1
|
Sun R, Li S, Xia B, Zhu J. Detection of Novel Variant and Functional Study in a Chinese Family with Non-syndromic Oligodontia. Oral Dis 2022. [PMID: 35596231 DOI: 10.1111/odi.14259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the pathogenic gene of a patient with non-syndromic oligodontia, and analyze its possible pathogenic mechanism. SUBJECTS AND METHODS The variant was detected by whole exome sequencing (WES) and Sanger sequencing in a family with oligodontia. Bioinformatic and structural analyses were used to analyze variant. Functional studies including western blotting and immunofluorescent analyses and luciferase reporter assay were conducted to explore the functional effects. RESULTS We identified a novel frameshift variant of PAX9 (c.491-510delGCCCT-ATCACGGCGGCGGCC, p.P165Qfs*145) outside the DNA-binding domain causing an autosomal-dominant non-syndromic oligodontia in a Chinese family. Bioinformatic and structural analyses revealed that the variant is pathogenic and conserved evolutionarily, and the changes might affect protein stability or folding. Functional studies demonstrate dramatically reduced ability in activating transcription activity of BMP4 promoter and a marked decrease in protein production, as evaluated by western blotting and immunofluorescent analyses. CONCLUSIONS We found a novel frameshift variant of PAX9 causing non-syndromic oligodontia in a Chinese family. Our findings indicate that frameshift variants cause loss of function of PAX9 protein during the patterning of the dentition and the subsequent tooth agenesis, providing new molecular insights into the role of frameshift variant of PAX9 and broaden the pathogenic spectrum of PAX9 variants.
Collapse
Affiliation(s)
- Ruiqing Sun
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health & Beijing Key Laboratory of Digital Stomatology & National Clinical Research Center for Oral Diseases, Beijing 100081, China
| | - Shuangying Li
- Department of Pediatric Dentistry, Yinchuan Stomatology Hospital, Ningxia 750001, China
| | - Bin Xia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health & Beijing Key Laboratory of Digital Stomatology & National Clinical Research Center for Oral Diseases, Beijing 100081, China
| | - Junxia Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health & Beijing Key Laboratory of Digital Stomatology & National Clinical Research Center for Oral Diseases, Beijing 100081, China
| |
Collapse
|
2
|
Bhol CS, Patil S, Sahu BB, Patra SK, Bhutia SK. The clinical significance and correlative signaling pathways of paired box gene 9 in development and carcinogenesis. Biochim Biophys Acta Rev Cancer 2021; 1876:188561. [PMID: 33965511 DOI: 10.1016/j.bbcan.2021.188561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
Paired box 9 (PAX9) gene belongs to the PAX family, which encodes a family of metazoan transcription factors documented by a conserved DNA binding paired domain 128-amino-acids, critically essential for physiology and development. It is primarily expressed in embryonic tissues, such as the pharyngeal pouch endoderm, somites, neural crest-derived mesenchyme, and distal limb buds. PAX9 plays a vital role in craniofacial development by maintaining the odontogenic potential, mutations, and polymorphisms associated with the risk of tooth agenesis, hypodontia, and crown size in dentition. The loss-of-function of PAX9 in the murine model resulted in a short life span due to the arrest of cleft palate formation and skeletal abnormalities. According to recent studies, the PAX9 gene has a significant role in maintaining squamous cell differentiation, odontoblast differentiation of pluripotent stem cells, deregulation of which is associated with tumor initiation, and malignant transformation. Moreover, PAX9 contributes to promoter hypermethylation and alcohol- induced oro-esophageal squamous cell carcinoma mediated by downregulation of differentiation and apoptosis. Likewise, PAX9 activation is also reported to be associated with drug sensitivity. In summary, this current review aims to understand PAX9 function in the regulation of development, differentiation, and carcinogenesis, along with the underlying signaling pathways for possible cancer therapeutics.
Collapse
Affiliation(s)
- Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Binod Bihari Sahu
- Plant Immunity Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
3
|
Haddaji Mastouri M, De Coster P, Zaghabani A, Jammali F, Raouahi N, Ben Salem A, Saad A, Coucke P, H'mida Ben Brahim D. Genetic study of non-syndromic tooth agenesis through the screening of paired box 9, msh homeobox 1, axin 2, and Wnt family member 10A genes: a case-series. Eur J Oral Sci 2017; 126:24-32. [PMID: 29114927 DOI: 10.1111/eos.12391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 02/04/2023]
Abstract
Non-syndromic tooth agenesis (NSTA) is the most common developmental anomaly in humans. Several studies have been conducted on dental agenesis and numerous genes have been identified. However, the pathogenic mechanisms responsible for NSTA are not clearly understood. We studied a group of 28 patients with sporadic NSTA and nine patients with a family history of tooth agenesis. We focused on four genes - paired box 9 (PAX9), Wnt family member 10A (WNT10A), msh homeobox 1 (MSX1), and axin 2 (AXIN2) - using direct Sanger sequencing of the exons and intron-exon boundaries. The most prevalent variants identified in PAX9 and AXIN2 genes were analyzed using the chi-square test. The sequencing results revealed a number of variants in the AXIN2 gene, including one novel missense mutation in one patient with agenesis of a single second premolar. We also identified one variant in the AXIN2 gene as being a putative risk factor for tooth agenesis. Only one missense mutation was identified in the WNT10A gene and this mutation was found in two patients. Interestingly, WNT10A is reported as the most prevalent gene mutated in the European population with NSTA.
Collapse
Affiliation(s)
- Marwa Haddaji Mastouri
- Department of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Peter De Coster
- Department of Restorative Dentistry, Endodontology and Oral Biology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | - Frej Jammali
- Department of Orthodontics, Farhat Hached University Hospital, Sousse, Tunisia
| | - Nabiha Raouahi
- Department of Orthodontics, Farhat Hached University Hospital, Sousse, Tunisia
| | | | - Ali Saad
- Department of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Dorra H'mida Ben Brahim
- Department of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| |
Collapse
|
4
|
Bonczek O, Balcar V, Šerý O. PAX9
gene mutations and tooth agenesis: A review. Clin Genet 2017; 92:467-476. [DOI: 10.1111/cge.12986] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 11/27/2022]
Affiliation(s)
- O. Bonczek
- Laboratory of DNA Diagnostics, Department of Biochemistry, Faculty of Science; Masaryk University; Brno Czech Republic
- Laboratory of Animal Embryology, Institute of Animal Physiology and Genetics; The Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - V.J. Balcar
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of medical sciences, Sydney Medical School; The University of Sydney; Sydney NSW Australia
| | - O. Šerý
- Laboratory of DNA Diagnostics, Department of Biochemistry, Faculty of Science; Masaryk University; Brno Czech Republic
- Laboratory of Animal Embryology, Institute of Animal Physiology and Genetics; The Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
5
|
Tooth agenesis and orofacial clefting: genetic brothers in arms? Hum Genet 2016; 135:1299-1327. [PMID: 27699475 PMCID: PMC5065589 DOI: 10.1007/s00439-016-1733-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
Tooth agenesis and orofacial clefts represent the most common developmental anomalies and their co-occurrence is often reported in patients as well in animal models. The aim of the present systematic review is to thoroughly investigate the current literature (PubMed, EMBASE) to identify the genes and genomic loci contributing to syndromic or non-syndromic co-occurrence of tooth agenesis and orofacial clefts, to gain insight into the molecular mechanisms underlying their dual involvement in the development of teeth and facial primordia. Altogether, 84 articles including phenotype and genotype description provided 9 genomic loci and 26 gene candidates underlying the co-occurrence of the two congenital defects: MSX1, PAX9, IRF6, TP63, KMT2D, KDM6A, SATB2, TBX22, TGFα, TGFβ3, TGFβR1, TGFβR2, FGF8, FGFR1, KISS1R, WNT3, WNT5A, CDH1, CHD7, AXIN2, TWIST1, BCOR, OFD1, PTCH1, PITX2, and PVRL1. The molecular pathways, cellular functions, tissue-specific expression and disease association were investigated using publicly accessible databases (EntrezGene, UniProt, OMIM). The Gene Ontology terms of the biological processes mediated by the candidate genes were used to cluster them using the GOTermMapper (Lewis-Sigler Institute, Princeton University), speculating on six super-clusters: (a) anatomical development, (b) cell division, growth and motility, (c) cell metabolism and catabolism, (d) cell transport, (e) cell structure organization and (f) organ/system-specific processes. This review aims to increase the knowledge on the mechanisms underlying the co-occurrence of tooth agenesis and orofacial clefts, to pave the way for improving targeted (prenatal) molecular diagnosis and finally to reflect on therapeutic or ultimately preventive strategies for these disabling conditions in the future.
Collapse
|
6
|
Wang J, Sun K, Shen Y, Xu Y, Xie J, Huang R, Zhang Y, Xu C, Zhang X, Wang R, Lin Y. DNA methylation is critical for tooth agenesis: implications for sporadic non-syndromic anodontia and hypodontia. Sci Rep 2016; 6:19162. [PMID: 26759063 PMCID: PMC4725352 DOI: 10.1038/srep19162] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/02/2015] [Indexed: 02/05/2023] Open
Abstract
Hypodontia is caused by interactions among genetic, epigenetic, and environmental factors during tooth development, but the actual mechanism is unknown. DNA methylation now appears to play a significant role in abnormal developments, flawed phenotypes, and acquired diseases. Methylated DNA immunoprecipitation (MeDIP) has been developed as a new method of scanning large-scale DNA-methylation profiles within particular regions or in the entire genome. Here, we performed a genome-wide scan of paired DNA samples obtained from 4 patients lacking two mandibular incisors and 4 healthy controls with normal dentition. We scanned another female with non-syndromic anodontia and her younger brother with the same gene mutations of the PAX9,MSX1,AXIN2 and EDA, but without developmental abnormalities in the dentition. Results showed significant differences in the methylation level of the whole genome between the hypodontia and the normal groups. Nine genes were spotted, some of which have not been associated with dental development; these genes were related mainly to the development of cartilage, bone, teeth, and neural transduction, which implied a potential gene cascade network in hypodontia at the methylation level. This pilot study reveals the critical role of DNA methylation in hypodontia and might provide insights into developmental biology and the pathobiology of acquired diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Ke Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14., 3rd Sec, Ren Min Nan Road, Chengdu 610041, P.R. China
| | - Yun Shen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14., 3rd Sec, Ren Min Nan Road, Chengdu 610041, P.R. China
| | - Renhuan Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14., 3rd Sec, Ren Min Nan Road, Chengdu 610041, P.R. China
| | - Yiming Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Chenyuan Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Xu Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Raorao Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yanchang Road, Shanghai 200072, P.R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14., 3rd Sec, Ren Min Nan Road, Chengdu 610041, P.R. China
| |
Collapse
|
7
|
Origins and evolvability of the PAX family. Semin Cell Dev Biol 2015; 44:64-74. [DOI: 10.1016/j.semcdb.2015.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/07/2015] [Accepted: 08/22/2015] [Indexed: 01/18/2023]
|
8
|
|