detected in CCl4-treated rats. Co-treatment with SAV was found to reduce these inflammatory and oxidative parameters. SAV elucidated a significant recovery of MDA concentration as well as a significant restoration in GSH levels compared to CCl4-treated rats; however, SAV increased CAT levels compared to normal rats. Hence, SAV was found to restore splenomegaly induced in CCl4-treated rats. Histopathological analysis also favored the biochemical analysis showing improvement in splenic architecture in CCl4 and SAV co-treated rats. The antioxidant properties of SAV may potentially enhance anti-inflammatory actions and improve spleen structure and function in CCl4-challenged rats.
Collapse
Affiliation(s)
- Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ibrahim M Alhazza
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Waleed Hailan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammed Al-Khalifa
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|